
Template-based Android Inter Process Communication Fuzzing
Anatoli Kalysch

Friedrich-Alexander University
Erlangen-Nürnberg (FAU), Germany

anatoli.kalysch@fau.de

Mark Deutel
Friedrich-Alexander University

Erlangen-Nürnberg (FAU), Germany
mark.deutel@fau.de

Tilo Müller
Friedrich-Alexander University

Erlangen-Nürnberg (FAU), Germany
tilo.mueller@cs.fau.de

ABSTRACT
Fuzzing is a test method in vulnerability assessments that calls the
interfaces of a program in order to find bugs in its input process-
ing. Automatically generated inputs, based on a set of templates
and randomness, are sent to a program at a high rate, collecting
crashes for later investigation. We apply fuzz testing to the inter
process communication (IPC) on Android in order to find bugs in
the mechanisms how Android apps communicate with each other.
The sandboxing principle on Android usually ensures that apps
can only communicate to other apps via programmatic interfaces.
Unlike traditional operating systems, two Android apps running in
the same user context are not able to access the data of each other
(security) or quit the other app (safety).
Our IPC fuzzer for Android detects the structure of data sent

within Intents between apps by disassembling and analyzing an
app’s bytecode. It relies on multiple mutation engines for input gen-
eration and supports post-mortem analysis for a detailed insight
into crashes. We tested 1488 popular apps from the Google Play-
Store, enabling us to crash 450 apps with intents that could be sent
from any unprivileged app on the same device, thus undermining
the safety guarantees given by Android. We show that any installed
app on a device could easily crash a series of other apps, effectively
rendering them useless. Even worse, we discovered flaws in popular
frameworks like Unity, the Google Services API, and the Adjust
SDK. Comparing our implementation to previous research shows
improvements in the depth and diversity of our detected crashes.

CCS CONCEPTS
• Security and privacy→Mobile platform security; Penetra-
tion testing;

KEYWORDS
Fuzzing, Android Security, Inter-Process Communication

ACM Reference Format:
Anatoli Kalysch, Mark Deutel, and Tilo Müller. 2020. Template-based An-
droid Inter Process Communication Fuzzing. In The 15th International
Conference on Availability, Reliability and Security (ARES 2020), August
25–28, 2020, Virtual Event, Ireland. ACM, New York, NY, USA, 6 pages.
https://doi.org/10.1145/3407023.3407052

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
ARES 2020, August 25–28, 2020, Virtual Event, Ireland
© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-8833-7/20/08. . . $15.00
https://doi.org/10.1145/3407023.3407052

1 INTRODUCTION
Fuzzing is an automated software testing technique based on the
idea to provide randomly generated inputs to programs. Any pro-
gram or library that processes input data can be fuzzed, e.g., ex-
ported APIs, reading files, user input fields, and network communi-
cation [14, 15]. Fuzzing has established itself as a viable addition to
manual testing due to its high automation ratio – once a fuzzer is
up and running, it can be left constantly looking for bugs with no
manual interaction needed.
In this paper, we propose an automated template-based fuzzing

approach for Android’s IPC mechanism. IPC messages on Android
are called Intents. We implemented an Intent fuzzer that targets all
publicly exposed interfaces of an app, and integrated it into the
open-source security audit tool drozer [11]. Contrary to previous
work about fuzzing of Android IPC messages [3, 19, 22], we rely on
an extensive pre-analysis of the app components structure to factor
in the architecture of the app and fuzzwith a better understanding of
the conditions needed to improve the code coverage of our template-
based Android IPC fuzzer.
Fuzzing 1488 apps, we found 450 apps that crashed completely

during testing, including famous apps and widespread libraries
such the Google Services Framework. 921 apps had at least one
component that raised an exception during fuzzing, and we found
635 different components that can completely crash an app. This
is particularly serious on modern OS like Android that enforce
strict sandboxing between apps running in the same user context.
Normally an Android app is not able to affect the state of another
app in any way, neither by accessing it’s data, nor by quitting
or crashing it. Thus we show that numerous of crashes subvert
some of the safety guarantees of the Android ecosystem, thereby
endangering apps.
Note that we focus on the safety aspect of an app, especially on

the code stability of the interfaces an app exposes to other apps. We
determine common exception types and design flaws causing an app
to crash, but no security implications such as shellcode execution.
We did not investigate whether a crash can be exploited for two
reasons. First, unlike C, Java is secure against code execution attacks
such as stack overflows, leading to a very small number of crashes
that can be exploited in Java. Second, we focus on automated fuzz
testing, and additionally look into crashes manually to find common
reasons for a crash, but judging whether a crash can be exploited or
not requires reverse engineering and gaining a deep understanding
of an app’s logic.
We reported many of our findings to the developers. For example,

we reported several bugs in the Google Play Services in early 2019
and most of them have been fixed starting January 2020.

1

https://doi.org/10.1145/3407023.3407052
https://doi.org/10.1145/3407023.3407052

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Anatoli Kalysch, Mark Deutel, and Tilo Müller

2 BACKGROUND
Android’s IPC model differs from common desktop operating sys-
tems. Direct process to process communication was traded in favour
of a message passing approach, realized by Android’s binder, which
acts as an intermediary between apps.

Binder. The core of Android’s binder is its kernel driver, it han-
dles all communication between different processes. Inside the
processes all communication is done by the binder API, which is
part of Android’s system APIs [16]. A message sent from a client
process to a service is called a transaction. Each transaction which
can be resolved by the kernel driver results in a method invocation
by the service. Additionally, each transaction can contain a payload,
stored in a Parcel container [21]. A transaction can be executed
unidirectional or bidirectional. Bidirectional transactions expect a
response from the service and are therefore executed synchronous.
Unidirectional transactions are executed asynchronous [21].

Intents. For the apps themselves the previously described binder
transactions are abstracted through Intents. Every Intent declares
a recipient and contains data optionally. Therefore, every Intent
can be seen as a self contained object which invokes parts of other
apps and provides a set of parameters which can be used by the
receiver [8]. The Intent object offers some standard fields for data,
but most of the time the payload will be sent using a Bundle object.
A Bundle in the Android system is an object containing a set of
key-value-pairs. These mappings make it very easy for the part
of the app the Intent is targeting to extract specific data [8]. A
distinction is made between the explicit and implicit use of Intents.
An explicit Intent specifies that it shall be delivered to a particular
app defined in the Intent object, whereas an implicit Intent only
specifies a certain type of operation which shall be fulfilled that
will be executed by any app supporting this action [8].

Components. We focus the scope on the main components that
usually create or process Intents: Activities, Services and Broadcast
Receivers. An Activity describes one specific thing a user can do
in an app. It interacts with the user and therefore almost always
provides a graphical user interface and are managed through a
UI stack. A new Activity can be created or called upon through
Intents. The restriction for Activities is that they are regarded as
foreground processes, meaning there should only be one Activity
running at a time on the Android system. Background operations
should be executed through Services. A Service does not provide a
user interface, yet it can be started by another component and it will
keep running even if the user switches to another app. Event-based
operations are implemented through broadcast receivers which can
receive broadcast messages from the operating system or other
apps. These broadcasts are used to propagate information through
the system and trigger actions [17].

Exports. After declaring components as exported they can be
invoked from outside the scope of their app either by a direct or
indirect Intent [10]. By using Intent filters the app’s programmer
can specify what type of indirect Intents shall be delivered to a
component. Android’s binder then automatically only delivers indi-
rect Intents to the components matching the constraints specified
in the filter. To protect components against resource access from

malicious actors, Android offers the components to restrict access
to them through custom permissions. This can be achieved either
by setting permissions in the manifest file, specifically for one com-
ponent, or as a default requirement for all exported components in
the whole app.

3 DESIGN AND IMPLEMENTATION
This section details the design considerations and implementation
of our approach. Note that we have open-sourced our implementa-
tion under the MIT license [4–6]. Figure 1 shows the architecture
of our fuzzing approach. An APK file is parsed initially by the
static analyzer module, which analyzes the exported Intent filters
and creates a templates for valid intents for each found exported
component. Based on these templates, the mutation engine starts
the mutation pass and creates additional Intents that are stored
in the Intent database. This leads the drozer module to install the
APK on the dedicated device and initiate the fuzzing run, while
the device logs are monitored by the log parsing engine and the
crashes, exceptions, and their respective stack traces are saved to
the crash database.

APK

«Fuzzing Module»

Log
Engine

Intent
Engine

Static
Analyzer

crash DB

intent DB

Exception
Stacktrace

intent templates

fuzzed intents
crash
info

fuzzingdrozer
module

APK

Logcat & Stacktrace

Figure 1: The architecture of our fuzzer. The modules for
the static app analysis, intent engine and log parsing con-
stitute the core architectural components, and instrument
the drozer module to fuzz apps on the Android device.

As long as an Intent’s payload can be properly flattened and
unflattened by the Binder API and the Intent is well defined it is
sent. This means a sender can potentially put any form of data in
an Intent as long as he provides proper flattening for it. We take
advantage of that. The idea is to build on empty Intents, extract
from the application which data fields are used in further processing
and which are not, and fill it with random data or data which is
likely to be malicious. Examples for such data are null references,
random data, range exceeding data or data which does not match
the data type expected by the receiver. To get the best possible
results, it makes sense to structure the payload of the Intents in a
way that they match the structure the targeted components expect
to receive.

Static Analysis and Template Creation. We start our static analysis
at the manifest level, to detect all exported components and their
Intent filters. As Intent filters describe what kind of actions, data
URI patterns and categories a component claims, it is very likely

2

Template-based Android Inter Process Communication Fuzzing ARES 2020, August 25–28, 2020, Virtual Event, Ireland

that by sending Intents meeting these resolution rules the targeted
components can handle them and execute into a deeper path. To
test the behaviour of components against malformed incoming
Intents as intensive as possible, it is necessary to trigger as many
execution paths as possible during a fuzzing campaign. Therefore,
an appropriate structure of the fuzzed Intents is very important.
Building upon the rules from the static analysis we build valid

Intents and start mutating them. For certain fields the Android
manifest gives hints on how parts of the Intent should look like,
e.g., for data URIs. Others, like the extra field, store the payload
of an Intent as key-value-mappings – without the knowledge of
which Intents will not penetrate beyond the unpacking class and
might not even throw an exception. Unfortunately, the manifest file
contains no information regarding the structure of these mappings,
so a source code analysis becomes necessary. Same is true for the
category fields of Intents.
Fortunately, the Intent class, has defined set of methods used

to extract mappings from an Intent’s extra field, making it easy to
track all invocations of Intent related methods and thereby get a
list of all mappings expected by each component. Starting from the
entry point of each exported component we thus search for these
mappings, creating dependencies between Intents and the expected
fields. From these dependencies we create Intent templates, of how
a valid Intent for each exported component should look like, i.e.,
which fields are required, how key-value-mappings look like, and
what data types they are unpacked to. With this information our
Intent Engine starts the Intent building and mutation processes.

Intent Building. From the provided templates we first generate
valid Intents, filled with the expected data types. The action, data,
category, and extras fields of Intents appear to be the most relevant
ones, as they are frequently use by most components and their ab-
sence often leads to handled exceptions. Then, we mutate all Intent
fields that are processed or queried by the app. These mutations
range from changes in the data itself to changes in the data types,
null references, and randomized data.

Mutation Engine. The mutation engine our module uses is build
in a modular way and easily replaceable with that from different
fuzzers, e.g., AFL [23]. For this work we tested a simple implemen-
tation based on the Random class from the Android API for random
primitive data is generation. The class provides a randomization
engine using a linear congruential formula seeded with a 48-bit
value. Additionally, we included Radamsa [9] to allow a more sea-
soned mutation approach to be used in conjunction with our tool.
In a similar way other engines can be integrated.
After a set of templates was created they can be used to generate

actual Intents by filling themwith fuzzed data. After that the Intents
can be sent to a targeted application. To achieve this we rely on
drozers agent application installed on the test device which is used
to send the Intents and interact with the Android OS.
We also prevent previous executions from affecting new fuzzing

passes. For activities, Intent flags are used to make sure that every
time an Intent is starting an activity, the activity is started in a
new task. Services are stopped explicitly from another component
using its application’s context. Broadcast receivers are registered
in the Android system when the application is installed. They act

as separate entry points to the application and are therefore not
dependent on the application’s context. By setting flags for activi-
ties, stopping services before starting them again and adding a time
interval between the execution of two Intents, we can assure that
Intents generate results as independently from previous executions
as possible.

Logfile Parsing. During all fuzzing runs Android’s application
and crash logs were collected. The crash logs list all exceptions
related to application crashes including their complete Java stack-
traces. We convert the stream of log entries, retrieved from a test
device, into an ordered representation, and store its output in the
crash database. The exceptions are grouped by the affected compo-
nents, so that for each component a table exists with the stacktrace
for every exception and the corresponding Intent that caused said
exception. Furthermore, general information about the app, like its
package name or the number of exported components is stored as
well.
To help the parser navigate through the logs and provide addi-

tional information, we add new entries to the Android logs at the
beginning and end of each fuzzing pass. The entries contain infor-
mation about the current pass and the app, and each sent Intent.
Every time it executes an Intent, the fuzzer logs its string repre-
sentation. This is helpful for manual verification of crashes found
during automated fuzzing.

4 EVALUATION
This section presents the evaluation of our framework with 1488
apps from Google Play. We used a Nexus 5X running Android 9.0
for all fuzzing tests. The dataset was divided into batches of 10
apps, then each batch was subsequently installed and fuzz tested.
A test run for one app lasted 10 iterations, with each exported
component being executed with all prepared Intents. During the
run the app and crash logs from the test device were retrieved to
monitor app crashes and exceptions. For the detected crashes we
followed up with a manual log analysis and the reverse engineering
of affected crashed components to review the reasons why the
crashes happened.

Fuzzing Results. Out of the 1488 apps, 921 apps had at least one
component that crashed with an exception during fuzzing, and 450
apps crashed completely during testing. We discount exceptions
raised by the base class handling the Intent, and only regard ex-
ceptions raised in any other class than the first Intent receiving
class. Crashes are counted independently of the point of origin, the
only prerequisite being that the app process needs to crash with an
uncaught exception. We treat crashes originating in the developer
code and the crashes originating in third party frameworks differ-
ently, since the latter affect all apps using vulnerable versions of the
framework. In this section we detail the exceptions and components
found in the original developer code, while in section 4 we regard
libraries and frameworks.

Exported Components. In general the results show no direct cor-
relation between the number of exported components and detected
crashes. Apps with a higher number of exported components did
not necessarily show more crashes than apps with a lesser number.
However, exposing larger parts of an app increases its attack surface

3

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Anatoli Kalysch, Mark Deutel, and Tilo Müller

and therefore the number of possible paths accessible from outside
the app. This leads to a higher risk for unsafe source code being
executable from outside the app’s scope. Overall we discovered 635
vulnerable exported components that could be used to crash 450
apps from our dataset simply by sending out an intent.
While Services constituted roughly 10.31% of all detected exported

components they were not responsible for any of the detected
crashes. Broadcast Receivers on the other hand while constituting
16.68% of exported components were responsible for 32.51% of
detected crashes. Taking a deeper look into the crashed compo-
nents we discovered that most were meant to interact with system
broadcasts, having safeguards for these cases but no security mecha-
nisms in case of absent or corrupted data being transmitted through
an intent. Activities made up 73.01% of exported components and
had very diverse reasons for app crashes. While previous stud-
ies [12, 19, 22] already discovered NullpointerExceptions to be
the biggest issue with Activities, we found that many more addi-
tional cases and exceptions need to be taken into account when
designing secure exported components. The following section ‘Most
common exceptions and crashes’ has a detailed overview of the
exceptions encountered in all exported components.

299

100

46

35

11

Number of apps

NullPointerException

ClassNotFound
Exception

Conversion
Exceptions

Unsupported
Exceptions

OutOfBounds
Exceptions

0 100 200 300

Figure 2: Most common exception types that generated an
app crash. NullpointerExceptions appear to be the biggest
issue with components, followed by ClassNotFoundExcep-
tions and several exceptions from wrong conversion.

Most common exceptions and crashes. We list in table 2 all ex-
ceptions from our fuzzing results which caused an app to crash,
ordered by the frequency of their appearance. Whenever key-value-
mappings were left out or null references were assigned to the
Intents, it was more likely that a NullpointerExceptions was
raised by the receiving component. However, in case all expected
mappings were assigned correctly but the format of the data stored
in the mappings was modified instead, it was more likely that the
payload passed the extraction step without any errors. This left a
higher chance of discovering interesting bugs in deeper levels of
the components’ execution paths and resulted in more advanced ex-
ception types like ClassNotFoundExceptions. These arose when
the URI scheme encoded in an Intent had some information about
which class was needed to process the data in this Intent. Depending

on the permissions of the app, an attacker can abuse this mecha-
nism to infer sensitive information on the device, or even create
agents for a reflective DDoS attack by proxy.All an attacker needs
for these attack vectors is for his app to be installed on the victims
device.
Further, we grouped following Exceptions by the categories ‘Con-

version Exceptions’, ‘Unsupported Exceptions’, and ‘OutOfBounds
Exceptions’ for figure 2. Conversion exceptions include the Class-
CastExceptions, IllegalArgumentExceptions, and NumberFor-
matExceptions, all raised when conversion of data from of our
fuzzed key-value-mapping did not succeed somewhere deeper in
the app logic. Usually, they are raised in case a data conversion
from one type to another has failed. For ClassCastExceptions
this means that a component tried to convert an object to another
type but the targeted type is not a subtype of the current object.
NumberFormatExceptions are raised whenever a component has
attempted to convert a string value to a numeric type, supported
by Android, but the string does not have an appropriate format.
Unsupported exceptions include the IllegalStateExceptions,

InvocationTargetExceptions, and UnsupportedOperationEx-
ceptions, which usually were the result of data types parsed the
right way but interpreted wrong by the apps own logic. The tests
showed that the main reason causing components to crash with
these exception types, is that the content of input provided by In-
tents is very often not verified to have a correct format. Instead,
input is in many cases handed down to the underlying routines of
the apps directly by the components.
OutOfBounds exceptions was a category combining exceptions

that relied on Intent data to perform array operations, e.g., Array-
OutOfBoundsException, StringIndexOutOfBoundsException, or
the IndexOutOfBoundsException. Often raised by components
that tried to read elements from an array or a collection based on
an index, they are a sign of wrong assumptions about origins of
incoming Intents.

Libraries and SDKs. During our experiments we noticed that not
all crashes were caused by bugs in the developer code. Third party
frameworks, functionality that is conveniently included into an app
can have serious implications for the apps IPC. Three of the most
noticeable ones are:
(1) Google Play Services offers a wide variety of different APIs

which can be used by developers to integrate them in their
apps. During our evaluation several different components
from these APIs were detected creating crashes in apps ex-
porting them. Interestingly enough, most issues arose with
BroadcastReceivers. We found the AnalyticsReceiver,
GemReceiver, the CompaignTrackingReceiver, and others
to be vulnerable to IllegalArgumentExceptions, Illegal-
StateExceptions, and NullPointerException. This poses
a grave threat, since most apps rely on some form of analytics
data or advertising campaigns and thus use these services.
We reported these vulnerabilities in early 2019 and most of
them have been fixed starting January 2020.

(2) Unity is a graphics engine which allows its users to develop
apps which need a more complex graphical representation,

4

Template-based Android Inter Process Communication Fuzzing ARES 2020, August 25–28, 2020, Virtual Event, Ireland

for example, games. Therefore, it provides its own cross-
compilation editor environment. Our results showed Null-
PointerExceptions in the VRPurchaseActivity component,
a child class of the PurchaseActivity. We discovered, that
the unpacking process of the PurchaseActivity was flawed
and lead any app using the framework to crash if attacked.
This issue was fixed in late 2019.

(3) Adjust can be used by companies in their Android apps to
gather statistics. The SDK is used to detect how frequently
apps are visited by users and howmuch time they spend using
provided features. In the scope of this paper the automated
tests detected the AdjustReferrerReceiver component as
the reason for apps crashes in different apps. Together with
some of the components detected in the Google Play Ser-
vices, the crashes were provoked by sending a malformed
URI in the Intent’s data field. This way Android’s URLDecoder
class raised an IllegalArgumentException causing the app
crashes. This issue was fixed in early 2019.

5 FUZZER COMPARISON
Conceptually related to ourwork are the generic fuzzing approaches
for Android’s IPC, namely ComDroid [3], Intent Fuzzer [19], the
NCC group fuzzer [7] and the Fuzzinozer framework [18]. All are
automated or semi-automated solutions deployed on an Android
device or emulator that stress test the installed apps.
Comdroid [3] uses a semi-automated, mixed approach of static

and dynamic analysis to assess intent objects and the corresponding
activities or services that interact with them. It can detect potential
vulnerabilities, focusing on unauthorized intent receipts and intent
spoofing. Contrary to our work, we create concrete Intent objects
defined through our static pre-analysis of an app. Thereby our ap-
proach is better adaptable for the frequent changes in Android’s IPC
and system components, as we rely on them directly to create the
intents and not on a formal definition. Additionally, our approach
directly yields app or component crashes, taking the verification of
a detected issue further.
Sasnauskas et al. [19] build on the UI testing framework Monkey

[13] and FlowDroid [1] to realize an IPC fuzzer. Similar to our work
they assess the structure of intents and build their fuzzing around
it. However they focus on empty intents in their initial structure
assessments while we focus on static processing of the intent pro-
cessing component of the app, thereby creating a bigger set of valid
intents before starting the fuzzing process, i.e., mutation of our
valid intent set. We argue thereby, that our approach generates
far more exceptions and crashes, has a bigger scope of potential
vulnerabilities and tested assumptions. This claim is supported by
our evaluation which, compared to the NCC fuzzer – the improved
version of the null intent fuzzer – yields far more potential vulner-
abilities and bugs. Their comparison with the original null fuzzer
yielded only a one percent increase in code coverage, however.
Similar to the fuzzer presented in this work Fuzzinozer [18] is a

module extension for the Drozer framework [11], while the NCC
goup fuzzer [7] is a standalone framework. Unlike this work’s ap-
proach both do not employ static app analysis of any kind and
instead rely on null intent fuzzing and randomized approaches. All

exported components of an app are fuzzed with randomly gener-
ated intents, without any payload or targeted approaches. Another
difference is the missing log file analysis capabilities – while the
NCC group fuzzer does not support it entirely, Fuzzinozer is lim-
ited to the exception type only information, meaning the advanced
Stacktrace analysis, app crash, and intent structure analysis of our
work are not included. The Android IPC robustness study of Maji
et al. [12], who strongly relied on a null intent fuzzer and gener-
ated sets of valid and semi-valid intents also falls under the same
limitations. Their generated intents focused on the object field de-
fined in the intent specification and assessed which, if left blank or
corrupted, could lead to a Nullpointerexception-related crash.
A direct comparison between our implementation, the NCC group

fuzzer, and Fuzzinozer can be seem in table 1. We compare the
fuzzers on 10 popular apps from our dataset. The results show, that
our approach generated more exceptions, found more components
vulnerable and yielded more crashes in these components. More-
over, as supported by the generated exceptions from figure 2, we are
able to detect farmore exception types than Nullpointerexceptions,
as would be the case for a null intent-based fuzzers.

6 DISCUSSION
Designing the Intent handling process of components is one of the
key challenges for robust apps. The main reason for this is that
Intents lack a formal schema for their payloads, and the the data
sent within an Intent is not transmitted in a fully type-safe manner.
Further, there is no specification which key-value mappings the
map must contain and which are optional. While Android’s Intent
class provides helper methods to extract those values and convert it
into a certain datatype, these methods do not enforce the requested
mapping or its data type to exist. This means there is no liability
between the sender and receiver of an Intent. A certain level of
mutual trust between the two is expected as they have to agree on
the format of the Intents’ payloads they send among each other by
themselves.
One of the easiest approaches developers can take, is to make

Intent processing more stable by establishing default exception
handling as well as constraint and type checking. A possible way
to achieve this is by implementing sub-classes for received Intents.
This has two major advantages: Fist, values being expected to be
present in an Intent’s extra field can be mapped to fields defined
in the subclass explicitly. Secondly, establishing default values for
fields is much easier. If one of the expected values is not present in
the payload of an incoming Intent, the component can fall back to
a default values thus creating a safe error state instead of a crash.
As a general approach, if the component is an activity which has a
graphical user interface attached to it, default values can be used
to propagate the error to the user graphically.
To perform extended input validation, it is necessary to have a

precisely defined format by which the data is sent. For Intents there
is a large semantic gap between the payload of the extra field, which
is formatted implicitly, and what Java’s object and type system can
express explicitly. For example, it is not possible to enforce a value
to be not null and for number types it is not possible to clamp
values into certain ranges other than the number of bits used by
the Android Runtime to express the type. One possibility to close

5

ARES 2020, August 25–28, 2020, Virtual Event, Ireland Anatoli Kalysch, Mark Deutel, and Tilo Müller

Package Our Approach NCC Fuzzer [7] Fuzzinozer [18]
vuln. comp. app crashes vuln. comp. app crashes vuln. comp. app crashes

com.picsart.studio 205 284 2 4 2 10
com.google.android.apps.docs.editors.sheets 11 67 1 1 0 0
com.audible.application 11 151 0 0 0 0
com.spotify.music 9 238 0 0 0 0
com.soundcloud.android 8 19 1 1 2 5
com.apple.android.music 26 14 1 1 1 1
org.telegram.messenger 13 20 1 2 3 3
com.facebook.katana 5 22 2 2 2 5
de.telekom.mail 5 9 1 1 2 3
com.google.android.apps.docs.editors.docs 4 4 1 2 0 0

Table 1: Our fuzzer in comparison to the NCC Group fuzzer and Fuzzinozer for ten popular Google Play apps. For each app the
number of vulnerable app components and the number of total app crashes is shown. If two distinct intents crash the same
app in the same exact point, we still count it as one.

this gap is by establishing a domain specific language (DSL) for
the payload of Intents. Similar techniques were used by Remote
Procedure Call (RPC) systems, in the form of interface definition
languages (IDL), since their introduction by Birell et al. [2].

7 CONCLUSION
The framework presented in this paper was implemented as an
extension for the drozer framework and subsequently used to fuzz
test 1488 apps with an approach combining static pre-analysis and
dynamic fuzz testing.We focused on the overall stability of exported
components exposed by apps and determine common exception
types and design flaws causing apps or components to crash. We
also discovered vulnerable third party libraries shared by many
apps, i.e., the Google Services Framework.
Automated fuzzing approaches for Android apps could help im-

mensely by providing an automated portion of security testing for
the growing number of Android apps. While the Google PlayStore
alone hosts over 2.87 million apps [20], the Android apps ecosystem
thrives on having any additional third party app stores. Keeping
in mind, that apps should be tested after each version release to
mitigate unwanted vulnerabilities and bugs these numbers put an
immense testing overhead on the app stores themselves, as well as
the developers of the apps. The robustness of many apps against
attacks via Android’s IPC system needs to be improved through
better exception handling, automated testing, and resolving some
general design flaws in components and their process of extracting
and using data provided by received Intents. With our template-
based IPC fuzzing framework we already provide developers with
the means to include automated testing into their development
process.

REFERENCES
[1] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bar-

tel, Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[2] Andrew D Birrell and Bruce Jay Nelson. 1984. Implementing remote procedure
calls. ACM Transactions on Computer Systems (TOCS) 2, 1 (1984), 39–59.

[3] Erika Chin, Adrienne Porter Felt, Kate Greenwood, and David Wagner. 2011.
Analyzing inter-application communication in Android. In Proceedings of the

9th international conference on Mobile systems, applications, and services. ACM,
239–252.

[4] Mark Deutel. 2019. Analyzer. https://github.com/markdeutel/SmaliAnalyzer,
accessed on 02. April 2020.

[5] Mark Deutel. 2019. Intent Fuzzer. https://github.com/markdeutel/IntentFuzzer,
accessed on 02. April 2020.

[6] Mark Deutel. 2019. Log Parser. https://github.com/markdeutel/LogParser,
accessed on 02. April 2020.

[7] NCC Group. 2018. Intent Fuzzer. https://www.nccgroup.trust/us/our-research/
intent-fuzzer/, accessed on 07. April 2020.

[8] Chris Haseman. 2009. Android Essentials. Apress.
[9] Aki Helin. 2018. radamsa. https://gitlab.com/akihe/radamsa, accessed on 07.

April 2020.
[10] Yiming Jing, Gail-Joon Ahn, Adam Doupé, and Jeong Hyun Yi. 2016. Checking

intent-based communication in android with intent space analysis. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security.
735–746.

[11] MRW Labs. 2018. Drozer. https://labs.mwrinfosecurity.com/tools/drozer/,
accessed on 07. April 2020.

[12] Amiya K Maji, Fahad A Arshad, Saurabh Bagchi, and Jan S Rellermeyer. 2012.
An empirical study of the robustness of inter-component communication in
Android. In Dependable systems and networks (DSN), 2012 42nd annual IEEE/IFIP
international conference on. IEEE, 1–12.

[13] Google Developer Manual. 2014. UI/Application Exerciser Monkey. https:
//developer.android.com/studio/test/monkey, accessed on 07. April 2020.

[14] Barton P Miller, Louis Fredriksen, and Bryan So. 1990. An empirical study of the
reliability of UNIX utilities. Commun. ACM 33, 12 (1990), 32–44.

[15] Barton P Miller, David Koski, Cjin Pheow Lee, Vivekananda Maganty, Ravi
Murthy, Ajitkumar Natarajan, and Jeff Steidl. 1995. Fuzz revisited: A re-
examination of the reliability of UNIX utilities and services. Technical Report.
Technical report.

[16] Inc. PalmSource. 2005. OpenBinder. http://www.angryredplanet.com/~hackbod/
openbinder/docs/html/, accessed on 07. April 2020.

[17] Pragati Ogal Rai. 2013. Android Application Security Essentials. Packt Publishing
Ltd.

[18] Razvan Ionescu and Stefania Popescu. 2015. Android Intent Fuzzing Module
for Drozer. https://events.ccc.de/congress/2015/wiki/images/8/8d/Ccc_pdf_
fuzzinozer.pdf, accessed on 07. April 2020.

[19] Raimondas Sasnauskas and John Regehr. 2014. Intent fuzzer: crafting intents
of death. In Proceedings of the 2014 Joint International Workshop on Dynamic
Analysis (WODA) and Software and System Performance Testing, Debugging, and
Analytics (PERTEA). ACM, 1–5.

[20] Inc. Statista. 2019. Number of Google Play Store Apps. https://www.statista.com/
statistics/266210/number-of-available-applications-in-the-google-play-store/,
accessed on 09. April 2020.

[21] Jice Wang and Hongqi Wu. 2018. Android Inter-App Communication Threats,
Solutions, and Challenges. arXiv preprint arXiv:1803.05039 (2018).

[22] Hui Ye, Shaoyin Cheng, Lanbo Zhang, and Fan Jiang. 2013. Droidfuzzer: Fuzzing
the android apps with intent-filter tag. In Proceedings of International Conference
on Advances in Mobile Computing & Multimedia. ACM, 68.

[23] Michal Zalewski. 2017. AFL Fuzzer: american fuzzy loop. https://github.com/
google/AFL, accessed on 07. April 2020.

6

https://github.com/markdeutel/SmaliAnalyzer
https://github.com/markdeutel/IntentFuzzer
https://github.com/markdeutel/LogParser
https://www.nccgroup.trust/us/our-research/intent-fuzzer/
https://www.nccgroup.trust/us/our-research/intent-fuzzer/
https://gitlab.com/akihe/radamsa
https://labs.mwrinfosecurity.com/tools/drozer/
https://developer.android.com/studio/test/monkey
https://developer.android.com/studio/test/monkey
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
http://www.angryredplanet.com/~hackbod/openbinder/docs/html/
https://events.ccc.de/congress/2015/wiki/images/8/8d/Ccc_pdf_fuzzinozer.pdf
https://events.ccc.de/congress/2015/wiki/images/8/8d/Ccc_pdf_fuzzinozer.pdf
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://github.com/google/AFL
https://github.com/google/AFL

	Abstract
	1 Introduction
	2 Background
	3 Design and Implementation
	4 Evaluation
	5 Fuzzer Comparison
	6 Discussion
	7 conclusion
	References

