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Obfuscation on Android

Year Obfuscation Technique

2011 Symmetric Encryption (partly custom) String Encoding
2012 Proguard, Steganography, Dalvik Level Encryption
2013 Protector (Dexguard), Non-dalvik Encryption
2014 Packers, Protectors, and Native Code
2015 Packers, Protectors, and Native Code comb. w/ Obfuscators

Table: Malware obfuscation chronology (excerpt) [4].
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Solutions for your obfuscation needs

Packer/Protector Obfuscation Techniques Native Library

Dexguard obfuscation, hooking, anti-dynamic 3

Aliprotect native and dex obf. 3

Tencent native and dex obf., MLU 3

Qihoo native and dex obf., MLU 3

Bangcle native and dex obf., hooking, MLU 3

Ijiami native and dex obf., MLU 3

Table: Protection Measures in Packers and Protectors (excerpt) [3].
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What makes native code so popular?

• Written in C/C++ and compiled, meaning no smali byte code is
available.

• Huge performance boost if executed on the Dalvik Virtual Machine
(DVM), minimal performance boost on the Android RunTime (ART).

• Direct usage of system resources (permission model still applies) and
ability to manipulate own process components.

• Breaks most Android reverse engineering tools, and less meta data is
available compared to smali byte code making reverse engineering
harder
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Tackling malicious native libraries on Android

• Need for a solution to the threat posed by malicious native libraries.
And ideally this solution is

• automated,

• accurate,

• efficient, and

• robust (regarding code obfuscation).

• Currently we see wide employment of code-similarity measures to
detect known malicious code, e.g., hash and signature-based
solutions.
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Process Overview

• Create a 3D vector for every function in the native library based on the
control-flow graph (CFG)

• From the 3D vectors we create a centroid from the sum of its edge
weights

• The centroids only differ if the underlying functions differ as well

• This encoding introduces an abstraction layer that disregards certain
obfuscation techniques
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Creation of a 3D vector

Each basic block (BB) in the CFGs is given a coordinate in the three
dimensions
• sequence,

• defining the order in which basic blocks (BB) of the CFG are executed

• selection, and
• represents the number of outgoing edges for each BB

• repetition.
• reflecting the loop depth of the current basic block

After all the BBs were assigned coordinates in the 3D system a unifying
vector can be created.
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Creating Centroids

A Centroid of a 3D-CFG vector is defined as

~c =< cx , cy , cz , π >, with

cx =
∑

e(p,q)∈3D−CFG(πpxp + πqxq)
π

,

and cy and cz accordingly [1].

The π coordinate is encoded as π =
∑

e(p,q)∈3D−CFG(πp + πq) where e(p,q)
refers to an edge in the 3D-CFG, which connects the two nodes p and q.
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Comparison

• Due to monotonicity properties of centroids [2] the same methods will
be mapped to the same centroid

• Centroids are sortable [2], enabling a faster comparison

• Comparison of two centroids is performed through the computation of
the Centroid Difference Degree (CDD)

Definition (Centroid Difference Degree)

Given two centroids, ~c and ~d , the CDD is computed as

CDD(~c, ~d) = max(
|cx − dx |
cx + dx

,
|cy − dy |
cy + dy

,
|cz − dz |
cz + dz

,
|πc − πd |
πc + πd

).
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Putting Centroids to Work on ARM Libraries

• Before application to ARM the right combination of variables and
weights needs to be found

• Heuristics for a sane CDD need to be found / defined

• Equally, a Library Similarity Degree (LSD) needs to be defined
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The Dataset and Malware Families

• 3rd party APK Stores
• 18 different app stores
• 508,745 apps
• 2,346,005,582 methods

• 29 Malware-Families including
• Bios.A
• DroidDream
• Godless
• KungFu
• OldBoot
• Rootnik
• TatooHack
• VikingHorde
• Ycchar
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Accuracy

• Detection of library versions
• comparisons of 1,500 unrelated library pairs
• testing different pairs of CDD / LSD yielded false positive rates (FPR)

as low as 1% for libraries with more than 100 functions
• singnificantly small libraries with less than 100 functions performed

worse with FPR around 10%

• Database clustering
• 146,264 native libraries from 40 size-based clusters were categorized

into 4,201 clusters
• A name-based library comparison and in some cases a method level

CFG comparison concluded FPRs of less than 2%
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Efficiency - Computation
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Figure: Computation of a centroid with and without database access.
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Efficiency - Comparison
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Figure: Comparison between related and unrelated libraries.
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Robustness to Obfuscation

Obfuscation Technique Category Detection

modified APK meta data string-based 3

native library relocation file hiding 3

native library renaming string-based 3

variable name obfuscation string-based 3

binary stripping string-based 3

native library payload placement code insertion 3

junk function insertion code insertion 3

literal/arithmetic encoding code insertion 7

BB segment reordering control flow obfuscation 3

opaque predicates control flow obfuscation 7

function in/outlining control flow obfuscation 7

control flow flattening control flow obfuscation 7
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Findings

Market Name Malicious NLs Detected NLs

playmob 26 1089
mumayi 36 151
baidu 44 368
apkmirror 80 3393
nduo 128 396
up2down 219 4195
apkworld 307 1880

Table: Selection of detected malicious native libraries among ARM 32-bit native
libraries.
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Comparison to VirusTotal

• APKs from detected malicious clusters were uploaded to VirusTotal
• Roughly half were detected as malicious

• Next we extracted the native library and uploaded it to VirusTotal as
well

• Note that we analyzed malware that actively uses native code for
exploitation

• less than 4% were considered malicious
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Conclusion

• Improved version of the centroid similarity measure
• Defined heuristics to use with ARM libraries

• Increased efficiency and accuracy

• Robustness against certain obfuscation techniques

• Large-scale study of native library malware in Android third party apps

• 18 third party app stores checked for infection

• 508,745 apps analyzed

• Infection rates of up to 17.05% detected

• Detection rates outperform VirusTotal
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Thank you.

Questions?
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