
Pr
epr

int
One Key to Rule Them All: Recovering the Master Key
from RAM to break Android’s File-Based Encryption

Tobias Großa,∗, Marcel Buscha, Tilo Müllera

aFriedrich-Alexander University (FAU) Erlangen-Nürnberg, Germany

Abstract

As known for a decade, cold boot attacks can break software-based disk encryption when an attacker has physical access
to a powered-on device, including Android smartphones. Raw memory images can be obtained by resetting a device and
rebooting it with a malicious boot loader, or—on systems where this is not possible due to secure boot or restrictive
BIOS settings—by a physical transplantation of RAM modules into a system under the control of the attacker. Based
on the memory images of a device, different key recovery algorithms have been proposed in the past to break Full-Disk
Encryption (FDE), including BitLocker, dm-crypt, and also Android’s FDE. With Google’s switch from FDE to File-based
Encryption (FBE) as the standard encryption method for recent Android devices, however, existing tools have been
rendered ineffective. To close this gap, and to re-enable the forensic analysis of encrypted Android disks, given a raw
memory image, we present a new key recovery method tailored for FBE. Furthermore, we extend The Sleuth Kit (TSK)
to automatically decrypt file names and file contents when working on FBE-enabled EXT4 images, as well as the Plaso
framework to extract events from encrypted EXT4 partitions. Last but not least, we argue that the recovery of master
keys from FBE partitions was particularly easy due to a flaw in the key derivation method by Google.

Keywords: Android, EXT4, File-Based Encryption (FBE), Disk Forensics, Memory Forensics, Cold Boot Attacks

1. Introduction

When a turned-on but locked smartphone is lost, stolen,
or seized, it faces attacks exploiting the capabilities of
having physical access to it. In 2008, Halderman et al. [1]
presented a method to break FDE, including BitLocker,
TrueCrypt and FileVault, called the cold boot attack. This
attack is based on the remanence effect of DRAM, which
says that memory modules preserve their contents for a
short time after power is cut. This time can be extended,
from less than a second up to several minutes, if the RAM
modules get cooled, either by cooling sprays or by putting
the device into a freezer [2]. After cooling, two different
kinds of cold boot attacks can be enforced: Either the
target machine is reset and booted with a forensic boot
loader to recover encryption keys from RAM. In this case,
power is cut only briefly, and the rate of correct recovered
bits is high. Or, if the target machine has boot restrictions
such as secure boot or BIOS settings, RAM modules must
quickly be transplanted into a recovery machine under the
control of the attacker. In the latter case, power is cut for
several seconds, and the rate of successfully recovered bits
depends on the temperature of the memory modules, as
well as other physical properties of DRAM.

∗Corresponding author
Email addresses: tobias.gross@cs.fau.de (Tobias Groß),

marcel.busch@cs.fau.de (Marcel Busch), tilo.mueller@cs.fau.de
(Tilo Müller)

Following the work by Halderman et al., more academic
studies have been published that substantiate the practica-
bility of cold boot attacks against common desktop PCs [3]
as well as Android-driven smartphones [2]. With DDR3
memory scrambling was introduced, rendering cold boot
attacks difficult because memory scrambling uses an LFSR-
based algorithm to “encrypt” RAM. However, it was never
meant for encryption but for the equal distribution of ones
and zeroes, just to increase efficiency. As a consequence,
even though scrambling is initialized differently on each
boot, subsequent work could show how to break memory
scrambling to access plain RAM [4].

On the defending side, to protect FDE keys and other
crypto keys, specialized key storages have been proposed
to hold the keys in CPU registers only, not in RAM [5, 6].
But those systems are pure academic concepts that are not
used in productive environments, as far as we know. And
second, such systems typically protect only one key, like the
FDE key, while other contents remain unencrypted in RAM.
Hence, cold boot attacks not focusing on cryptographic keys
but other memory contents, such as images and messages
on Android devices, remain a threat [7]. Consequently,
more sophisticated countermeasures encrypted large parts
of the RAM, either in software [8, 9] or in hardware [10],
but also those systems stay academic concepts that are not
used on real-world devices for a simple reason: Memory
encryption slows down the overall system performance by
an order of magnitude.

Preprint submitted to DFRWS EU 2021 November 25, 2020

Pr
epr

int
To sum up, also ten years after, the security hole opened

by cold boot attacks could not be closed in general yet.
Indeed, on ARM-driven Android devices with hardware-
backed key storages and secure boot enabled (TrustZone),
the exploitation of the remanence effect is extremely diffi-
cult today. Due to restrictive platform settings enforced by
Android vendors, not allowing to start custom boot loaders
on locked devices, the transplantation of RAM modules
often remains the only way to obtain memory dumps. This
method, however, is not easily possible on embedded de-
vices like smartphones, because RAM modules are soldered
onto the board and not unpluggable.

Those, for adversaries on the lower end of available
resources, like individual security researchers, it becomes
unaffordable today to obtain raw memory dumps from
up-to-date, fully patched Android smartphones. Contrary
to that, adversaries on the upper end of available resources,
like state-level actors, have multiple options: BootROM
exploits for zero-day vulnerabilities [11, 12], as well as
“secret” boot loader stages from the vendors [13]. Costs do
not matter for state-level adversaries, vendors can often be
forced to co-operate, and chip-off attacks are an established
way to carry out investigations [14].

1.1. Contributions
The above-mentioned restrictions issuing from platform

security hold true for all FBE-enabled Android devices
we had access to, most notably the Nexus and Pixel se-
ries by Google. Consequently, we cannot present the full
chain of a cold boot attack against an Android device with
FBE when it is fully patched and has its security features
enabled. Nevertheless, we argue that our work is an impor-
tant building block in the area of key recovery and memory
forensics.

Also, our work is of interest from a disk forensics point of
view. Not only rogue attackers have an interest in breaking
disk encryption to steal private data, but also law enforce-
ment has an eligible interest in decrypting smartphones for
forensic analyses. Today, smartphones are an integral part
of our lives, storing most of our personal and business data,
such that authorities world-wide have an increasing interest
in accessing the data of suspects to prove or disprove facts
of a crime.

In detail, our contributions are as follows:

• Given a raw memory image, we developed a method
that recovers the master key from file keys on Android
EXT4 FBE partitions.

• We extended The Sleuth Kit (TSK) [15] to output
FBE-related file attributes and to decrypt all file
names and file contents automatically.

• We extended the Plaso framework [16] to be able
to extract events from an FBE-encrypted partition
when providing only the master key.

• We evaluated our method on 13 Android smartphones,
released between 2015 and 2020, showing that 7 out of
them use a key derivation function that is vulnerable
to our method.

Finally, we argue that the recovery of master keys from
FBE was particularly easy due to a flaw in the key deriva-
tion function (KDF) used. Google independently fixed this
issue in newer kernel versions. However, the KDF is not
changed when updating a smartphone over-the-air, as it
requires re-encryption of the whole device, such that older
phones remain vulnerable.

1.2. Related Work
In 2008, Halderman et al. [1] presented the aeskeyfind

tool to recover FDE keys from RAM. This tool is based on
an algorithm that identifies the AES key schedule structure
in memory. The tool alone, however, cannot be used to
recover the master key of FBE partitions.

In 2017, Loftus et al. [17] gave an overview of Android’s
FBE and investigated whether known attacks against FDE
are still applicable. As a result, they state that some attacks
appear still feasible on Android 7.0 and later. In this paper,
we particularly show how the key recovery method and
forensic toolchains must be adapted at times of FBE.

In 2019, Groß et al. [18] investigated whether sensitive
data about the usage behavior of smartphone users can leak
when using Android’s FBE feature. Metadata remained
unencrypted, and indeed, the authors came to the con-
clusion that the metadata is sufficient to extract a list of
installed apps and to recover traces of usage behavior, such
as the time when WhatsApp messages have been sent or
received. The attack shown by Groß et al. [18], however,
was limited to basic events that could be extracted from
an unencrypted FBE partition. In this paper, we show
that FBE can be broken entirely after a RAM image was
obtained.

In 2016, Unterluggauer and Mangard [19] investigated
different disk encryption schemes to gain the encryption
key with differential power analysis and differential fault
analysis, rather than from RAM. They checked the FDE
implementations of Android, Mac OS X, and Linux (dm-
crypt), including the FBE feature of EXT4. For FBE they
mentioned that it is possible to recover the master key from
one file-specific data encryption key and the file-specific
nonce – a fact we will use later on, as well.

To sum up more related work: Skillen et al. [20], Wang
et al. [21] and Teufl et al. [22] evaluated the security of
Android’s FDE and proposed novel methods for hardening
FDE. Müller and Spreitzenbarth [2] implemented a forensic
boot loader called FROST that extracts the FDE key from
a cold booted Android device. To overcome attacks like
FROST, Götzfried and Müller [23] implemented a method
that hardens Android’s FDE against memory forensics
attacks by storing FDE keys in CPU registers.

2

Pr
epr

int
2. Background

In this section, we give necessary background informa-
tion on FBE (Section 2.1), as well as the the forensic tools
TSK (Section 2.2) and Plaso (Section 2.3).

2.1. Android File-Based Encryption
With Android 7.0, Google introduced FBE as a possi-

ble replacement for FDE. With Android 10.0, FBE gets
the mandatory encryption scheme for new devices. FBE
encrypts user files rather than a whole partition, such that
individual files can remain unencrypted. As a consequence,
basic features of a smartphone (e.g., alarm clocks, receiving
calls) can be running without unlocking the phone first,
and the files of different user accounts get encrypted dif-
ferently. As no entire partitions get encrypted, FBE is
implemented as an EXT4 feature that encrypts filenames
and file contents.

Only with additional support on recent Android phones,
also metadata gets encrypted. Therefore, with Android 9.0,
Google introduced support for metadata encryption [24].
With metadata encryption enabled, FDE is used on top of
FBE to encrypt the whole partition. Hence, for decrypting
file data, one has first to decrypt the FDE partition and
afterward, the file contents encrypted by FBE. Typically
that metadata encryption FDE is performed with a device
bound key to still be able to start basic services at boot
time without unlocking the device first.

Note that plenty of related work has already been pub-
lished on breaking FDE with cold boot attacks. As a
consequence, the combination of FDE and FBE makes our
attack still valuable as a part of the decrypting chain on re-
cent devices. First, FDE would have to be broken, e.g., by
approaches like by Halderman et al. [1], and subsequently,
FBE would have to be broken by our approach.

Technically, with FBE, each folder encrypts the includ-
ing filenames with a separate key, and analogously, every
file content is encrypted with a different key. According to
[19], we name the data encryption key of a file or folder
DEKf . The DEKf keys are derived from a master key
MK. On a typical Android system, there are at least
two different types of master keys. One that is bound to
the device (notated as MKd) and is used to encrypt files
that should be accessible after booting the device without
unlocking it with a pin code. Typically the device binding
of such a master key is implemented with the help of the
ARM TrustZone, which keeps the key save from root- and
kernel-level attackers. Other master keys are derived from
a user’s credentials (e.g., MKc). This derivation is done
in the TrustZone as well, in order to ensure that attackers
cannot brute-force weak pin codes easily. The MKc key is
used to encrypt files, which should be more confidential,
like chat histories, for example.

Every encrypted file and folder in EXT4 specifies with
a key descriptor which master key should be used to derive
the DEKf . A key derivation function (KDF) outputs the
DEKf by using the inputs MK and a file specific nonce.

KDF Dec.MK1

MK2

MKn

File

Content

Nonce

Key Desc.

DEKf

1

2

3 4

Figure 1: File-based decryption process when accessing the
content of a file.

Figure 1 shows the usage of the different keys when
accessing the content of a file. In step 1 , access to a file
is requested. With the help of the key descriptor of the
file, the suitable master key MK gets selected 2 . The file
nonce and the master key is then used to derive the DEKf

with the help of the key derivation function 3 . With the
derived DEKf , the file content can be decrypted 4 with
the decryption function (DF).

2.2. The Sleuth Kit
TSK is an open-source library and tool collection for

the forensic analysis of file systems and partitions [15]. Its
functionality is divided into multiple modules, each focusing
on a storage layer (e.g., image, partition, file system) to
make an extension as easy as possible.

TSK allows for performing a physical acquisition where
a bit-by-bit copy of the smartphone’s storage gets analyzed.
This technique potentially allows for the recovery of deleted
and hidden data. Contrary to the physical acquisition is the
logical acquisition, where the operating system (OS) of the
smartphone is used for data acquisition [25]. Drawbacks of
this method include that no deleted data can be recovered
and that data can be altered by accident or inevitable
because the OS and running applications constantly access
files in the background.

For every task which is related to the file system or the
partition analysis, TSK provides a single purpose command-
line tool. For example, istat is used to show the metadata
of a file, and icat is used to extract the content data of a
file. There is also a tool to list the files contained in a folder
called fls. There are many other tools that can handle, for
example, journal data, block-level access, or access to data
on the partition level.

Naturally, the functionality of the above-mentioned
tools in TSK is affected when FBE is enabled in EXT4.
With FDE, it is possible to separate the decryption func-
tionality from the file system analysis and, therefore, TSK
would have no need for decryption. But with FBE, encryp-
tion is coupled tight to the filesystem, and therefore, it is
required to extend TSK with decryption functionality to
be able to efficiently analyze and extract data from EXT4
FBE filesystems.

3

Pr
epr

int
2.3. Plaso

The Plaso Project is the successor of the log2timeline
tool. The tools of this project allow us to create a super
timeline, where all timestamped data of a system is col-
lected in one timeline [16]. Such a super timeline is a good
base for event reconstruction in forensic applications.

Plaso iterates over different storage layers like partitions,
filesystems, and application files to extract timestamped
data. The file system level access functionality is encap-
sulated in the digital forensic virtual file system (dfVFS)
project [26]. Typically, timestamped data can be found
in log files, instant messengers, and browser databases,
for example, but also in the metadata of files. For many
file types, Plaso provides a parser and special analyzer for
different application data. For example, the history of the
Chrome browser is stored as an SQLite database. Plaso
provides an SQLite format parser module and a special
analyzer that knows how to interpret the entries in different
tables of the history database.

As we already argued for TSK, Plaso also needs to
be extended to be able to handle FBE encrypted images.
With FDE, there was no need for Plaso to handle encrypted
images because partitions could be decrypted beforehand.
With FBE, however, the encryption is tightly coupled to
the files, such that we need to extend Plaso and dfVFS to
be able to handle FBE encrypted files.

3. File-Based Encryption Attack

As an attacker model, we choose an attacker who has
physical access to an Android device with FBE. This is
not a limitation as the task of disk encryption is to prevent
attackers who have physical access from gaining data that
is persistently stored on a device. Additionally, we assume
the device is powered on, but it might be locked, which is
a typical state for many smartphones. Last but not least,
and this is a limitation, we need full access to the RAM
image of a device (and, of course, access to its encrypted
disk). Only when given a full memory image we can exploit
a weakness in the key derivation function of FBE to obtain
the master key that can eventually be used to decrypt the
stored data.

3.1. Prerequisites
For our attack, we need (1) a memory image and (2)

naturally a copy of the user data partition from the attacked
device. There are different possibilities to obtain these
images, which we elaborate on in the following. But note
that in general, no Android Debug Bridge (ADB) or other
pre-installed developer access to the phone is required. In
general, a RAM image must “somehow” be obtained for our
attack. This can, as an alternative to the above mentioned
cold boot attacks—which either require the bootloader to
be unlocked or the RAM modules to be unpluggable—by
exploits and other tweaks that allow the execution of code
in an early boot phase.

3.1.1. Memory Images
We know of at least two ways that, in principle, allow

for obtaining memory contents from powered-on devices
by the execution of code in an early boot phase.

Bootloader Stages Modern mobile devices pass through
multiple bootloader stages until, eventually, the op-
erating system, hosting the user-facing applications,
gets started. The first bootloader stage is immutably
stored on the device during the manufacturing process
and referred to as BootROM. All succeeding stages
are mutable but verified using cryptographic signa-
tures, resulting in a trusted boot chain. A typical
design of this trusted boot chain is to let bootloader
stages drop their privileges according to their task.
For instance, the BootROM begins on the highest
privilege level, and privileges are dropped before con-
trol is transferred to the operating system [27].

Manufacturers usually equip their chips with alter-
native boot modes that can be entered after a warm
reset of the device. The boot mode entered also
determines the privilege level, as explained before.
While the recovery mode and the fastboot mode are
commonly known, and could already provide direct
access to RAM, there exist further undocumented
and powerful early-stage boot modes. On HiSilicon
chips, used on all Huawei devices, an early boot-
loader stage offers a serial console to transfer and
boot signed code [28]. On Qualcomm chips, used on
all Nexus and Pixel devices, a boot mode referred
to as Emergency Download (EDL) mode allows for
deploying so-called EDL programmers that directly
grant access to RAM [29]. These programmers need
to be signed by the manufacturer as well, but many
of them are leaked on the internet.

Bootloader Exploits While for the previously mentioned
undocumented bootloader stages, cryptographically
signed code is needed, an exploit in any of the early
bootloader stages grants the same access. Provided a
warm reboot of a device into a vulnerable bootloader
stage allows for obtaining residual memory areas af-
ter successful exploitation. This scenario is not only
realistic but even unpatchable if the very first boot-
loader stage, the BootROM, is affected, as recently
demonstrated on Apple products with the checkm8 ex-
ploit [11]. A similarly severe flaw affected Samsung’s
flagship series Galaxy, where at least the Samsung
Galaxy S7 model contains a flawed BootROM [12].
On this note, the research by Redini et al. [13] under-
lines that the bootloader code has to be considered
regarding the attack surface of mobile devices. In
their research, they found multiple flaws in bootloader
stages used on Huawei devices.

4

Pr
epr

int
1 stat ic int derive_key_aes (u8 deriving_key [FS_AES_128_ECB_KEY_SIZE] ,
2 const struct f scrypt_key ∗ source_key ,
3 u8 derived_raw_key [FS_MAX_KEY_SIZE])
4 {
5 /∗ . . . ∗/
6 struct crypto_skc ipher ∗ tfm = crypto_al loc_skc ipher (" ecb (aes) " , 0 , 0) ;
7 /∗ . . . ∗/
8 r e s = crypto_skcipher_setkey (tfm , deriving_key ,
9 FS_AES_128_ECB_KEY_SIZE) ;
10 /∗ . . . ∗/
11 sg_init_one(&src_sg , source_key−>raw , source_key−>s i z e) ;
12 sg_init_one(&dst_sg , derived_raw_key , source_key−>s i z e) ;
13 skc ipher_request_set_crypt (req , &src_sg , &dst_sg , source_key−>s i z e ,
14 NULL) ;
15 r e s = crypto_wait_req (crypto_skcipher_encrypt (req) , &wait) ;
16 /∗ . . . ∗/
17 return r e s ;
18 }

Listing 1: Implementation of the key derivation function (KDF) in the Android kernel source.

3.1.2. User Data Partition
To get an image of the persistent user data partition, an

attacker has at least two options. The first option is to use
a bootloader stage offering features to dump partitions from
persistent memory, as described above. This is the case for
many EDL programmers [30], as discussed previously.

The other option is to chip-off the data storage chip.
The Nexus 6P uses eMMC flash memory, for example. The
content of this type of memory can be dumped by using the
method shown by Etemadieh et al. [31]. Another option
for persistent data storage is NAND chips with similar
methods for data extraction [14].

3.2. Master Key Derivation
Our attack is based on the fact that the KDF used in

Android EXT4 FBE takes non-secret data as an encryption
key. In the FBE implementation we investigated, AES256-
ECB is used as KDF. Listing 1 shows the relevant code
which derives a DEKf from an MK. It is part of the
Android kernel, which is open source. The code is accessible
in the Google Source repository1. The shown code excerpts
are from the file fs/crypto/keyinfo.c at the commit tag
ASB-2018-12-05_4.14-p-release.

The function derive_key_aes gets indirectly called
from the function fscrypt_get_encryption_info with
some functions in between. In this call, the file nonce is
taken as deriving_key parameter, and the master key is
part of the parameter source_key. The function fscrypt_
get_encryption_info is used from the EXT4 filesystems
to derive the DEKf among other things. Analogously, an
identical function is used for the F2FS filesystem to derive
DEKf keys.

1https://android.googlesource.com/kernel/common

Listing 1 shows that the deriving_key (the nonce) is
taken as deriving key and source_key (the master key) as
source key. The last parameter only defines the destination
for the derived key. If we investigate the derive_key_aes
function, we see that AES-ECB is used as the cipher (line
6). Furthermore, we see that the deriving_key parameter
is used as the encryption key (line 8).

We notate the AES ECB encryption of the master key
with the file nonce to get the file-specific data encryption
key as DEKf = AESECB

noncef
(MK). With AES, decryption

is the same function as encryption. We can compute the
master key as MK = AESECB

noncef
(DEKF), which means

we decrypt the file-specific decryption key with the inherent
nonce.

In later versions of the Android kernel, a second KDF
was implemented for EXT4 FBE. In this version, the KDF
is chosen based on the filename encryption mode. If the
mode EXT4_ENCRYPTION_MODE_AES_256_HEH is used, the
new KDF is used. This decision is made in the func-
tion ext4_derive_key shown in Listing 2. This code
is part of the file fs/ext4/crypto_key.c in the repos-
itory https://android.googlesource.com/kernel/msm
commit 9db9532a2. This KDF uses the master key as
the key for KDF, and our attack method is not directly
applicable anymore. Currently, as can be seen in Section 5,
the new KDF is only used by one of our evaluated phones.

Our attack to compute the master keys of an FBE
filesystem uses file specific AES keys DEKf that we find
in the memory dump and file specific nonces which we find
in the dump of the persistent user data. To extract DEKF

keys from memory we use the existing aeskeyfind3 tool
which locates AES keys. We decided to use this approach

29db9532ae32d13333d5f394e5775fb99fafaad45
3https://github.com/makomk/aeskeyfind

5

https://android.googlesource.com/kernel/common
https://android.googlesource.com/kernel/msm
https://github.com/makomk/aeskeyfind

Pr
epr

int
1 stat ic int ext4_derive_key (const struct ext4_encryption_context ∗ ctx ,
2 const char master_key [EXT4_MAX_KEY_SIZE] ,
3 char derived_key [EXT4_MAX_KEY_SIZE])
4 {
5 /∗ . . . ∗/
6 i f (ctx−>filenames_encryption_mode == EXT4_ENCRYPTION_MODE_AES_256_HEH)
7 return ext4_derive_key_v2 (ctx−>nonce , master_key , derived_key) ;
8 else
9 return ext4_derive_key_v1 (ctx−>nonce , master_key , derived_key) ;
10 }

Listing 2: Alternative implementation of the key derivation function (KDF) in the Android sources.

instead of parsing kernel structures because it is more
resistant against partial overwriting or fading of memory,
which can happen when cold booting a device.

To extract all file nonces from the user data partition,
we use our extended TSK, meaning we parse the EXT4
filesystem. With all found DEKf keys notated as set
FK = {DEK1, DEK2, . . . , DEKn} and all nonces present
on the filesystem N = {nonce1, nonce2, . . . , noncen}, we
can calculate the set of all potential master keys M =
{MK1,MK2, . . . ,MK3} by applying the AES ECB de-
cryption:

AESECB
n (fk) : FK,N →M

The valid master keys are a subset of the set M . The
properties of the AES cipher ensures that decrypting data
with the wrong key output’s random data. Applied to our
solution, this means that if we find two different pairs of
FK ×N that output the same master key MK, we have
found a valid used master key.

This solution requires only two DEKf keys derived
from the same master key to be present in the memory
dump to compute the corresponding MK. The master
key allows us to derive all DEKf and to decrypt all file
names and file content of the EXT4 file-based encrypted
filesystem.

Special attention is needed in the case of FBE because
the master keys and the file-specific keys are of size 512-bit.
This is only a pseudo key size used by some AES modes
(f.e. AES XTS), which consists of 2 concatenated 256-bit
keys [32]. AES can operate with key sizes of 256-bit max.
All 512-bit keys present in FBE are two concatenated 256-
bit keys. aeskeyfind and our computation outputs only half
of these 512-bit keys, but we can concatenate the master
key halves to get full 512-bit master keys and verify the
concatenations by decrypting data on the filesystem.

4. Implementation

We implemented a new tool, called fbekeyrecover, that
implements the method described above in Section 3.2. Ad-
ditionally, TSK is extended to output FBE related meta-
data and to be able to decrypt file names and content

Master
Key

Restorer

Memory
Dump

Filesystem
Image

Master Keys

log2timeline
(Plaso)

The Sleuth Kit

dfVFS

pytsk3

Events

Figure 2: Overview of the modules and tools we extended or
implemented and how they interact with each other.

when provided with the master keys. Also, we extended
Plaso to be able to use the extended TSK, such that event
reconstruction can be performed on Android devices with
FBE. Figure 2 shows all tools extended or implemented by
us and how they interact together to extract events from
an Android phone with FBE.

All code we implemented is made open-source and pub-
licly available at https://www.cs1.tf.fau.de/research/
system-security-group/one-key-to-rule/.

4.1. The Sleuth Kit Extension
Our extension of TSK can be divided into two parts.

First is the extension of the command line tool istat for
EXT4 filesystems. This tool prints all information and
metadata of a given metadata address (also known as
inode). With our extension, the tool additionally outputs
encryption-related metadata.

The second extension implements the possibility for
TSK to decrypt file names and content of encrypted EXT4
partitions when the master keys are provided.

The istat tool calls internally the filesystem specific
istat function which is implemented for every supported
fileystem. For encryption metadata output we extended
and refactored the ext2fs_istat function. In EXT4, the

6

https://www.cs1.tf.fau.de/research/system-security-group/one-key-to-rule/
https://www.cs1.tf.fau.de/research/system-security-group/one-key-to-rule/

Pr
epr

int
new encryption specific metadata is stored as an extended
attribute (XA), which is an extension feature of EXT.
There are two different types of XA. The first one is an
internal XA, and it is stored inside of an inode metadata
structure. The second version of XA is stored in a separate
block, and the block is referenced inside the inode structure.
These XAs are called external. EXT4 allows the encryption
metadata to be stored as internal or external XAs.

We excluded the parsing of XAs, which is already
present in the istat function into a new function ext2fs_
print_xattr and extended it, to be able to call it twice for
the internal and external extended attribute data. We iden-
tify encryption XA with its specific attribute type (idx) of
EXT2_EA_IDX_ENCRYPTION (=9). All EXT4 constants and
structures definitions from our extension are taken from
the Android kernel source. The encryption XA is defined
in the ext2fs_encryption_entry structure. It contains
the values version, content encryption mode, name encryp-
tion mode, key descriptor (8 bytes), and nonce (16 bytes).
Content and name encryption mode define which cipher
was used to encrypt. The key descriptor defines which
master key must be used to derive the DEKf key. The
nonce is used in the derivation process. The Android kernel
defines 6 (with the invalid option 7) different encryption
modes: invalid (=0), AES XTS (=1), AES GCM (=2),
AES CBC (=3), AES CTS (=4), AES HEH (=126), and
private (=127). The nonce and the key descriptor are
printed in hexadecimal format; the encryption modes are
printed as human-readable literal from our istat extension.

For the extension of content and name decryption, we
had to adjust several points in the TSK code. Figure 3 shows
which functions we had modified (in red) or added (in blue).
The function tsk_fs_fls is exemplary for a call where
filenames are outputted. The functions tsk_fs_attr_read
and tsk_fs_attr_walk are the starting point when file
content should be extracted.

In the linking process, the OpenSSL library is linked to
the TSK executables to be able to perform decryption tasks.
In the file tsk/util/crypto_ext.c, we implemented the
decryption modes AES XTS and CTS. For XTS we only
implemented a wrapper for the function. CTS is not pro-
vided by OpenSSL, therefore we implemented it by using
AES ECB.

We added a new argument -K to the TSK command
line tools fls, fcat, icat, and ifind which allows to add
master keys to the root EXT4 filesystem structure in TSK
(EXT2FS_INFO). With this argument, the user points to
a file containing one master key per line in the format
id:key_part1:key_part2.

TSK parses the EXT4 metadata structure and copies
important data to a generic struct TSK_FS_META. We ex-
tended this generic structure to possibly point to encryption
data. In the case of EXT4 filesystem this pointer points to
a struct of type ext2fs_encryption_attribute. Future
filesystems can use this generic pointer to reference their
specific encryption attributes. Dependent on this change
we had to adjust the filesystem independent TSK functions

tsk_fs_meta_reset and tsk_fs_meta_close in tsk/fs/
fs_inode.c. The functions ext2fs_dinode_copy_
encryption_attribute and ext2fs_extract_
encryption_attribute are responsible for initializing the
encryption attributes, and are used in function ext2fs_
dinode_copy.

To decrypt filenames and file content, we need to com-
pute the DEKf for every file or folder with encrypted
content. The master keys of the filesystem are needed for
key derivation. We store the master keys in the EXT2FS_
MASTER_KEY structure, which can link multiple master keys
together, and a reference to the first key is stored in the
EXT2FS_INFO structure, which is the root data structure
used in most TSK functions to store general filesystem infor-
mation. tsk_ext2fs_add_master_keys adds the master
keys to the EXT info structure. tsk_fs_add_keys is the
general function which calls a file system specific function.

The key derivation of EXT4 is done in the function
ext2fs_calculate_file_key which takes the metadata
of a file and the EXT2FS_INFO structure. Directory entries,
which store the filenames in EXT are parsed in the function
ext2fs_dent_parse_block and ext2fs_dent_copy. We
extended these functions to decrypt encrypted filenames.

If a user wants to read file content data with TSK
command line tools or the library, in the end the func-
tions tsk_fs_attr_read and tsk_fs_attr_walk are used
to perform these tasks. The walk function calls a given
callback function for every data chunk of a file. The read
function can be used to extract a data chunk of a given
size and offset. We extended these functions so that they
call our special functions ext4_walk_encrypted_data and
ext4_read_encrypted_data if the metadata shows that
the content is encrypted.

4.2. fbekeyrecover
This tool takes a memory dump and an image of the

filesystem to compute the used master keys. It uses the
tools aeskeyfind, fls, and istat which get executed in an
external process. With fls, all inodes present on the given
EXT4 filesystem are collected. For every inode, istat is
called to get the encryption metadata if present.

Of most importance to the tool are the nonce and the
master key descriptor of an inode. All nonces are grouped
by the master key descriptor. After this process, we have
different bins of nonces.

The tool can process multiple memory dumps. This
feature allows us to circumvent the crash of aeskeyfind,
which occurs when processing too big memory dumps, by
splitting the dumps into multiple files. Each memory dump
gets processed by aeskeyfind, and all found 256-bit AES
keys are collected in one list.

The last step of this tool is to compute all potential
master keys per nonce bin. It computes the master keys
in parallel by using eight workers. Thereby, it counts the
occurrence of every master key. In the end, the keys are
sorted by the count descending. The two 256-bit keys per

7

Pr
epr

int
tsk_fs_fls

ext2fs_dir_open_meta

tsk_fs_file_open_meta ext2fs_dent_parse_block

ext2fs_inode_lookup

ext2fs_dinode_copy

ext2fs_calculate_file_key

aes_ect_encrypt_buffer

ext2fs_dent_copy

aes_cts_decrypt_buffer

ext2fs_dinode_copy_encryption_attribute

…

tsk_fs_attr_walktsk_fs_attr_read

ext4_walk_encrypted_data

aes_xts_decrypt_buffer_block_num

aes_xts_decrypt_buffer

ext4_read_encrypted_data

ext2fs_calculate_file_key

aes_ecb_encrypt_buffer

Figure 3: Overview of functions of The Sleuth Kit (TSK), including unmodified functions (white), new functions (blue), and
modified functions by us (red).

nonce bin with the most hits shape the master key for the
descriptor.

With our approach, only two file keysDEKF are needed
to be present on the memory dump to reconstruct a master
key. This is valuable in cases where parts of the memory
are already vanished or wiped during a cold boot attack.

4.3. Plaso Extension
The extension of Plaso consists of three parts. First, we

had to adjust the pytsk3 project, which provided Python
bindings to the TSK library. The second part is the exten-
sion of the dfVFS project, which provides data access on
different abstraction levels (e.g., image, filesystem, files) by
a path specification. This project uses the TSK library to
open EXT filesystems. The last part is the extension of the
Plaso project to allow EXT4 master keys to be provided
by an argument to the command-line tools.

The pytsk3 module provides the FS_Info object, which
can be used to get file content or to list directory entries.
We extended FS_Info with the add_keys method. It calls
the tsk_fs_add_keys function of TSK, which introduces
EXT4 master keys to TSK. Additionally, we had to link
the library libcrypto to the pytsk3 module so that TSK is
able to decrypt the data.

In the dfVFS project we added a master_keys attribute
to the TSKPathSpec class. This path spec is responsible
for such filesystems, which are handled by TSK (in our
case EXT4). In dfVFS, different path specs can be linked
together to create references to specific files or content in
a file. Different path specs dependent on the items format
are implement in the dfVFS project.

We modified the _openmethod of TSKFileSystem which
is responsible for opening filesystem images. We added

code to add the master keys specified in the path spec to
the FS_info object from pytsk.

Since every TSK path spec should propagate the master
keys to child TSK path specs we had to adjust the follow-
ing methods: _EntriesGenerator of class TSKDirectory,
GetLinkedFileEntry and GetParentFileEntry of class
TSKFileEntry, and GetRootFileEntry of class TSKFile
System.

Lastly, we had to fix the serialization of path specs.
During scanning through an image, Plaso serializes and
deserializes path specs. To keep the master keys and to be
able to propagate them to child TSK path specs we had to
add master_keys to PROPERTY_NAMES in the class Factory
(dfvfs/path/factory.py). This makes sure that master
keys will be serialized and deserialized properly together
with the path specs.

The Plaso tool already has an argument –credential
that is used to provide f.e. BitLocker Drive Encryption
passwords. We added a new credential type ext4_master.
The credential argument is used in the format ext4_master:
<id>,<key_part1>,<key_part2>.

One of the first calls of the Plaso command line tools
log2timeline and psteal is ScanSource of the StorageMedia
Tool class. This method opens the given source and
searches for which partition and filesystem handler to use.
If TSK is used because of an EXT filesystem, we add the
master keys to the path spec with a call to our method
_addMasterKeys.

5. Evaluation

We evaluated the applicability of our attack in two
different ways. For two Google devices, we carried out a
full master key recovery. Those devices are the Nexus 5X

8

Pr
epr

int
and the Pixel XL. For many other Android devices, we
checked which encryption scheme is used, e.g., by extracting
the encryption metadata, to draw a conclusion on the
applicability of our attack. This includes devices from
a wide range of vendors, such as Samsung, Huawei, and
Xiaomi.

The devices where we successfully derived the master
keys from file-specific data encryption keys present in a
memory dump are shown in Table 1. For the Nexus 5X and
the Pixel XL, we dumped the memory with the help of the
LiME kernel module4. To be able to load this module and
to dump the memory, we had compiled our own Android
kernel from the sources. We enabled the loadable kernel
module (LKM) support and compiled the LiME module
together with the kernel.

With the tools unmkbootimg and mkbootimg5 we in-
serted our custom kernel to an boot.img from a official
factory image. Afterwards we flashed the device with the
modified boot.img to get LKM support. In addition to the
custom kernel, we rooted the devices with Magisk6.

By loading LiME we dumped the memory to an image.
With the tools dd and netcat, we dumped the userdata
partition as the root user to an image. Afterward, we
called our master key recovery tool with both the memory
and the userdata dump and evaluated the potential master
keys. For each potential master key, we counted how often
it was computed. For the Nexus 5X, the result can be
seen in Figure 4. On the x-axis the four most counted key
candidates are displayed. As explained in Section 3, we
expected to count only the real master keys multiple times.
With this result, we can confirm this assumption.

k1 k2 k3 k4

305
175

1 1

844

474

1 1
126

51 1 1

C
ou

nt

MK Desc. 1
MK Desc. 2
MK Desc. 3

Figure 4: Count of the same master key candidates for the
Nexus 5X.

On the Nexus 5X, we can observe that three different
master keys are used. For every master key descriptor,
we recovered two 256-bit keys multiple times. Since one
master key is of size 512-bit (two keys of the size 256-bit),
our attack is effective. If we consider the quantity, we can
recover the complete 512-bit key in the right order. The
key part found most times is the first part, the other one
the second part.

We were also able to recover the master keys from an
Android Virtual Device (AVD). Since Android 10, the AVD

4https://github.com/504ensicsLabs/LiME
5https://github.com/difcareer/BootImgTool
6https://magiskmanager.com

also uses FBE instead of FDE. We dumped the memory
with the qemu monitor, and the userdata image was already
present in the qcow2 format.

During our evaluation of the three devices, we success-
fully decrypted filenames and content using the restored
master keys and our modified TSK version. We evaluated
the Plaso extension by reconstructing Chrome browsing
events from the userdata image.

In the second part, we evaluate which disk encryption
mechanism (e.g., FDE, FBE, FBE + metadata encryption)
is used by smartphones we had access to. If a device uses
FBE or metadata encryption, we also evaluated if it uses
the name encryption mode, which indicates the usage of
the KDF where we can recover master keys. This is the
case for all name encryption modes except AES HEH.

This part of the evaluation is based on an Android
application we implemented, which evaluates the outputs
of the command mount and a bundled native binary. This
binary reads the encryption metadata of the own data folder
with the help of an EXT4_IOC_GET_ENCRYPTION_POLICY
request via ioctl.

In Table 2, all devices we investigated are listed. Three
of them, namely Nexus 6P, Mi 8, and P20 lite, still use plain
FDE without metadata encryption. The name encryption
mode indicates that they use the old KDF where we can
recover the master keys. The Pixel 2 was the only device,
which uses the HEH name encryption mode indicating its
usage of a new KDF.

But our method can still be a building block in fully
decrypting a metadata encrypted filesystem if you can
recover the DEK used in FDE. Typically, this FDE key is
not derived by a user’s passphrase or pin. Instead, it is
bound to the device hardware (typically in the TrustZone).
If one can access this DEK, our method is still valuable
for metadata encrypted devices to decrypt the FBE layer.
The evaluation shows that the devices Pixel 3 and Pixel
4 use the metadata encryption together with FBE and a
name encryption mode indicating the use of the old KDF.
For the devices Galaxy S10 and P40 Pro, we had no access
to the encryption metadata because the OS denied access
and, therefore, we could not further evaluate the modes in
use. This is displayed as [in Table 2.

6. Conclusion

In this work, we have shown how to extract encryption
keys for FBE, the encryption solution of choice for new
smartphones, and mandatory for all devices running An-
droid 10 or later. Our extraction method implemented in
the tool fbekeyrecover differs notably from the extraction of
FDE keys shown in previous work [1]. In contrast to FDE,
where only one key is used to decrypt the whole partition,
FBE uses one key per file, which results in hundreds of
keys being held in RAM. We exploit the redundancy of
key material in our method to make it robust against a
partial wipe or loss of data from RAM because it is likely

9

https://github.com/504ensicsLabs/LiME
https://github.com/difcareer/BootImgTool
https://magiskmanager.com

Pr
epr

int
Release Device OS Version Content Enc. Name Enc.

2015 Google Nexus 5X 8.1.0 AES XTS AES CBC CTS
2016 Google Pixel XL 10.0.0 private AES CBC CTS
(2019) Virtual Device 10 AES XTS AES CBC CTS

Table 1: The devices from Google we did a full master key recovery for.

Release Device OS Version Content Enc. Name Enc. old KDF Metadata Enc.

2015 Samsung Galaxy S6 7.0 Full-Disk Encryption — —
2015 Google Nexus 6P 8.1.0 AES XTS AES CBC CTS 3 7
2016 Huawei P9 lite 7.0 Full-Disk Encryption — —
2017 Google Pixel 2 10 private AES HEH 7 7
2017 BQ Aquaris X 8.1.0 Full-Disk Encryption — —
2018 Google Pixel 3 9 private AES CBC CTS 3 3
2018 Xiaomi Mi 8 8.1.0 private AES CBC CTS 3 7
2018 Huawei P20 lite 8.0.0 AES XTS AES CBC CTS 3 7
2019 Google Pixel 4 10 private AES CBC CTS 3 3
2019 Samsung Galaxy S10 10 [[[7
2020 Huawei P40 Pro 10.1.0 [[[(3)

Table 2: Popular smartphones and their encryption schemes being used.

that the minimum of two needed file encryption keys is still
present in the RAM after a cold boot attack. Previous work
has shown that bit flips, caused by the remanence effect
of DRAM, can destroy portions of RAM [2, 3], possibly
including file keys.

On memory dumps of two devices, namely the Google
Nexus 5X and Pixel XL, we have shown that our method to
recover FBE master keys works as intended. Although we
were not able to perform all steps of a cold boot chain, due
to the platform security features of modern Android phones,
we still argue that our key deriving method is an important
building block for law enforcement to successfully break
FBE-enabled Android smartphones.

In the future, law enforcement has to use additional
methods, such as malicious bootloaders and exploits, as we
explained in Sect. 3.1.1, for example, to be able to obtain
memory images from encrypted smartphones. Currently,
the application of memory forensics moves from classic cold
boot attacks, where devices could simply be rebooted or
their RAM modules simply be transplanted, towards more
sophisticated attack chains that also require breaking the
platform security of a device, e.g., by attacking its secure
boot scheme. More generally, to obtain a memory image via
logical access (that is not by transplanting RAM modules),
it is necessary to gain code execution at an appropriate
level on the target phone. Since we found that file keys are
stored in the memory space of the kernel, and not in more
protected memory areas like the TrustZone, code execution
at EL1 would suffice to have access to the keys we use.

One way to get such code execution is the mentioned
EDL programmer, which is normally used by manufactur-
ers as a last resort to repair a bricked phone. But in the

past, we have also seen unintended flaws in boot ROMs
that can be exploited to get code execution. For exam-
ple, the checkm8 exploit [11] for iOS devices and a severe
vulnerability affecting the Samsung Galaxy series [12].

7. Limitation

In our study, we came across a new key derivation
function (KDF) that is used for the implementation of
FBE in the Android sources. As our recovery method was
highly optimized for the old KDF, the new KDF renders
our tool fbekeyrecover ineffective. But, the new KDF we
investigated is only used if file names are encrypted with
the AES HEH mode and already shipped devices will not
be updated. Over-the-air updates do not change the en-
cryption scheme of a device, because it requires a complete
re-encryption of the userdata partition. As a consequence,
for all devices where our fbekeyrecover tool is applicable
today, it remains applicable in the future, too.

It can also be seen as a limitation that with the introduc-
tion of metadata encryption, FDE provides an additional
layer of security against the type of attacks we presented.
However, first, the FDE key is vulnerable to the exact
same attacker model as the FBE key. Meaning that in
scenarios where the FBE key can be recovered from RAM
with our method, the FDE key can also be recovered with
previously published methods [1, 2], if the key is not stored
in a dedicated crypto element. Second, we argue that ev-
ery encryption layer should be implemented properly on
its own to protect data best. For example, in the past,
there were flaws in the implementation of FDE [33], where
the same static encryption key was used on many devices,
making it easy for an attacker to decrypt the data. In this

10

Pr
epr

int
case, the correct implementation of FBE would indeed add
security and protect user data despite FDE being flawed.

References

[1] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clark-
son, W. Paul, J. A. Calandrino, A. J. Feldman,
J. Appelbaum, E. W. Felten, Lest We Remem-
ber: Cold Boot Attacks on Encryption Keys, in:
P. C. van Oorschot (Ed.), Proceedings of the 17th
USENIX Security Symposium, July 28-August 1, 2008,
San Jose, CA, USA, USENIX Association, 45–60,
URL http://www.usenix.org/events/sec08/tech/
full_papers/halderman/halderman.pdf, 2008.

[2] T. Müller, M. Spreitzenbarth, FROST - Forensic Re-
covery of Scrambled Telephones, in: M. J. J. Jr.,
M. E. Locasto, P. Mohassel, R. Safavi-Naini (Eds.),
Applied Cryptography and Network Security - 11th
International Conference, ACNS 2013, Banff, AB,
Canada, June 25-28, 2013. Proceedings, vol. 7954 of
Lecture Notes in Computer Science, Springer, 373–
388, doi:10.1007/978-3-642-38980-1_23, URL https:
//doi.org/10.1007/978-3-642-38980-1_23, 2013.

[3] M. Gruhn, T. Müller, On the Practicability of Cold
Boot Attacks, in: 2013 International Conference on
Availability, Reliability and Security, ARES 2013, Re-
gensburg, Germany, September 2-6, 2013, IEEE Com-
puter Society, 390–397, doi:10.1109/ARES.2013.52,
URL https://doi.org/10.1109/ARES.2013.52, 2013.

[4] J. Bauer, M. Gruhn, F. C. Freiling, Lest we forget:
Cold-boot attacks on scrambled DDR3 memory, Digi-
tal Investigation 16 (2016) S65–S74.

[5] T. Müller, F. C. Freiling, A. Dewald, TRESOR
Runs Encryption Securely Outside RAM, in: 20th
USENIX Security Symposium, San Francisco, CA,
USA, August 8-12, 2011, Proceedings, USENIX As-
sociation, URL http://static.usenix.org/events/
sec11/tech/full_papers/Muller.pdf, 2011.

[6] B. Garmany, T. Müller, PRIME: private RSA infras-
tructure for memory-less encryption, in: C. N. P.
Jr. (Ed.), Annual Computer Security Applications
Conference, ACSAC ’13, New Orleans, LA, USA,
December 9-13, 2013, ACM, 149–158, doi:10.1145/
2523649.2523656, URL https://doi.org/10.1145/
2523649.2523656, 2013.

[7] C. Hilgers, H. Macht, T. Müller, M. Spreitzenbarth,
Post-Mortem Memory Analysis of Cold-Booted An-
droid Devices, in: F. C. Freiling, H. Morgenstern,
S. Frings, O. Göbel, D. Günther, J. Nedon, D. Schadt
(Eds.), Eighth International Conference on IT Secu-
rity Incident Management & IT Forensics, IMF 2014,
Münster, Germany, May 12-14, 2014, IEEE Com-
puter Society, 62–75, doi:10.1109/IMF.2014.8, URL
https://doi.org/10.1109/IMF.2014.8, 2014.

[8] J. Götzfried, T. Müller, G. Drescher, S. Nürnberger,
M. Backes, RamCrypt: Kernel-based Address Space
Encryption for User-mode Processes, in: X. Chen,

X. Wang, X. Huang (Eds.), Proceedings of the 11th
ACM on Asia Conference on Computer and Com-
munications Security, AsiaCCS 2016, Xi’an, China,
May 30 - June 3, 2016, ACM, 919–924, doi:10.1145/
2897845.2897924, URL https://doi.org/10.1145/
2897845.2897924, 2016.

[9] J. Götzfried, N. Dorr, R. Palutke, T. Müller, Hyper-
Crypt: Hypervisor-Based Encryption of Kernel and
User Space, in: 11th International Conference on Avail-
ability, Reliability and Security, ARES 2016, Salzburg,
Austria, August 31 - September 2, 2016, IEEE Com-
puter Society, 79–87, doi:10.1109/ARES.2016.13,
URL https://doi.org/10.1109/ARES.2016.13, 2016.

[10] A. Würstlein, M. Gernoth, J. Götzfried, T. Müller,
Exzess: Hardware-Based RAM Encryption Against
Physical Memory Disclosure, in: F. Hannig, J. M. P.
Cardoso, T. Pionteck, D. Fey, W. Schröder-Preikschat,
J. Teich (Eds.), Architecture of Computing Systems -
ARCS 2016 - 29th International Conference, Nurem-
berg, Germany, April 4-7, 2016, Proceedings, vol. 9637
of Lecture Notes in Computer Science, Springer, 60–
71, doi:10.1007/978-3-319-30695-7_5, URL https:
//doi.org/10.1007/978-3-319-30695-7_5, 2016.

[11] Checkra1n Jailbreak: Analysis of Checkm8 Exploit,
URL https://checkm8.info/blog/checkra1n-
jailbreak-exploit, accessed: 01.10.2020, 2020.

[12] exynos-usbdl: unsigned code loader for Exynos
BootROM, URL https://fredericb.info/2020/
06/exynos-usbdl-unsigned-code-loader-for-
exynos-bootrom.html#exynos-usbdl-unsigned-
code-loader-for-exynos-bootrom, accessed:
01.10.2020, 2020.

[13] N. Redini, A. Machiry, D. Das, Y. Fratanto-
nio, A. Bianchi, E. Gustafson, Y. Shoshitaishvili,
C. Kruegel, G. Vigna, Bootstomp: on the security
of bootloaders in mobile devices, in: 26th USENIX
Security Symposium USENIX Security 17), 781–798,
2017.

[14] I. Mikhaylov, Chip-Off Technique in Mobile Forensics,
URL https://www.digitalforensics.com/blog/
chip-off-technique-in-mobile-forensics/,
accessed: 27.09.2020, 2016.

[15] B. Carrier, The Sleuth Kit, URL https:
//www.sleuthkit.org/sleuthkit/, accessed:
27.09.2020, 2020.

[16] Welcome to the Plaso documentation, URL https://
plaso.readthedocs.io/en/latest/index.html, ac-
cessed: 27.09.2020, 2020.

[17] R. Loftus, M. Baumann, R. van Galen, R. de Vries,
Android 7 File Based Encryption and the Attacks
Against It, University of Amsterdam (2017) 33.

[18] T. Groß, M. Ahmadova, T. Müller, Analyzing An-
droid’s File-Based Encryption: Information Leakage
through Unencrypted Metadata, in: Proceedings of
the 14th International Conference on Availability, Re-
liability and Security, ARES 2019, Canterbury, UK,
August 26-29, 2019, ACM, 47:1–47:7, doi:10.1145/

11

http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://www.usenix.org/events/sec08/tech/full_papers/halderman/halderman.pdf
http://dx.doi.org/10.1007/978-3-642-38980-1_23
https://doi.org/10.1007/978-3-642-38980-1_23
https://doi.org/10.1007/978-3-642-38980-1_23
http://dx.doi.org/10.1109/ARES.2013.52
https://doi.org/10.1109/ARES.2013.52
http://static.usenix.org/events/sec11/tech/full_papers/Muller.pdf
http://static.usenix.org/events/sec11/tech/full_papers/Muller.pdf
http://dx.doi.org/10.1145/2523649.2523656
http://dx.doi.org/10.1145/2523649.2523656
https://doi.org/10.1145/2523649.2523656
https://doi.org/10.1145/2523649.2523656
http://dx.doi.org/10.1109/IMF.2014.8
https://doi.org/10.1109/IMF.2014.8
http://dx.doi.org/10.1145/2897845.2897924
http://dx.doi.org/10.1145/2897845.2897924
https://doi.org/10.1145/2897845.2897924
https://doi.org/10.1145/2897845.2897924
http://dx.doi.org/10.1109/ARES.2016.13
https://doi.org/10.1109/ARES.2016.13
http://dx.doi.org/10.1007/978-3-319-30695-7_5
https://doi.org/10.1007/978-3-319-30695-7_5
https://doi.org/10.1007/978-3-319-30695-7_5
https://checkm8.info/blog/checkra1n-jailbreak-exploit
https://checkm8.info/blog/checkra1n-jailbreak-exploit
https://fredericb.info/2020/06/exynos-usbdl-unsigned-code-loader-for-exynos-bootrom.html#exynos-usbdl-unsigned-code-loader-for-exynos-bootrom
https://fredericb.info/2020/06/exynos-usbdl-unsigned-code-loader-for-exynos-bootrom.html#exynos-usbdl-unsigned-code-loader-for-exynos-bootrom
https://fredericb.info/2020/06/exynos-usbdl-unsigned-code-loader-for-exynos-bootrom.html#exynos-usbdl-unsigned-code-loader-for-exynos-bootrom
https://fredericb.info/2020/06/exynos-usbdl-unsigned-code-loader-for-exynos-bootrom.html#exynos-usbdl-unsigned-code-loader-for-exynos-bootrom
https://www.digitalforensics.com/blog/chip-off-technique-in-mobile-forensics/
https://www.digitalforensics.com/blog/chip-off-technique-in-mobile-forensics/
https://www.sleuthkit.org/sleuthkit/
https://www.sleuthkit.org/sleuthkit/
https://plaso.readthedocs.io/en/latest/index.html
https://plaso.readthedocs.io/en/latest/index.html
http://dx.doi.org/10.1145/3339252.3340340

Pr
epr

int
3339252.3340340, URL https://doi.org/10.1145/
3339252.3340340, 2019.

[19] T. Unterluggauer, S. Mangard, Exploiting the Physical
Disparity: Side-Channel Attacks on Memory Encryp-
tion, in: F. Standaert, E. Oswald (Eds.), Constructive
Side-Channel Analysis and Secure Design - 7th Inter-
national Workshop, COSADE 2016, Graz, Austria,
April 14-15, 2016, Revised Selected Papers, vol. 9689
of Lecture Notes in Computer Science, Springer, 3–
18, doi:10.1007/978-3-319-43283-0_1, URL https:
//doi.org/10.1007/978-3-319-43283-0_1, 2016.

[20] A. Skillen, D. Barrera, P. C. van Oorschot, Deadbolt:
locking down android disk encryption, in: W. Enck,
A. P. Felt, N. Asokan (Eds.), SPSM’13, Proceedings
of the 2013 ACM Workshop on Security and Privacy
in Smartphones and Mobile Devices, Co-located with
CCS 2013, November 8, 2013, Berlin, Germany, ACM,
3–14, doi:10.1145/2516760.2516771, URL https://
doi.org/10.1145/2516760.2516771, 2013.

[21] Z. Wang, R. Murmuria, A. Stavrou, Implement-
ing and Optimizing an Encryption Filesystem on
Android, in: K. Aberer, A. Joshi, S. Mukherjea,
D. Chakraborty, H. Lu, N. Venkatasubramanian, S. S.
Kanhere (Eds.), 13th IEEE International Confer-
ence on Mobile Data Management, MDM 2012, Ben-
galuru, India, July 23-26, 2012, IEEE Computer Soci-
ety, 52–62, doi:10.1109/MDM.2012.31, URL https:
//doi.org/10.1109/MDM.2012.31, 2012.

[22] P. Teufl, A. Fitzek, D. M. Hein, A. Marsalek,
A. Oprisnik, T. Zefferer, Android encryption sys-
tems, in: 2014 International Conference on Pri-
vacy and Security in Mobile Systems, PRISMS 2014,
Aalborg, Denmark, May 11-14, 2014, IEEE, 1–8,
doi:10.1109/PRISMS.2014.6970599, URL https://
doi.org/10.1109/PRISMS.2014.6970599, 2014.

[23] J. Götzfried, T. Müller, Analysing Android’s Full
Disk Encryption Feature, J. Wirel. Mob. Networks
Ubiquitous Comput. Dependable Appl. 5 (1) (2014)
84–100, doi:10.22667/JOWUA.2014.03.31.084, URL
https://doi.org/10.22667/JOWUA.2014.03.31.084.

[24] Metadata Encryption, URL ettps://
source.android.com/security/encryption/
metadata, accessed: 27.09.2020, 2020.

[25] J. Sammons, The basics of digital forensics: the primer
for getting started in digital forensics, Elsevier, 2012.

[26] Digital Forensics Virtual File System (dfVFS),
URL https://plaso.readthedocs.io/en/latest/
index.html, accessed: 27.09.2020, 2020.

[27] A. W. Dent, Secure Boot and Image Authentication,
https://www.qualcomm.com/media/documents/
files/secure-boot-and-image-authentication-
technical-overview-v2-0.pdf, accessed: 2020-07-
10, 2019.

[28] hisi-idt, URL https://github.com/96boards/burn-
boot, accessed: 01.10.2020, 2020.

[29] R. Hay, N. Hadad, Exploiting Qualcomm EDL
Programmers (1): Gaining Access & PBL Inter-

nals, URL https://alephsecurity.com/2018/01/
22/qualcomm-edl-1/, accessed: 27.09.2020, 2018.

[30] R. Hay, N. Hadad, Exploiting Qualcomm EDL
Programmers (2): Storage-based Attacks & Root-
ing, URL https://alephsecurity.com/2018/01/
22/qualcomm-edl-2/, accessed: 27.09.2020, 2018.

[31] A. Etemadieh, C. Heres, K. Hoang,
Hacking Hardware With $10 SD Card
Reader, URL https://bh2017.exploitee.rs/
Hacking_Hardware_With_A_10_Reader-wp.pdf,
blackhat 2017, 2017.

[32] M. H. Ligh, TrueCrypt Master Key Ex-
traction And Volume Identification, URL
https://volatility-labs.blogspot.com/2014/
01/truecrypt-master-key-extraction-and.html,
accessed: 01.10.2020, 2014.

[33] M. Busch, J. Westphal, T. Müller, Unearthing the
TrustedCore: A Critical Review on Huawei’s Trusted
Execution Environment, in: Y. Yarom, S. Zennou
(Eds.), 14th USENIX Workshop on Offensive Technolo-
gies, WOOT 2020, August 11, 2020, USENIX Asso-
ciation, URL https://www.usenix.org/conference/
woot20/presentation/busch, 2020.

12

http://dx.doi.org/10.1145/3339252.3340340
http://dx.doi.org/10.1145/3339252.3340340
https://doi.org/10.1145/3339252.3340340
https://doi.org/10.1145/3339252.3340340
http://dx.doi.org/10.1007/978-3-319-43283-0_1
https://doi.org/10.1007/978-3-319-43283-0_1
https://doi.org/10.1007/978-3-319-43283-0_1
http://dx.doi.org/10.1145/2516760.2516771
https://doi.org/10.1145/2516760.2516771
https://doi.org/10.1145/2516760.2516771
http://dx.doi.org/10.1109/MDM.2012.31
https://doi.org/10.1109/MDM.2012.31
https://doi.org/10.1109/MDM.2012.31
http://dx.doi.org/10.1109/PRISMS.2014.6970599
https://doi.org/10.1109/PRISMS.2014.6970599
https://doi.org/10.1109/PRISMS.2014.6970599
http://dx.doi.org/10.22667/JOWUA.2014.03.31.084
https://doi.org/10.22667/JOWUA.2014.03.31.084
ettps://source.android.com/security/encryption/metadata
ettps://source.android.com/security/encryption/metadata
ettps://source.android.com/security/encryption/metadata
https://plaso.readthedocs.io/en/latest/index.html
https://plaso.readthedocs.io/en/latest/index.html
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://www.qualcomm.com/media/documents/files/secure-boot-and-image-authentication-technical-overview-v2-0.pdf
https://github.com/96boards/burn-boot
https://github.com/96boards/burn-boot
https://alephsecurity.com/2018/01/22/qualcomm-edl-1/
https://alephsecurity.com/2018/01/22/qualcomm-edl-1/
https://alephsecurity.com/2018/01/22/qualcomm-edl-2/
https://alephsecurity.com/2018/01/22/qualcomm-edl-2/
https://bh2017.exploitee.rs/Hacking_Hardware_With_A_10_Reader-wp.pdf
https://bh2017.exploitee.rs/Hacking_Hardware_With_A_10_Reader-wp.pdf
https://volatility-labs.blogspot.com/2014/01/truecrypt-master-key-extraction-and.html
https://volatility-labs.blogspot.com/2014/01/truecrypt-master-key-extraction-and.html
https://www.usenix.org/conference/woot20/presentation/busch
https://www.usenix.org/conference/woot20/presentation/busch

	Introduction
	Contributions
	Related Work

	Background
	Android File-Based Encryption
	The Sleuth Kit
	Plaso

	File-Based Encryption Attack
	Prerequisites
	Memory Images
	User Data Partition

	Master Key Derivation

	Implementation
	The Sleuth Kit Extension
	fbekeyrecover
	Plaso Extension

	Evaluation
	Conclusion
	Limitation

