Reliable JPEG Forensics via Model Uncertainty
Detecting the training-test mismatch with Bayesian logistic regression

Benedikt Lorch, Anatol Maier, Christian Riess
IT Security Infrastructures Lab
Friedrich-Alexander University Erlangen-Nuremberg, Germany
December 9, 2020
The training-test mismatch in JPEG forensics

Train in controlled lab environment
Test accuracy: 99%
Test on images of unknown quality
Test accuracy: ∼random guessing

• Detectors do not naturally generalize to unseen JPEG settings
• ... and fail silently.

Current approaches to mitigating the training-test mismatch
1. Create more robust detectors with broad applicability (open challenge)
2. Create several detectors specialized to a narrow range of JPEG settings (not fool-proof)
The training-test mismatch in JPEG forensics

Train in controlled lab environment
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \(\sim\) random guessing

Current approaches to mitigating the training-test mismatch

1. Create more robust detectors with broad applicability (open challenge)
2. Create several detectors specialized to a narrow range of JPEG settings (not fool-proof)
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \sim random guessing

- Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \(\sim\) random guessing

- Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.

Current approaches to mitigating the training-test mismatch

1. Create more robust detectors with broad applicability (open challenge)
The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test in images of unknown quality

- Test accuracy: 99%
- Test accuracy: \sim random guessing

- Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.

Current approaches to mitigating the training-test mismatch

1. Create more robust detectors with broad applicability (open challenge)
2. Create several detectors specialized to a narrow range of JPEG settings (not fool-proof)
Contribution: Detect training-test mismatch with Bayesian detector

Our proposal: Create **reliable detectors that express uncertainty in unfamiliar situations**

⇒ Quantify when to trust the model’s predictions

Experiments

• Detect JPEG double compression based on first-digit features
• Uncertainty measure allows anticipating misclassifications when test image is not aligned with the training data
• Mismatch in JPEG quality factors
• Mismatch in quantization tables
• Mismatch in DCT implementation
Contribution: Detect training-test mismatch with Bayesian detector

Our proposal: Create reliable detectors that express uncertainty in unfamiliar situations
⇒ Quantify when to trust the model’s predictions

Experiments
• Detect JPEG double compression based on first-digit features
• Uncertainty measure allows anticipating misclassifications when test image is not aligned with the training data
 • Mismatch in JPEG quality factors
 • Mismatch in quantization tables ← this talk
 • Mismatch in DCT implementation
Data and model uncertainty

A
edible: 0.0 0.5 1.0
poisonous: 0.0 0.5 1.0

B
edible: 0.0 0.5 1.0
poisonous: 0.0 0.5 1.0

C
edible: 0.0 0.5 1.0
poisonous: 0.0 0.5 1.0

D
edible: 0.0 0.5 1.0
poisonous: 0.0 0.5 1.0

No uncertainty: All experts agree
Data uncertainty: All experts are uncertain
Model uncertainty: Experts have different opinions
Data and model uncertainty

1. No uncertainty: All experts agree
Data and model uncertainty

1. No uncertainty: All experts agree
2. Data uncertainty: All experts are uncertain
Data and model uncertainty

1. No uncertainty: All experts agree
2. Data uncertainty: All experts are uncertain
3. Model uncertainty: Experts have different opinions
Bayesian logistic regression
Bayesian inference of predictive distribution

• Express uncertainty about decision boundary by modeling weights as probability distributions
Bayesian inference of predictive distribution

- Express uncertainty about decision boundary by modeling weights as probability distributions
- Goal: Obtain **predictive distribution** over possible outcomes instead of single estimate

\[
p(y^* | x^*, x_{\text{train}}, y_{\text{train}}) = \int p(y^* | x^*, w) p(w | x_{\text{train}}, y_{\text{train}}) \, dw (1)
\]

- \(p(y^* | x^*, w)\) - prediction of classifier with weights \(w\)
- \(p(w | x_{\text{train}}, y_{\text{train}})\) - posterior distribution over the weights after training data is seen
Bayesian inference of predictive distribution

- Express uncertainty about decision boundary by modeling weights as probability distributions
- Goal: Obtain **predictive distribution** over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

\[
p(y^* | x^*, x_{\text{train}}, y_{\text{train}}) = \int p(y^* | x^*, w) p(w | x_{\text{train}}, y_{\text{train}}) \, dw
\]
Bayesian inference of predictive distribution

- Express uncertainty about decision boundary by modeling weights as probability distributions
- Goal: Obtain **predictive distribution** over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

\[
p(y^* \mid x^*, x_{\text{train}}, y_{\text{train}}) = \int p(y^* \mid x^*, w) p(w \mid x_{\text{train}}, y_{\text{train}}) \, dw
\] (1)
Bayesian inference of predictive distribution

- Express uncertainty about decision boundary by modeling weights as probability distributions
- Goal: Obtain predicting distribution over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

\[p(y^* \mid x^*, x_{\text{train}}, y_{\text{train}}) = \int p(y^* \mid x^*, w) p(w \mid x_{\text{train}}, y_{\text{train}}) \, dw \] (1)

with
- \(p(y^* \mid x^*, w) \) - prediction of classifier with weights \(w \)
Bayesian inference of predictive distribution

- Express uncertainty about decision boundary by modeling weights as probability distributions
- Goal: Obtain **predictive distribution** over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

\[
p(y^* | x^*, x_{\text{train}}, y_{\text{train}}) = \int p(y^* | x^*, w) p(w | x_{\text{train}}, y_{\text{train}}) \, dw
\]

(1)

with
- \(p(y^* | x^*, w) \) - prediction of classifier with weights \(w \)
- \(p(w | x_{\text{train}}, y_{\text{train}}) \) - posterior distribution over the weights after training data is seen
Toy example: Standard logistic regression
Toy example: Bayesian logistic regression

Draws from weight posterior

Predictive mean
Toy example: Bayesian logistic regression
Experiments & Results
Application scenario: Mismatch in JPEG quantization tables

- Minor discrepancy between training and test quantization tables cause misclassifications
Application scenario: Mismatch in JPEG quantization tables

- Minor discrepancy between training and test quantization tables cause misclassifications

![Graph showing accuracy and predictive variance vs. number of adjusted quantization table entries.]
Application scenario: Mismatch in JPEG quantization tables

- Minor discrepancy between training and test quantization tables cause misclassifications
- Experiment: Randomly select i quantization table entries, adjust quantization factor by ± 1
Application scenario: Mismatch in JPEG quantization tables

- Minor discrepancy between training and test quantization tables cause misclassifications
- Experiment: Randomly select i quantization table entries, adjust quantization factor by ± 1

⇒ Bayesian detector anticipates misclassifications from quantization table mismatch
Conclusion
Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- Forensic methods are often faced with data from unknown origins
 ⇒ Forensic methods must take care of training-test mismatch (instead of failing silently)
Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- Forensic methods are often faced with data from unknown origins
 \[\Rightarrow\] Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- Quantify when to trust in the model's prediction
- Avoid misclassifications on unseen compression settings
- Applicable to neural networks but requires restrictive approximations
Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- Forensic methods are often faced with data from unknown origins
 \[\Rightarrow\] Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- Quantify when to trust in the model's prediction
- Avoid misclassifications on unseen compression settings
- Applicable to neural networks but requires restrictive approximations

Long term goal

- Foster research on reliable, trustworthy learning-based methods
Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- Forensic methods are often faced with data from unknown origins
 ⇒ Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- Quantify when to trust in the model's prediction
- Avoid misclassifications on unseen compression settings
- Applicable to neural networks but requires restrictive approximations

Long term goal

- Foster research on reliable, trustworthy learning-based methods
Thank you
References

- Tube icon adapted from environmental science icon
- Mushroom photos from Wikipedia [1, 2]