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Abstract

Despite the increasing number of cases of data theft (such as Equifax), the classic password is still in many places the sole
security feature for user authentication. However, numerous possibilities for extending this now anachronistic form of access
control already exist. One such option is the use of one-time passwords (OTP). These passwords are increasingly used for
additional authentication (in addition to user name and password) of the respective user to service providers on the Internet
and the applications that generate these are therefore referred to as so-called two-factor authentication apps (2FA apps). This
paper investigates 16 such 2FA apps for the Android operating system and focuses on the extent to which these applications
can offer a similar level of protection when compared to classical hardware tokens (e.g., YubiKey, SecurID-Authenticator).
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I. INTRODUCTION
A. Motivation

The current information age is essentially characterized by the digital form of its information transmission. It no longer
transmits physically embodied things such as letters, but rather their digital counterparts — i.e., PDFs, scans, emails — are
transferred. On the one hand, digital transformation takes away the haptics of documents and, on the other hand, offers a
wide range of editing and reworking options. These circumstances make it difficult for the recipient of a digital message
to establish the authenticity of the content and its sender. This opens up the potential for abuse. Fake news is ultimately a
form of expression that is currently leading to a digital loss of trust. The information age is therefore essentially dependent
on secure mechanisms for user authentication.

“The Federal German Criminal Police Office has found a collection of approximately 500,000,000 spied access data in
an underground economy platform on the Internet. The data consists of email addresses and associated passwords.” [1]

For a long time, the combination of user name and password served as the sole security feature for user authentication in
many places. From a historical point of view, this is simply the consistent adoption of the principle of the watchword from
the analogue world. A look at the most frequently used German password in 2017 questions the suitability of this transfer
to the digital world. It reads: 123456 and is followed by 123456789 [2].

The above-mentioned press release of the Federal German Criminal Police Office is to some extent exemplary and serves
as an indication of a computer forensic phenomenon. Until a few years ago, it seemed sufficient to use access protection
in the form of simple password queries, but today the situation has changed considerably. The reasons for this vary in
nature and include people who tend to be more comfortable (using trivial passwords) and, at the same time, the increasing
opportunities for cybercriminals to obtain access data (e. g. reduced costs for resources to crack bruteforcing of obtained
password hashes).

For example, they make use of phishing by gaining the access data via websites that are deliberately imitated for the
purpose of confusion, or by using methods to obtain password databases from service providers and evaluate their contents
accordingly. A prominent example of the theft of data carried out directly at the service provider is the hack of the PlayStation
Network (PSN), dating from 2011, which took place from 17 to 19 April 2011, when unknown perpetrators gained access
to 77 million customer accounts, including credit card data [3]. A current example is the theft of data at Equifax Inc. from
the beginning of September 2017. The data (user name, password, date of birth, address, credit card number, driver’s license
number, etc.) of 143 million socially insured persons from the USA, UK and Canada had been stolen [4].

In addition to the service providers directly affected, collateral damage that can hardly be calculated occurs wherever the
user is registered with the same password. This allows data thieves to access other services and resources of the injured
users.

While the choice of weak passwords, the multiple use of the same password for different services, and the disclosure
of access data on phishing sites are due to the user’s area of responsibility, data theft from the service provider’s servers
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behaves differently. Here the user entrusts his data to the provider for safe storage. It is completely dependent on its security
implementations.

Recognized cases of data theft show that some vendors do not salt their customers’ passwords stored on their servers, a
fact that has long been a standard feature. This process increases the entropy of the password hash. Such stored passwords
are considered to be theft-proof, since only their irreversible equivalent (its hash value) is present.

Despite the fact that salting is a simple process to protect passwords, the online portal LinkedIn stored the passwords
of its members on its servers until June 2012 without salt. Only after more than 117 million unswitched password hashes
(SHA-1) had been stolen during a data theft, LinkedIn started salting their password hashes [5]. A similar behavior pattern
has been noticed for the social network last.fm, where 43 million unswitched password hashes (MDS5) were stolen in March
2012 [6] and who started to salt their password hashes afterwards — to name just two examples.

Multi-factor authentication (MFA) can be used to overcome the aforementioned weaknesses. It is therefore natively
supported by an increasing number of companies (including Apple, Google (since 2010) and Microsoft) [7]. MFA guarantees
proof of identity using several independent and different factors (components).

These factors can be grouped into three categories:

o The category Knowledge includes incorporated information such as user names, passwords or PINs.

o While the category Being is an element inseparable from the user, such as his fingerprint, or another biometric date.

« Finally, the category Possession describes things physically available to the user. This is e.g., an EC card or a hardware
token.

From the latter category, the hardware token is the most common. This generator can be used to create a one-time password
(OTP). Since it is only dynamically generated at the time of its use (on client and server side), it cannot be stolen from the
server as described above, and due to its short half-life (usually 30 seconds of validity) it also protects immediately against
replay attacks (the re-use of a previously eavesdropped OTP for unauthorized authentication with the web server).

Hardware tokens must always be carried by the user for authorization purposes and are of course subject to a risk of
loss. For the random finder, they are of no value as long as they cannot be assigned to a specific account (e.g., by lettering)
and the finder also knows the corresponding password. In addition, the procurement and maintenance of the equipment is
associated with financial and logistical costs. For the aforementioned reasons, smartphones are increasingly being used as
quasi tokens, especially by private users, but also in business environments. These are usually carried along by the user
anyway and offer several possibilities of proof of identity. The OTP sent by the server can be received via email or SMS
(cf. mTAN procedure). However, this paper focuses on the use of smartphones to generate OTP using specific applications,
which are often referred to as 2FA (two-factor authentication) apps. Since this is a pure software implementation, this is
also referred to as tokenless two-factor authentication.

Google’s Android operating system was chosen as the platform for the investigation. The reason for this is the far greater
prevalence with a current market share of 87.7% worldwide, compared to Apple iOS with 12.1% [8]. The subject of the
study are the 16 most popular 2FA applications from Google Playstore, according to the users’ rating.

B. Forensic Use

One of the central questions of any criminal procedure under the rule of law is certainly the question of causality, i.e., the
question of the responsible perpetrator. In connection with computers as a means of committing a crime, or networks as a
crime scene, user authentication becomes the focus of computer forensic consideration. Computer forensics experts will be
confronted with the question of who was sitting at the computer at the time of the crime or whether the login credentials
on the later compromised server were used by the authorized person or misused by third parties. Otherwise, the chain of
evidence ends at the interface between the incriminated hardware and its users (the perpetrator actually responsible).

As 2FA apps and the OTPs they use are being used more and more frequently to further secure the process of user
authentication, they will be increasingly computer forensic relevant in the future.

Otherwise, the defense strategy could in future consist of simply asserting that someone has stolen the OTP (or the shared
secret) from the cell phone of the accused and then acting on his behalf. For computer forensics, it is therefore necessary
to deal with the questions of the integrity of the OTP procedures (and / or their implementation in the 2FA apps).

The present work highlights the current weaknesses of the examined 2FA apps and shows their potential for abuse. Based
on the identification of the relevant files and their specific storage paths, this work can serve as a compendium for the
identification of identity theft cases.

C. Results

The results of the 16 2FA apps examined can be summarized in advance as follows. In terms of encryption, two apps only
used a different notation (in byte values) to store the shared secret. Six of the 16 apps actually encrypted the shared secret.



Thus, half of the apps (n = 8) did not secure the “shared secret” at all! In the test, only one application (DUO) detected
during an automatic safety audit and noted that the test device was rooted and could cause problems. In nine cases, the
”shared secret” could be transferred from one device to another and identically OTP could be generated there. Only three
of the sixteen apps offered an additional security layer (e.g. in the form of a PIN query at program start) in the test.

D. Paper Outline

In Section II we briefly describe the mathematical basis for the calculation of OTP. We also provide an up-to-date market
overview of the 2FA apps included in Googles PlayStore to better assess their relevance. Followed by this introduction,
Section III shows the experimental setup and presents the results of the 16 analyzed applications. Finally, the summary is
given in Section IV.

II. BACKGROUND

Within this section we want to give a brief overview of the important mathematical background to the readers. This
background is important to understand why we will later focus on stealing the secret from an installed 2FA app. Within
the second part of this paragraph we want to give a market overview and also describe which apps we focused on for our
research.

A. Mathematical Background

The idea of using one-time passwords was formulated in November 1981 by Lamport [9]. In principle, OTP can be
generated in different ways. Three types are distinguished and presented below:

« time-controlled method,

« challenge-response controlled method and

o event-driven method.

All three methods only transmit the computation result of their algorithm from the client to the server for authentication.
The calculations, which are usually an iterative application of non-reversible, cryptographic hash functions, can include
different values (e.g., time, counter) depending on the procedure. Common to all OTP processes is the use of a common
secret password. This is exchanged in a separate way during initialization or stored in the hardware token during manufacture.
The server now performs the same calculation and compares its result with the transmitted value. If they agree, the client
is verified.

Maintaining the confidentiality of the shared password is essential for the procedure. In a formula, the process of generating
OTP described in RFC 2289 [10] can be displayed as follows:

S=H(rallggKW) ey

The procedure is initialized by defining the start value S. This is the result of the cryptographic hash function H on the
concatenated values of a random number r4 and the common secret password ggK W. The latter is called shared secret,
the random number 74 is called seed. Now OTP (KX'W) can be generated by applying the hash function H to the start value
S several times iteratively.

KWy = HN(S) )

The procedure presented by Haller et al. 1998 in RFC 2289 [10] provides for a decrementing of the counter NV by 1 for
each generated OTP. Thus, the validation of the OTP KWy _; transmitted by the client on the server side takes place by
means of a one-time application of the hash function H(KWy_1). If the result matches the stored value for H(KWy),
the OTP is valid. In the time-based one-time password algorithm TOTP (see RFC 6238 [11]), the current time (instead of
a counter as shown above) is included in the calculation of the OTP.

Depending on the configuration, the algorithm typically generates a new OTP every 30 seconds. In order to avoid time
differences between server and client, the server can also accept the previously valid TOTP. The procedure is based on the
Keyed-Hash Message Authentication Code (HMAC, RFC 2104 [12]), a cryptographic message authentication code.



Table T
Topr10 2FA APPS FOR ANDROID

App Name Number of Downloads | Average User Rating
Google Authenticator 10 to 50 M 4,3
Blizzard Authenticator 5to 10 M 4.5
Authy 2-Factor Authentication lto5M 4,3
Microsoft Authenticator lto5M 4,0
VIP Access lto5M 3,9
DUO Mobile lto5M 39
FreeOTP Authenticator 100.000 to 500.000 4,6
LastPass Authenticator 100.000 to 500.000 42
Okta Verify 100.000 to 500.000 3,3
2FA ONE 1.000 to 5.000 4,2

B. Market Overview of 2FA Apps for Android

End of December 2017 the Google PlayStore shows 238 hits for the search term 2FA Apps. Table I lists ten of the most
popular apps and gives you an impression of their relevance based on the download figures.

The applications are also called software tokens. They use the same algorithms to generate OTP that are also used by
hardware tokens. Since they are installed as ordinary Android applications (based on Java), their security is fundamentally
dependent on the operating system Android. Regardless of this, some of the apps try to ensure the security of the shared
secret by encrypting it.

On closer inspection, the number of applications relevant for the following investigation is reduced by those which are used
solely for access to a specific provider (e. g., Blizzard Authenticator, 2FA ONE). Only applications that can manage multiple
accounts with different vendors and use the TOTP standard are important for the investigation. This ensures comparability.
Finally, the criterion of the respective customer rating is used to determine the most popular applications.

III. EXPERIMENTAL SETUP AND 2FA RESULTS

For our experiments we used two rooted Nexus 5 with Android 5.1.1 and one rooted Samsung Galaxy S3mini with
Android 4.1.2. The main use case for the S3mini was to guarantee that cloned apps even run when the hardware of the
device is different from the one, the app was installed initially.

During our Research we will focus on the question if cloning a 2FA app is possible and of course, how the secret is
stored and protected within the app. To achieve this, we install the app on one of our test devices and connect it to dropbox
as our test platform. As soon as the app is working proper, we start to do a forensic analysis of the stored data. After finding
the secret and further configuration data we copy the secret to a second device where we installed the same 2FA app.

At this point we record if the app is working and generating identical OTPs, or if just copying the secret is not enough.
Followed by this first approach, we try to copy and manipulate configuration variables or device identifiers to let the app
think that it is still running on the same device than initially.

Within the following sections we will explain our results for all tested apps an give an overview of all 2FA apps for
Android that we analyzed within the results section (see Section III-Q).

A. Google Authenticator

The first of the examined 2FA apps is Google Authenticator in version 4.74. This app stores the shared secret within the
folder /data/data/com.google.android.apps.authenticator2/databases/ in a file called databases.
This file is a common SQLite database and contains the shared secret and the service name it belongs to in plain text (see
Listing 1).

Listing 1. Google Authenticator database containing shared secret
1| Dropbox | rffl4xngz3bzhe5g7fhjidrzra [0|0|0|| Dropbox

This file was then copied to a second device to test if cloning of the app is possible. In our experiment — even with totally
different hardware — the Google Authenticator was able to generate identical OTPs then the legit app does (see Figure 1).
This shows, that the app is not using hardware identifiers or any other kind of unique information to protect against this
attack.
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Figure 1. Cloned Google Authenticator app on a real mobile device (left) and an emulator (right)

During our experiments we are also looking at possible features like PIN protection of the app to protect against not
authorized users and also to check the integrity of the device. Both features were missing in Google Authenticator.

When it comes to network traffic and a possible second attack vector, Google Authenticator was silent and doesn’t transmit
any data over the network. Neither during installation nor later while using the app.

B. Microsoft Authenticator

The second app that we analyzed is Microsoft Authenticator in version 4.4.0. In contrast to the testing of the Google
Authenticator 2FA app, the Microsoft Authenticator was not configured for Dropbox, but as a second factor for the access
to the email service Hotmail. This was necessary because the Microsoft app is currently not supported by Dropbox. The
configuration was also more extensive. The app first requested the input of the existing credentials (user name and password)
and then requested an alternative email address. Microsoft Authenticator sent a PIN to the secondary email. Only after entering
this PIN within the app it started to generate OTPs. Afterwards, we investigated where and how the Microsoft Authenticator
app stores the shared secret.

After doing the forensic analyzes we could identify the shared secret within the folder /data/data/com.azure.
authenticator/databases/. The string Lk1UuS1£f7Pplgg== was identical to the shared secret clearly displayed
by Microsoft for manual input. This showed that the Microsoft Authenticator stores the shared secret in an unencrypted
SQLite database called PhoneFactor (see Listing 2).

Listing 2. Microsoft Authenticator database containing shared secret
1/00000000000000000000000000000000| Microsoft | ppolleit@ sxxxxxxx.de ||1| LklUuSIf7Pplqg==
| £2f3bc9ff98229a3

The evaluation of the encrypted transmitted network traffic was informative, using the tool mitmproxy. It not only contained
the transmitted password for the email account, but also the PIN for validation. In addition, the app sent the names of other
email addresses used on the smartphone to Microsoft.

To test the OTP push functionality of the app, Microsoft (https://www.login.live.com) logged in with the usual credentials
(user name and password of a test account) and entered the smartphone (with the concrete app) as a second factor. After
logging off and on again, the server sent an authentication request to the app. At the same time, a pop-up window with
a SessionID appeared on the login page in the browser and on the smartphone. This was called: 9RILS. The request has
now been acknowledged on the smartphone with Confirm. This process was recorded with the mitmproxy. Subsequently,
the network recording was searched for the value of the SessionID. It turned out that the app corresponded regularly with
the server login.live.com and uploaded data there (by POST) (https://131.253.61.80/ListSessions.stf). In response to
one of these periodic packages, the server finally sent the SessionID:

Listing 3.  Microsoft Authenticator server response containing the SessionID
<?7xml version="1.0" encoding="utf -8 7>



<S:Header ></S: Header>
<S:Body xmlns:ps="http ://schemas. microsoft.com/Passport/SoapServices/PPCRL">
<ps:ListSessionsResponse Success="true”>
<ps:ServerInfo ServerTime="2017—10—-18T08:20:19Z">
BL2IDSLGN2A058 2017.10.13.11.54.05
</ps:Serverlnfo>
<ps:Sessions>
<ps:Session>
<ps :PUID>00064000B77C724B </ps : PUID>
<ps:SessionID >89230AA50481CA60</ps: SessionlD >
<ps:DisplaySessionID >9RILS</ps: DisplaySessionID >
<ps:State >Pending </ps: State>
<ps:RequestTime >1508314799 </ps: RequestTime >
<ps:ExpirationTime >1508315099 </ps: ExpirationTime >
<ps:SessionType>Device </ps:SessionType>
<ps:Browser></ps:Browser>
<ps:OperatingSystem ></ps: OperatingSystem >
<ps:Country ></ps: Country>
<ps:FirstSign ></ps: FirstSign>
<ps:SecondSign></ps:SecondSign>
<ps:ThirdSign ></ps: ThirdSign>
</ps:Session>
</ps:Sessions>
</ps:ListSessionsResponse >
</S :Body>
</S:Envelope>

Triggered by clicking on Confirm within the app, it then sent the following data to the server resource https://131.253.61.
80/ApproveSession.srf:

Listing 4. Microsoft Authenticator message containing the OTP
<?xml version: ”1.0” encoding="UTF-8"7>
<s:Envelopexmlns:s=http ://www.w3.0rg/2003/05/soap—envelope

appid: {F501FD64—-9070—46AB—993C—6F7B71D8D883 }

da: <EncryptedData xmlns="http ://www.w3.0rg/2001/04/xmlenc#”
Id="BinaryDAToken0”
Type="http ://www.w3.0rg/2001/04/xmlenc#Element”>
<EncryptionMethodAlgorithm="http ://www.w3.0rg/2001/04/xmlenc#tripledescbc”>
</EncryptionMethod >

<ds:KeyInfo xmlns:ds="http ://www.w3.0rg/2000/09/xmldsig#’>
<ds :KeyName>http :// Passport .NET/STS </ds : KeyName>

</ds:KeyInfo>

<CipherData>
<CipherValue>CX+fleYc....yh/GtrYOHU . ... .. E104dK30oF
</CipherValue>

</CipherData>

</EncryptedData>

<ps:ApproveSessionRequest>
<ps : UserPUID >00064000B77C724B </ps : UserPUID>
<ps:SessionID >89230AA50481CA60</ps: SessionID >
<ps:SessionState >Approve </ps: SessionState >
<ps : ClockSkew >—1872</ps : ClockSkew>

</ps:ApproveSessionRequest>

</s :Body>

</s:Envelope>

As can be seen in the above excerpt (Listing 4), the app sent a message to the server. with a TripleDES encrypted
BinaryDAToken0. This messages can be intercepted and redirected to another service that uses the same authentication
or used by an attacker to simultaneously accept his session instead of the one of the legitimate user.



C. Authy 2-Factor Authentification

The next app within our experiment is Authy 2-Factor Authentification in version 23.0.5. The installation of Authy
required the specification of a phone number. Afterwards, an SMS or a call for the transmission of a PIN could be sent
to this number. The SMS contained, besides the PIN, the following URL: https://www.authy.com/register?pin=977126&
cellphone=49-170-940-XXXX&device_app=authy

After completing this registration, Authy asked for a password to create encrypted online backups. Then the dropbox
account could be added. It was then investigated where and how the 2FA app Authy stores the shared secret.

We found the shared secret within the folder /data/data/com.authy.authy/shared_prefs/ in the file com.
authy.storage.tokens.authenticator.xml (see Listing 5).

Listing 5. Authy 2-Factor Authentification xml-file containing the shared secret
<?xml version='1.0" encoding="utf -8 standalone='yes’ 7>
<map>
<int name="key_version” value="64" />
<string name="com.authy.storage.tokens.authenticator.key”™>
[{”accountType”:” dropbox”,
”decryptedSecret”:” WYC6536XVI6JCXISYK7KRCW4E” ,

9,9

“upload_state ”:” uploaded”,
“encryptedSecret”:”taBJZbXkjgXIkN66Ljj8FWOtW3xDhPNrT7iyV67k06A==",
”originalName ”:” Dropbox: philipevalu@wegwerfemail . info”,
“timestamp”:1507582523,
”salt”:” FejildC33bNEjovTd2VZFuhss8ZjwSxZ”,
”digits ”’:6,
”name ”:” Dropbox : philipevalu@wegwerfemail . info”,
”1d”:71507582647”,
”isNew ”: false ,
“hidden”: false }]

</string >

</map>

Thus, it could be shown that Authy stores the shared secret both unencrypted and also encrypted in the XML file. The
value listed under decryptedSecret was identical to the key displayed by Dropbox during setup.

Even though we are now able to read the shared secret in plain text, we were not able to clone the app on another device
due to the fact that Authy is making heavy use of device dependent identifiers to protect against this kind of attack.

Network traffic recorded during installation showed that the app contacted an Amazon AWS instance (kinesis.us-east-1.
amazonaws.com). For this purpose, there was a certificate s3.amazonaws.com in the program directory (after the first
start of the app). After completion of the setup, this certificate was removed from the app. Furthermore, the SSL-encrypted
network traffic showed that the content was encoded again and therefore not plain text. The Amazon Kinesis streams offer
the so-called Server-Side Encryption [?].

D. DUO Mobile

During the installation of the DUO Mobile application in version 3.16.1, it carried out a comprehensive security analysis
of the smartphone and presented its results in a generally understandable way as shown in Figure 2.

The value named under ot pSecret was identical to the key shown in the Dropbox for manual input without encryption
(see Listing 6). This showed that DUO Mobile saves the shared secret unencrypted in the json-file accounts. json which
is located under /data/data/com.duosecurity.duomobile/files/duokit/.

Listing 6. DUO Mobile json-file containing the shared secret

{

“name”: “philipevalu@wegwerfemail .info”,

“otpGenerator ”:

“otpSecret”: "HVWBO64JEXHST5SXG2RGS5ISNFWCI”
oA

”logoUri ”:

”android . resource ://com.duosecurity .duomobile/drawable/ic_dropbox”
}

It was possible to copy the database to another of our test devices. The app in the second device generated identical OTP.
The following setup was selected to evaluate the security of the implemented OTP push function: As before, the app was
set up on the smartphone and connected to the evaluation computer via proxy configuration.
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Figure 2. Device Integrity Check of DUO Mobile

DUO provides its customers with OTP push as a second factor when logging on to their homepage. This logon process
was initiated and caused an OTP to be pushed to the smartphone. Unfortunately, we were not able to intercept the OTP
push traffic.

E. FreeOTP

First of all, we investigated where and how the App FreeOTP — in version 1.5 — stores the shared secret. This 2FA
app saved the shared secret unencrypted in the file tokens.xml. However, the notation was stored as a byte value (see
Listing 7).

Listing 7. FreeOTP xml-file containing the shared secret

<?xml version='1.0" encoding="utf -8 standalone='yes’ ?>
<map>
<string name="tokenOrder”>

[”Dropbox: philipevalu@wegwerfemail . info ”]
</string >
<string name="Dropbox: philipevalu@wegwerfemail . info”>

{”algo ”:”SHA1”,

”type ”:”TOTP”,
”secret”:[—-29,114,7,-22,0,127,—-97,50,83,—-106,31,8,39,—-67,—124,—111],
”issuerExt”:” Dropbox”,
“issuerInt”:” Dropbox”,
”label ”:” philipevalu@wegwerfemail . info”,
”counter”:0,
”digits ”:6,
”period”:30}
</string >
</map>

The further analysis of the app showed that it does not produce any network traffic. It was also possible to copy the
database between the original smartphone and the second test-device to generate identical OTPs in both apps.

F. Sophos Authenticator

Within this section we will show how Sophos Authenticator in version 3.1 stores and protects the shared secret that is
needed for generating OTPs. Similar to Google Authenticator this 2FA app also stores the secret within the SQLite file
databases in /data/data/com.sophos.sophtoken/databases/.



Listing 8. Sophos Authenticator database containing the shared secret
1| Dropbox: philipevalu@wegwerfemail . info | RKDPFGOYDNAUWIXTH4ESHQZIXU |0]0|30|6|0]0

The value specified in the database file — as seen in Listing 8 — was identical to the secret displayed by Dropbox for
manual input without encryption. This showed that Sophos Authenticator can store the shared secret in an unencrypted
form in the SQLite database, which is also unencrypted. Furthermore, the app on the second test device generated the same
OTP as that of the smartphone after exchanging the database file. As with the FreeOTP app, the analysis of the Sophos
Authenticator revealed that it does not exchange data with the Internet.

G. Push Authenticator

Push Authenticator in version 1.1 has been the next app that we analyzed. Similar to many other 2FA apps for Android, it
stores the secret within the SQLite file databases in /data/data/com.net.singular.authenticator/databases/.

Listing 9. Push Authenticator database containing the shared secret
1| Dropbox: philipevalu@wegwerfemail . info | WRY5SIPSIJO30GGFY550AU2YLQ 0|00

The value specified in the database file — as seen in Listing 9 — was the plaintext version of the secret. Due to the fact
that Push Authenticator does not protect the itself against manipulated devices or high privileged attackers, cloning of the
app was easily possible.

H. OTP Authenticator

At first, we investigated where and how OTP Authenticator stores the shared secret in version 0.1.1. The unencrypted shared
secret could be found within the file secrets.dat locatedin /data/data/net .bierbaumer.otp_authenticator
/files/.

Listing 10. OTP Authenticator file containing the shared secret
[{”secret”:” ATWGQX3JFOLDHSB6XXCL7B20V4======","label ”:” Dropbox —
Dropbox: philipevalu@wegwerfemail . info”}]

As can be seen in Listing 10 the secret is again stored in plaintext, but this time the app could not be cloned as it seems
that it is storing device dependent information within one of its configuration files in an obfuscated way.

1. Yandex.Key

The app Yandex.Key in version 2.6 stores the shared secret encrypted in the SQLite database ru.yandex.key.db as
can be seen in Listing 11.

Listing 11. Yandex.Key database containing the shared secret in an encrypted manner
2|7068696c69706576616c754077656777657266656d61696c2¢696e666f44726f70626f78 || |
|1:2487687582b37ecc4d5f1d76abd7dddb6d02781fd5307806 : STCFR5Q2GQPS66GFC5JA5SPDU6
RGUHT7QQYU4LYMPITKOCFKRLIXJFZZK4AIGVWMKMVNYA | | TOTP | Dropbox | philipevalu@ wegwerf
email . info | Dropbox |1:948 b55b3f5bf2fe214754d9acf975bal1d8c38248ce36f9af:SODXRKE
QTD7LKKGIGV4HZR4ANTFQL5GFI4TZHIHDPEW4ATG6BM3FECEAHTCY YFDXO6GTAUGUW | otp_logo /2F
A_Dropbox.png |0[0|0]|0]0|0|0]0]0]|0

For encryption, Yandex.Key uses the public domain library NaCl and device dependent information. Thus, we were not
able to clone the app to another device.

J. Symantec VIP Access

First of all, it was examined where and how the app Symantec VIP Access stores the shared secret. With this app, the
shared secret could be located in encrypted form within the xml-file com.verisign.mvip.main_preferences.xml.

Listing 12.  Symantec VIP Access xml-file containing the shared secret in an encrypted manner

<?xml version='1.0" encoding="utf -8 standalone='yes’ 7>
<map>
<string name="credData”>

[{” data”:”C7B52A9D699

”AUTH:HOTP:SHA1:6:SIGN”,

”id”:”214BFD6EE....918118B00”,

”sval ”:”73 EB995D4C420C6587050FC3D555D7F57 }]
</string>



<long name="serverTimeOffset” value="-525" />
<string name="keydidhash”>

3E53A565B..... 206El</string >
</map>

When looking at the source code of the app, you can see that it is using device dependent information like manufacturer
name, device name and serial number to protect against cloning the app. These information are sent to the backend server
of Symantec and there they are used to authenticate the device. Thus been said, it was not possible to clone the app to one
of out test devices.

Now the OTP-push functionality of the app was examined. For this purpose, Symantec offers the possibility of sending
an OTP-push at https://vip.symantec.com/. In the usual test setup (the smartphone was connected to the Internet via a
proxy) there was no notification on the smartphone. When looking at the traffic you can see that the app is contacting
https://40.114.55.233/incident-vip/1 instead of the legitimate URL (see Listing 13 for more details). This behavior is known
from many newer Symantec products as soon as they notice that the traffic is manipulated or intercepted.

Listing 13. Symantec VIP Access packet that shows the manipulated network connection
19/01/2018 07:51:50 || VIP Access for Android?
Version 4.1 || SYMC51224959
0]1353211060022320|| golden ||JZO54K | |GT-18190 || user || samsung || armeabiv7a ||
samsung/ goldenxx/golden :4.1.2/JZ054K/I8190XXAMALl: user/releasekeys ||
4.1.2]] || Device detection check reported an issue || :

K. 2FA Token

At this point, we investigated where and how the App 2FA Token — in version 1.0 — stores the shared secret. This 2FA
app saved the shared secret unencrypted in the file tokens.xml. However, the notation was stored as a byte value (see
Listing 14).

Listing 14. 2FA Token xml-file containing the shared secret
<?xml version="1.0" encoding="utf -8 standalone="yes’ 7>
<map>
<string name="tokenOrder”>
[”Dropbox: philipevalu@wegwerfemail . info ”]
</string >
<string name="Dropbox: philipevalu@wegwerfemail .info”>
{”algo”:”SHA1”,

“type ”:”TOTP”,
”secret”:[101,29,—-33,-8,29,30,—-104,35,44,—-104,104,14,—-86,124,23,—-102],
”issuerExt”:” Dropbox”,
“issuerInt”:” Dropbox”,
”label ”:” philipevalu@wegwerfemail . info”,
”counter ”:0,
7digits ’:6,
”period”:30}
</string >

</map>

The further analysis of the app showed that it does not produce any network traffic, but — as seen many times before —
It was also possible to copy the xml-file between the original smartphone and the second test device to generate identical
OTPs in both apps.

L. Launchkey

Launchkey in version 3.1.0 requires registration via SMS (only within the USA) or email. A mail with a link was sent to
the email address provided for registration. After this URL was called, the phone was connected and the following unlink
code was presented to decouple the phone from the account in case of loss.

It was first examined where and how the app Launchkey stores the shared secret, but the shared secret (or an encrypted
equivalent) could not be found in any of the files created by the app. In addition, the app only generated OTP if the
smartphone was connected to the Internet. At the same time, the app could be copied between the devices and afterwards
displayed identical OTPs on both devices.



When looking at the encrypted network traffic, it seems that the app stores the secret not locally but on the backend
servers and only transmits the generated OTPs. Locally, we could only find an identifier that is used to link the stored shared
secret with the corresponding device.

This kind of solution helps to protect against attacks that we already showed as working scenarios where an attacker with
physical or low level filesystem access is able to extract the shared secret. But at the same time, it opens the door for remote
attacker that now just need to bruteforce the ids used for linking of shared secret and user device.

As a positive remark, this app was one of only two we tested that was using a PIN to protect the app itself against
unauthorized users.

M. CyAuth Cylocklite

Even before the possibility of importing shared secrets (e.g., via a QR-code) the app asked for a Google account. The
account stored in the smartphone was selected for this purpose. As a result, the shared secrets were automatically synchronized
and stored within the Google Drive of the connected account.

Then it was investigated where and how the CyAuth Cylocklite authenticator app stores the shared secret. The forensic
analysis showed that the app stores the shared secret in encrypted form in the SQLite database cylocklite_db located
at /data/data/coml8deglab.cylocklite/databases/.

Listing 15. CyAuth Cylocklite database containing the shared secret in an encrypted manner
1| Dropbox: philipevalu@wegwerfemail . info |34 |LXNbng61aQUJ6mdZT67TTzZRB2SE0S6/0zZ
h4IytNtYvBKpTRKaJnvmCQx8Ka2G2o || ||| 1

Due to the fact that device dependent information is used for encrypting the shared secret, a simple cloning of the app
has not been possible.

N. Topicus KeyHub

We investigated where and how Topicus KeyHub stores the shared secret in version 8.0. The unencrypted shared secret
could be found within the SQLite database file ouder.db located in /data/data/nl.topicus.heimdall/databases/.

Listing 16. Topicus KeyHub database containing the shared secret

1]|| Dropbox | philipevalu@wegwerfemail . info | SCSTCJAXFUFIYFXARI7SM4CZEU | |

As can be seen in Listing 16 the secret is again stored in plaintext and this time the app could again be cloned. On the
second test device it was enough to import this file. Afterwards, both devices generated identical OTPs.

O. Latch

Latch in version 1.7.1 initially required registration via an email address. A link with a password was then sent to this
address. After calling the URL the dropbox account could be added.

It was then investigated where and how Latch stores the shared secret: It was stored in the file b.xml locally within
/data/data/com.elevenpaths.android.latch/shared_prefs/, butin an encrypted manner — as can be seen
in Listing 17. The encryption is based on a hardcoded key that an experienced attacker or investigator can easily reverse
engineer and gather the shared secret in plaintext.

Listing 17. Latch xml-file containing the shared secret in an encrypted manner

<?xml version='1.0" encoding="utf -8 standalone='yes’ 7>
<map>
<string name="registration_id”>

APA9IbEDb . ... qqS12tbS
</string >
<int name="appVersion” value="21" />
</map>

Furthermore, the app contacted the registration server during the initial installation (https://52.30.153.108/www/registerMobile).
As can be seen in the network traffic, the password selected for registration with the service provider has not been further
secured — besides the default SSL encryption.

P. Okta Verify

Okta Verify was the only that 2FA app that we have seen that was making use of the on Android preferred encryption
method: using a local keystore [13]. During initialization, the app creates the file ast 5d82b549-e6a0-4ce6-9003-03e3
1143cadf.keystore and encrypts all sensitive data. Furthermore, it uses device dependent information to protect against
the attack of cloning the app to another device.



Table II
OVERVIEW OF EXPERIMENT AND RESULTS
(X =YES, O = NO, - = UNWANTED BEHAVIOR, + = WANTED BEHAVIOR)

2FA App Name Cloning | Encrypted Device PIN Secure Secure
Possible Secret Integrity Check | Protection | SSL-Connection | OTP-Push

Google Authenticator X- O- O- O- N/A N/A
Microsoft Authenticator X- O- O- O- O-
Authy 2-Factor Authentification O- O- N/A
DUO Mobile X- O- O-

FreeOTP X- O- O- O- N/A N/A
Sophos Authenticator X- O- O- O- N/A N/A
Push Authenticator X- O- O- O- N/A N/A
OTP Authenticator O- O- O- N/A N/A
Yandex.Key O- N/A N/A
Symantec VIP Access O- O-

2FA Token X- O- O- O- N/A N/A
Launchkey X- N/A O- N/A
CyAuth Cylocklite X- O- O- N/A
Topicus KeyHub X- O- O- O- N/A
Latch O- O- O- N/A
Okta Verify O- O- N/A

Q. Results

In an overall assessment, it turned out that many of the apps examined resembled each other. They are often more or less
direct derivatives of the Google Authenticator. This was often already evident from the directory structure and the use of the
databases-file to store the shared secrets. Apps varied in terms of encryption used. While many did not encode, or only by
different notation forms (bytecode), other apps used external libraries to implement the encryption. Even if the encryption
was based on hardcoded keys — as shown by Latch — most of the used encryption proved to be solid. The same applies for
most of the transmitted data between 2FA app and backend systems. The only negative example was again the app Latch
that sends the user credentials in plaintext within the SSL connection. Table II provides an overview of the survey results
for all examined 2FA applications.

IV. CONCLUSION

First of all, the use of two-factor authentication is fundamentally important and desirable. If, in the more detailed analysis,
there may have been some deficiencies in some apps, this additional layer of security at least will not worsen the level of
overall security.

As has been shown, the apps differ greatly in terms of their security implementation. Few apps had a self-sufficient
security architecture, while most others depended directly on the security of the operating system. This would not be
necessary. Although Android basically provides a quite secure environment (sandboxing, POSIX, SELinux) for this purpose,
devices with a low patch level can be rooted relatively easily and the security architecture can then simply be leveraged during
a possible attack. As explained at the beginning of this study, it is the purpose of the second factor to add the component
possession to the existent classical component knowledge (e.g. username and password). The theft of the elementary shared
secret, which has been presented in a few examples, then undermines the factor possession. At this point (by duplicating
the shared secret), the generator loses the attribute possession. The shared secret and the OTP generated from it are thereby
degraded to further passwords (factor knowledge).

In addition, the usage of 2FA-apps carries the risk that the thoughtless user may also use it’s smartphone for login onto the
secure server (here the web browser) and at the same time for generating the necessary OTP. Such an approach would also
remove the second factor (something like violating the OOB principle) and work towards any malware on the smartphone.

It could be shown that under certain circumstances (e. g. platform security / implementation of the app) 2FA apps can
be a useful supplement to user authentication. Suitable applications include, for example, private email accounts, password
safes or access to online stores. However, for the protection of mobile online banking or other security-critical applications,
the use of 2FA apps (here referred to as TAN apps) should be verified very critically.
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