
Tackling Android’s Native Library
Malware with Robust, Efficient
and Accurate Similarity Measures

Anatoli Kalysch (Speaker), Oskar Milisterfer, Mykolai Protsenko, Tilo Müller

August 29, 2018

Friedrich-Alexander-Universität Erlangen-Nürnberg
Department of Computer Science
IT Security Infrastructures Lab
Software Security Research Group



Outline

Android Malware is Going Native
Android Obfuscation in Context
Why Native Libraries?

Introducing Dimensional Encoding
Centroids
Comparison Procedure

Bringing it All Together
Accurate, Efficient, and Robust?
Hunting Malware

Conclusion

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 2/25



Obfuscation on Android

Year Obfuscation Technique

2011 Symmetric Encryption (partly custom) String Encoding
2012 Proguard, Steganography, Dalvik Level Encryption
2013 Protector (Dexguard), Non-dalvik Encryption
2014 Packers, Protectors, and Native Code
2015 Packers, Protectors, and Native Code comb. w/ Obfuscators

Table: Malware obfuscation chronology (excerpt) [4].

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 3/25



Solutions for your obfuscation needs

Packer/Protector Obfuscation Techniques Native Library

Dexguard obfuscation, hooking, anti-dynamic 3

Aliprotect native and dex obf. 3

Tencent native and dex obf., MLU 3

Qihoo native and dex obf., MLU 3

Bangcle native and dex obf., hooking, MLU 3

Ijiami native and dex obf., MLU 3

Table: Protection Measures in Packers and Protectors (excerpt) [3].

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 4/25



What makes native code so popular?

• Written in C/C++ and compiled, meaning no smali byte code is
available.

• Huge performance boost if executed on the Dalvik Virtual Machine
(DVM), minimal performance boost on the Android RunTime (ART).

• Direct usage of system resources (permission model still applies) and
ability to manipulate own process components.

• Breaks most Android reverse engineering tools, and less meta data is
available compared to smali byte code making reverse engineering
harder

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 5/25



Tackling malicious native libraries on Android

• Need for a solution to the threat posed by malicious native libraries.
And ideally this solution is

• automated,

• accurate,

• efficient, and

• robust (regarding code obfuscation).

• Currently we see wide employment of code-similarity measures to
detect known malicious code, e.g., hash and signature-based
solutions.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 6/25



Outline

Android Malware is Going Native
Android Obfuscation in Context
Why Native Libraries?

Introducing Dimensional Encoding
Centroids
Comparison Procedure

Bringing it All Together
Accurate, Efficient, and Robust?
Hunting Malware

Conclusion

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 7/25



Process Overview

• Create a 3D vector for every function in the native library based on the
control-flow graph (CFG)

• From the 3D vectors we create a centroid from the sum of its edge
weights

• The centroids only differ if the underlying functions differ as well

• This encoding introduces an abstraction layer that disregards certain
obfuscation techniques

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 8/25



Creation of a 3D vector

Each basic block (BB) in the CFGs is given a coordinate in the three
dimensions
• sequence,

• defining the order in which basic blocks (BB) of the CFG are executed

• selection, and
• represents the number of outgoing edges for each BB

• repetition.
• reflecting the loop depth of the current basic block

After all the BBs were assigned coordinates in the 3D system a unifying
vector can be created.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 9/25



Creating Centroids

A Centroid of a 3D-CFG vector is defined as

~c =< cx , cy , cz , π >, with

cx =
∑

e(p,q)∈3D−CFG(πpxp + πqxq)
π

,

and cy and cz accordingly [1].

The π coordinate is encoded as π =
∑

e(p,q)∈3D−CFG(πp + πq) where e(p,q)
refers to an edge in the 3D-CFG, which connects the two nodes p and q.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 10/25



Comparison

• Due to monotonicity properties of centroids [2] the same methods will
be mapped to the same centroid

• Centroids are sortable [2], enabling a faster comparison

• Comparison of two centroids is performed through the computation of
the Centroid Difference Degree (CDD)

Definition (Centroid Difference Degree)

Given two centroids, ~c and ~d , the CDD is computed as

CDD(~c, ~d) = max(
|cx − dx |
cx + dx

,
|cy − dy |
cy + dy

,
|cz − dz |
cz + dz

,
|πc − πd |
πc + πd

).

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 11/25



Putting Centroids to Work on ARM Libraries

• Before application to ARM the right combination of variables and
weights needs to be found

• Heuristics for a sane CDD need to be found / defined

• Equally, a Library Similarity Degree (LSD) needs to be defined

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 12/25



Outline

Android Malware is Going Native
Android Obfuscation in Context
Why Native Libraries?

Introducing Dimensional Encoding
Centroids
Comparison Procedure

Bringing it All Together
Accurate, Efficient, and Robust?
Hunting Malware

Conclusion

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 13/25



The Dataset and Malware Families

• 3rd party APK Stores
• 18 different app stores
• 508,745 apps
• 2,346,005,582 methods

• 29 Malware-Families including
• Bios.A
• DroidDream
• Godless
• KungFu
• OldBoot
• Rootnik
• TatooHack
• VikingHorde
• Ycchar

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 14/25



Accuracy

• Detection of library versions
• comparisons of 1,500 unrelated library pairs
• testing different pairs of CDD / LSD yielded false positive rates (FPR)

as low as 1% for libraries with more than 100 functions
• singnificantly small libraries with less than 100 functions performed

worse with FPR around 10%

• Database clustering
• 146,264 native libraries from 40 size-based clusters were categorized

into 4,201 clusters
• A name-based library comparison and in some cases a method level

CFG comparison concluded FPRs of less than 2%

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 15/25



Efficiency - Computation

0 10000 20000 30000 40000 50000 60000
0

1

2

3

4

5

6

7

Centroid computation Database access

Number of library functions

S
ec

on
ds

Figure: Computation of a centroid with and without database access.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 16/25



Efficiency - Comparison

0 10000 20000 30000 40000 50000 60000 70000 80000 90000 100000
0

2

4

6

8

10

12

14

16

Unrelated with DB Unrelated

Variants with DB Variants

Number of library functions

R
un

tim
e 

in
 s

ec
on

ds

Figure: Comparison between related and unrelated libraries.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 17/25



Robustness to Obfuscation

Obfuscation Technique Category Detection

modified APK meta data string-based 3

native library relocation file hiding 3

native library renaming string-based 3

variable name obfuscation string-based 3

binary stripping string-based 3

native library payload placement code insertion 3

junk function insertion code insertion 3

literal/arithmetic encoding code insertion 7

BB segment reordering control flow obfuscation 3

opaque predicates control flow obfuscation 7

function in/outlining control flow obfuscation 7

control flow flattening control flow obfuscation 7

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 18/25



Findings

Market Name Malicious NLs Detected NLs

playmob 26 1089
mumayi 36 151
baidu 44 368
apkmirror 80 3393
nduo 128 396
up2down 219 4195
apkworld 307 1880

Table: Selection of detected malicious native libraries among ARM 32-bit native
libraries.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 19/25



Comparison to VirusTotal

• APKs from detected malicious clusters were uploaded to VirusTotal
• Roughly half were detected as malicious

• Next we extracted the native library and uploaded it to VirusTotal as
well

• Note that we analyzed malware that actively uses native code for
exploitation

• less than 4% were considered malicious

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 20/25



Outline

Android Malware is Going Native
Android Obfuscation in Context
Why Native Libraries?

Introducing Dimensional Encoding
Centroids
Comparison Procedure

Bringing it All Together
Accurate, Efficient, and Robust?
Hunting Malware

Conclusion

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 21/25



Conclusion

• Improved version of the centroid similarity measure
• Defined heuristics to use with ARM libraries

• Increased efficiency and accuracy

• Robustness against certain obfuscation techniques

• Large-scale study of native library malware in Android third party apps

• 18 third party app stores checked for infection

• 508,745 apps analyzed

• Infection rates of up to 17.05% detected

• Detection rates outperform VirusTotal

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 22/25



Thank you.

Questions?

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 23/25



References

[1] Kai Chen, Peng Liu, and Yingjun Zhang.
Achieving accuracy and scalability simultaneously in detecting
application clones on android markets.
In Proceedings of the 36th International Conference on Software
Engineering, pages 175–186. ACM, 2014.

[2] Kai Chen, Xueqiang Wang, Yi Chen, Peng Wang, Yeonjoon Lee,
XiaoFeng Wang, Bin Ma, Aohui Wang, Yingjun Zhang, and Wei Zou.
Following devil’s footprints: Cross-platform analysis of potentially
harmful libraries on android and ios.
In Security and Privacy (SP), 2016 IEEE Symposium on, pages
357–376. IEEE, 2016.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 24(1) /25



[3] Yue Duan, Mu Zhang, Abhishek Vasisht Bhaskar, Heng Yin, Xiaorui
Pan, Tongxin Li, Xueqiang Wang, and X Wang.
Things you may not know about android (un) packers: a systematic
study based on whole-system emulation.
In 25th Annual Network and Distributed System Security Symposium,
NDSS, pages 18–21, 2018.

[4] Parvez Faruki, Hossein Fereidooni, Vijay Laxmi, Mauro Conti, and
Manoj Singh Gaur.
Android code protection via obfuscation techniques: Past, present and
future directions.
CoRR, abs/1611.10231, 2016.

[5] Kimberly Tam, Ali Feizollah, Nor Badrul Anuar, Rosli Salleh, and
Lorenzo Cavallaro.
The evolution of android malware and android analysis techniques.
ACM Computing Surveys (CSUR), 49(4):76, 2017.

August 29, 2018 | Anatoli Kalysch | FAU i1 | Tackling Native Android Malware 25(2) /25


	Android Malware is Going Native
	Android Obfuscation in Context
	Why Native Libraries?

	Introducing Dimensional Encoding
	Centroids
	Comparison Procedure

	Bringing it All Together
	Accurate, Efficient, and Robust?
	Hunting Malware

	Conclusion

