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ABSTRACT

Android’s accessibility API was designed to assist users with dis-
abilities, or preoccupied users unable to interact with a device, e.g.,
while driving a car. Nowadays, many Android apps rely on the
accessibility API for other purposes, including password managers
but also malware. From a security perspective, the accessibility
API is precarious as it undermines an otherwise strong principle of
sandboxing in Android that separates apps. By means of an acces-
sibility service, apps can interact with the UI elements of another
app, including reading from its screen and writing to its text fields.
As a consequence, design shortcomings in the accessibility API and
other Ul features such as overlays have grave security implications.

We reveal flaws in the accessibility design of Android allowing
information leakages and denial of service attacks against fully
patched systems. With an enabled accessibility service, we are able
to sniff sensitive data from apps, including the password of An-
droid’s own lock screen. To evaluate the effectiveness of our attacks
against third-party apps, we examined the 1100 most downloaded
apps from Google Play and found 99.25 % of them to be vulnera-
ble. Although app-level protection measures against these attacks
can be implemented, e.g., to prevent information leakage through
password fields, the number of affected apps proves that these
kind of vulnerabilities must be tackled by Google rather than app
developers.

From December 2017 to March 2018, we submitted seven bug
reports to Google, from which three have been marked as won’t fix
while four are progressed but ranked with either low severity or
no security bulletin class. We conclude our paper with a list of best
practices for app-level protections for the time those bugs remain

unfixed by Google.
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1 INTRODUCTION

Android’s system level security operates upon a sandboxing con-
cept that strongly separates apps. Apps are given an unique user id
(UID), thereby shielding both an app’s running process as well as its
resources from other apps. Android’s inter-process communication
(IPC) is protected by the kernel driver “Binder”, which enforces a
permission-based access model. Apps can request particular permis-
sions and only if granted they are allowed access to the respective
resources through well defined interfaces [8].

Contrary to that, users can interact with apps seamlessly through
a unified UL And while strong security mechanisms were put into
place to ensure the separation of apps and their resources, the
effectiveness of those mechanisms fades away when using system
services that have nearly the same access rights to the UI as the
user—namely accessibility services (al1ly). Android’s accessibility
services have access to Ul components and can query information
about them and perform actions such as tapping the screen and
scrolling. As their name implies, those services were originally
invented to support users with disabilities. They run as background
services remaining completely stealthy while being able to observe
and interact with the UL

Given these characteristics, malware authors soon discovered
the potential of accessibility services [5, 12, 15]. Clickjacking is of-
ten used in conjunction with accessibility services, either to enable
an accessibility service, to enable other permissions, or to sniff sen-
sitive information directly, such as passwords. Clickjacking is based
on another feature of Android’s U, so-called overlays, allowing an
app to partly or fully overlap the top activity of an app with its
own content [10]. Combining clickjacking attacks with accessibility
services, a permission-less app can be used to bootstrap attacks
that fully control the UI of a system, by neither requiring privi-
lege escalation attacks, such as root exploits, nor requiring users
to consciously approve an ally service, when running on Android
versions prior to 8.

In November 2017, Google planned to reassess all apps using
accessibility services in the Play Store. Developers should explain
to Google how the use of accessibility services in their apps sup-
ports people with disabilities, risking the expulsion from the Play
Store [22] if this requirement is not met. The endeavors of Google
were cut short, however, due to a public outcry [4] regarding popu-
lar apps using accessibility services, such as password managers
and anti-theft apps.

Contributions. To investigate the vulnerability of popular Android
apps against accessibility services and clickjacking attacks, we con-
ducted an investigation of the 1100 most downloaded apps of the
Google Play Store. We found 99.25 % of them to be vulnerable to at
least one of our attacks and 90.21% to be vulnerable to all of them.
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The high number of affected apps stems from the fact that our
attacks exploit design shortcomings of the Android UI that must
be tackled by Google rather than by app developers. Nevertheless,
we support developers with a list of possible app-level countermea-
sures because Google is not going to fix all the flaws soon. In detail,
our contributions are:

e Vulnerability Discovery: We systematically discover imple-
mentation flaws and design shortcomings in Android’s UI
and ally system. From December 2017 to March 2018, we
submitted seven bug reports to Google. Three were acknowl-
edged but represent issues that will not be fixed, while two
are progressed but ranked with low severity, and two are
also progressed but ranked with no security bulletin class.
So some of the flaws we reveal “work as intended® in the
opinion of Google, others will be fixed only slowly. To al-
low developers to test their apps for those vulnerabilities
and consider possible countermeasures, proof of concept
(PoC) implementations are published on https://github.com/
anatolikalysch/roots_ally.

o Large-scale Study: To prove the severity of the vulnerabilities,
that is their ability to circumvent the principle of sandboxing
under Android, we developed PoC attacks and tested them
with 1100 of the most popular apps from the Play Store. We
tested our PoCs starting with version 6.0 up to version 8.1,
including the latest Android versions and security patches
available at the time of testing.

o List of Defenses: To counteract UI- and ally-based attacks,
which are already used by malicious apps in the wild [16,
21, 23], we propose defensive techniques for Android app
developers. Among others, our techniques allow developers
to counteract accessibility event-based sniffing attacks, mali-
cious third-party keyboards and overlay attacks, for the time
these flaws remain unfixed by Google.

2 BACKGROUND: EXISTING UI SECURITY
MEASURES

In the UI layer of Android, security measures have been imple-
mented to ensure the sandboxing concept remains effective. For
example, the Android UI typically prevents apps from accessing
the UI elements of other apps without authorization. In the follow-
ing, we present existing Ul security measures that help to separate
apps. But with special Ul features such as overlays and accessibility
services, those security measures fade out.

Window Management. Android’s window management builds upon
its IPC kernel driver, the Binder. Each app has a unique Binder
token which is necessary for window interactions and thereby
prevents abuse and information leaks from IPC channels. Only
certain system level apps have access to other windows, even when
not being the owner of a window, to allow interactions such as
copy-and-paste. Android’s overlay mechanism, however, allows
for non-system windows outside the usual hierarchy, introducing
new attack vectors [10]. To reduce the attack surface enabled by
overlays, Google introduced a new flag for the Window class which
allows to dismiss all active non-system overlays. This feature is
reserved for system apps and requires special permissions. It is

Anatoli Kalysch, Davide Bove, and Tilo Miiller

mainly used by confirmation dialogs inside the settings app, e.g.,
when activating new accessibility services.

Ul Permissions. Two permissions are directly related to Ul opera-
tions, namely the “draw on top” permission which enables an app
to create overlays that stay on top of other UI elements, and the
“bind accessibility service” permission which enables accessibility
services to be started. Both permissions need to be part of an apps
Manifest file and be requested once at runtime, with an exception
for Google Play Store apps that have the “draw on top” permission
granted at installation time. The “draw on top” permission enables
apps to create windows that can be designed to pass user inter-
action to the Ul layer below, effectively enabling clickjacking, or
to prevent user interaction to reach another UI layer, which was
abused by some ransomware variants [2, 24, 26].

The “bind accessibility service” permission allows an app to start
its own accessibility service. This operation is security sensitive
as accessibility services have access to all active Ul elements, even
if they do not belong to the app. This includes printed text, win-
dow elements, and the ability to interact with UI elements. This
permission is given in three steps, contrary to all other permissions.
First, the accessibility settings must be opened, which can be done
through IPC from inside an app, and then the accessibility service
must be selected. Second, the service must be activated through a
toggle button. And last, the user is presented with a system alert
dialog listing all the capabilities the new accessibility service has.

Secure Ul Elements. Preventing screen captures and recordings is
another security relevant operation. When displaying sensitive in-
formation through the UI, such as credit card numbers, apps can set
the SECURE_FLAG for a window. This flag prevents screen captures
whenever this window is the top activity. On screen recordings,
such windows are blacked out on the recording. Also, to hide sensi-
tive information from shoulder surfing, as well as higher privileged
services such as accessibility services, password fields are a subclass
of the TextView class that have a PasswordTransformationMethod.
The PasswordTransformationMethod is responsible for keeping the
password hidden as bullet characters and only relaying the hidden
password to Ul queries.

Input Method Security. Android’s input method framework (IMF) is
responsible for handling the user input. It consists of three compo-
nents, the input method manager (IMM), the input method editor
(IME), and the client apps requesting the input. While the IME,
which is usually a software keyboard, allows users to generate text
to be received by the client app, the IMM handles the communica-
tion between all components, effectively creating an abstraction
layer. The IMM ensures that only one IME and one receiving client
app can be active at a time. There are security issues associated
with input methods, as they essentially have the ability to monitor
what a user enters. Android’s design allows for arbitrary third-party
keyboards to be used as the default input method editor. To ensure
the default keyboard is changed only when deliberately requested
by the user, an IME must explicitly be enabled after its installation,
and then additionally be set as the default IME via an extra step,
similar to the activation of ally services. Those steps represent Ul
interactions that cannot be executed programmatically, but by the
user only.
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3 VULNERABILITIES AND DESIGN
SHORTCOMINGS

Unfortunately, the previously described Ul security features are not
infallible. During an assessment of their effectiveness, we discov-
ered weaknesses and shortcomings in their design, as described in
this section.

No Protection from Screen Recordings. As explained above, FLAG_-
SECURE has the ability to prevent screen captures and recordings
when being set for the top activity window. Google’s official doc-
umentation states that activating this flag treats the content of the
window as secure, preventing it from appearing in screen shots or
from being viewed on non-secure displays'. Marking a window as
secure, however, does not propagate to other interaction interfaces,
most prominent example being IMEs. That is, if a window has
EditText elements where the user types in data such as credentials
and credit card information, the activity window itself, including
EditText fields, is blacked on recordings but the keyboard and the
cursor showing which EditText is selected are well visible, including
highlighted keystrokes. The same is true for pop-up menus such as
copy-and-paste and auto completion. While it remains true that the
contents of a secured window do not appear on recordings, typed
in data can easily be reconstructed from leaking IME information.
If attackers have a copy of the targeted app, e.g., installed on their
own phones, they can easily correlate input data with the corre-
sponding text fields. Also note that the Android system’s own use
of the secure flag is very sparse, with even the lock screen being
completely visible in screen recordings. Figure 1 demonstrates an
example for password input with and without FLAG_SECURE being
set.

12 3 456 7 8 9 0

W2e4567890

qw r tyuiop qgqwer tywuiop

asdfghjk.|I asd®ghjk|I
4 zxcvbnma * z x vbnma@a

s o s )

Figure 1: On the left, Android’s lock screen without the se-
cure flag is unprotected against screen recordings. On the
right, a financial application protects its screen contents
with the secure flag, but its IME is unaffected and leaks the
password.

Leaking Hidden Passwords. The difference between EditText fields
containing passwords and other input fields is the presence of a
transformation method. The transformation method ensures that
the contents of a password field are not propagated to other actors,

!https://developer.android.com/reference/android/view/WindowManager.
LayoutParams.html
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including shoulder surfers and accessibility services. Instead of
the actual characters being printed to the screen or transmitted as
accessibility events, bullet characters are visible only. Accessibility
events are triggered each time a change in the Ul occurs, meaning
when selecting a EditText field, when a keyboard pops up, and with
each character being typed in. Accessibility services can register
which events they want to listen to, and the Android system then
forwards these types of events. Accessibility events contain all
information about the event, e.g., the character that is displayed,
and the source of the event, that is the Ul element which triggered it.
Thanks to the password transformation method, however, sensitive
password characters should be represented as bullets.

For usability reasons, Android introduced a feature that shows
the last character of a password for 1.5 seconds and then changes
it to a bullet. This allows users to control their input while typing
in passwords. Entering a character into a password field generates
accessibility events that contain the whole text currently displayed
inside the field. Not only the UI but also all accessibility events
fired from the text field within this 1.5 second time frame con-
tain the last character in plain text. This way Android leaks every
password through the accessibility events TYPE_VIEW_TEXT_SEL-
ECTION_CHANGED and TYPE_VIEW_TEXT_CHANGED one character at
a time.

Third-Party Keyboard Activation. Google prevents the program-
matic activation of newly installed third-party keyboards. After
a user installs a new keyboard app, he or she must take further
actions to actually use it. First, new keyboards must be activated
through the IME settings page. Second, if a new keyboard should
become the default IME, this must be configured, too. This way,
Google prevents apps from stealthily installing keyboards with-
out explicit authorization by users. This procedure, however, fails
to protect users in the light of ally services able to simulate all
user actions. Accessibility services are capable of simulating the
complete procedure needed to enable a new keyboard in the IME
settings, including the declaration as default input method.

No Synchronization between Settings. Android implements two dif-
ferent ways to change system settings, partly overlapping in func-
tionality but often missing synchronization. The standard way
known to most users is via the Settings app with sub-menus such
as “Apps®, “Security” and “Accessibility“. Outside of this standard
hierarchy, however, Android offers another less known settings
page that provides additional information about the phone. These
settings are not accessed through conventional means, but by dial-
ing an USSD code (Unstructured Supplementary Service Data). For
example, dialing the USSD *#x*#4636#x#x on a Nexus 5X opens a
settings menu with the sub-menus “Phone information”, “WiFi in-
formation” and “Usage statistics”. While the menu allows to change
critical device settings, such as the preferred network type or dis-
abling the mobile antenna, changes are not reflected in the regular
settings menu. In other words, a synchronization between the set-
tings app and these hidden settings is missing. This allows malware
to stealthily change settings, e.g., to reroute user traffic or to run
denial-of-service attacks. The state of the settings is not reflected
to users, even when actively checking the settings menu.
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Overlaying Pictures-in-Pictures (PiP). To mitigate abuses of An-
droid’s overlay feature, which allows apps to draw above the top
activity, Google introduced a security mechanism that disables
overlays when system dialogs are active, the so-called AppOpsMan-
ager. The AppOpsManager takes care that an app cannot overlay
permission dialogs with false information looking less suspicious
than what is actually requested. This applies to toast messages and
system alert windows equally [11]. While the AppsOpsManager
is commendable from a security perspective, it apparently lacks
ongoing development when new Android features are introduced.
The introduction of Android 8 welcomed a new UI feature called
picture-in-picture mode (PiP), which is also able to overlay the top
activity, but is not blocked by the AppsOpsManager when displayed
over system dialogs. PiP allows a video currently being shown in
one window to be displayed on top of the whole UI when being
minimized. The effect is similar to overlays, however, PiPs are not re-
alized with any of the previously known overlay windows, thereby
mitigating the AppOpsManager API. See figure 2 for a screenshot.

Use Smoke + Mirrors?

CANCEL 0K

Figure 2: The vulnerability of the AppOpsManager API
against overlaying picture-in-picture windows (PiP).

Misleading A11y Capabilities. To activate an ally service, users
need to explicitly select it in the settings menu and confirm the acti-
vation with a pop-up dialog. The dialog displays all capabilities the
new ally service has and should allow users to make an informed
decision about the activation. See Figure 3 for a screenshot. Note
that each listed capability directly corresponds to a configuration
item of the ally service. Requesting certain ally capabilities results
in additional items being displayed in the pop-up dialog the user
needs to confirm. We argue that the description the user sees is
not representative for the actual power that an ally service has.
To cut down the description of capabilities an ally service gains
to just one sentence is not a trivial task, but in its current form,
the information given is misleading. For example, the flag canRe-
questFilterKeyEvents leads to the sentence “Observe text you type:
Includes personal data such as credit card numbers and passwords”.
This capability allows an ally service to receive events such as key
strokes from a keyboard. However, ally services that do not set
canRequestFilterKeyEvents, and instead listen to all available accessi-
bility events by setting accessibilityEventTypes="‘typeAllMask” have
effectively the same power without generating this scary sentence.

4 ATTACKS

In the following, we describe three proof-of-concept attacks we
implemented for our study aiming at sensitive input data such as
credentials.
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Use TalkBack?
TalkBack needs to:
. Obser your actions

Receiv
nteracting ha app.

Use Smoke + Mirrors?
* Retrieve wmdow content
Inspect the content of a window you're
nteracting with

Smoke + Mirrors needs to;

. Observe your actions
Receive notifications when you're
interacting with an app.
* Retrieve wmdow COI’“EI’“
:JE’H‘ Ol it of a window you're

nteracting with.

+ Control dlsplay magmﬁcauon
Control the display’s zoom level a

positioning CANCEL ~ OK

. Flngerprlnt gestures
Can capture gestures performed on the
device

CANCEL  OK

Figure 3: Activation of Google’s TalkBack (on the left) and
our own ally service (on the right). While TalkBack actively
admits that it may sniff passwords our implementation does
not, despite having even more capabilities.

Threat Model. We assume an uncompromised Android device not
being subject to privilege escalation attacks such as rooting. We
also assume that the owner of a device installed a malicious app that
runs inside the Android sandbox like any other app, without special
privileges. It has been shown by prior work that malicious apps can
enter third-party app stores and even the Play Store by mitigating its
defense measures [1, 10, 14, 19], and third-party markets are another
source of malware. Furthermore, some of our attacks require that
we activate an app’s ally service, which can be done without a
user’s conscious approval for Android versions prior to 8 as has
been shown by Fratantonio et al.. Starting with Android 8, however,
this attack sequence is thwarted by Google, as the AppOpsManager
API deactivates all overlays during the last step in the activation
sequence.

This leaves social engineering as the only possibility to enable
ally services on Android 8, according to our knowledge. Kraunelis
et al. and Fernandes et al. covered social engineering-based ap-
proaches to enable ally services that still work on current Android
versions, as the activation procedure has not changed [9, 17]. In
addition, malware is increasingly becoming aware of the ally API
and relying on social engineering approaches, e.g. in the case of
a trojaned Google Play app that needed the ally permission to

“function properly” [23]. Those attacks could be further enhanced

by misleading system messages, as explained in section 3. Since
users are warned about the capabilities of an ally service, but
such warnings do not reflect the actual capabilities, users could be
convinced to accept new services more easily. The comparison of
Google’s TalkBack with our own ally service, depicted in Figure 3,
is a good example as it paints our implementation as less capable
than Google’s service, while the opposite is actually true.

Some of the attacks presented below require a certain setup
procedure, such as confirming a screen recording dialog or installing
a new default IME. Those procedures are carried out by an ally
service once it has been enabled. But while some procedures are
minimal and can be handled via ally services within milliseconds,
such as confirming a pop-up dialog, others are too complex and will
be recognized by users. In all cases, however, we can use screen-
wide overlays to hide the malicious behavior behind a facade.
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DU Recorder will start capturing everything
that's displayed on your screen.

[7] Don't show again

CANCEL  START NOW

Figure 4: The pop-up window serving as the security mea-
sure against unwanted screen recordings which generates
ally events and is therefore usable by ally services.

ATly Event Sniffing. An ally service needs to declare all events
it wants to listen to. Usually an ally service has a specific use
case in mind that produces a set of accessibility events such as
TYPE_WINDOW_STATE_CHANGED, to react when a window changes
its appearance. Alternatively, an ally service can simply listen
to all accessibility events by setting the flag accessibilityEvent-
Types=typeAllMask. A user is unable to query which events an
ally service is listening to and listening to all accessibility events
does not generate an additional capability in the ally service pop-
up dialog, shown in Figure 3. Accessibility events carry the source
of the event, an AccessibilityNodelnfo object. Using this object as
a starting point, we can traverse the currently active Ul elements
and, by exploiting design issues in the password transformation
method as explained in section 3, we can create an input sniffer for
all user input that categorizes data into username/password pairs
and payment infos.

An attacker now needs to create an ally service listening to all
or at least text field related a11y events?. Due to the ‘leaking hidden
passwords’ vulnerability introduced in section 3 even passwords
will generate an ally event for each inputted character containing
the last character in plain text, allowing to sniff the whole password.
Other text fields are not protected in any way and reveal the whole
content through each ally event. The ally service should also allow
for a form of information exfiltration, e.g., to an attacker controlled
server, irc, or even pastebinS.

With the ally service prepared in such a way an attacker would
need the user to activate the service, e.g., by repackaging a popular
app with his ally service and requiring the activation to run the
app. Now the ally service can sniff any events, even distinguish
password fields by calling the isPassword() method on the incoming
AccessibilityNodelnfo objects. The credentials or even the whole log
can then be exfiltrated through the previously chosen channel.

Screen Recording. Android’s security mechanism for screen recor-
dings is based on a pop-up dialog, asking the user to confirm that his
or her screen will be recorded. An exemplary dialog is presented in
figure 4. Contrary to other system resources, no additional permis-
sion must be requested in the Android Manifest file. Not only can an
ally service confirm the dialog, and thereby start the screen record-
ing, but also can the mark allowing future requests be checked
easily. After confirmation, the ally service gains the ability to start
and stop a screen recording at any time. In our PoC attack, we
use the package names inside accessibility events as an indicator,
e.g., when PayPal’s package name appears in accessibility event,

2TYPE_VIEW_TEXT_CHANGED and TYPE__VIEW_TEXT_SELECTION_CHANGED.
Shttps://pastebin.com/
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we start the recording and stop it as soon as the top activity app
changes. This allows us to record the whole interaction a user has
with specific apps, and upload the videos to an attacker-controlled
system once connected to a WiFi network.

Malicious Third-Party IME. Google’s own IME was recently chan-
ged to prevent sending the current input character via accessibility
events. However, users can still change their default IME, meaning
aside from Google’s keyboard another one can be activated. For
our attack, we created an IME similar to the UI of Google’s key-
board, and introduced additional keystroke sniffing. The keyboard
is packaged alongside our ally service and after the ally service
gets enabled, we activate the keyboard and install it as default IME
programmatically, allowing to sniff any input a user generates,
including passwords, financial info and more.

5 VULNERABILITY ASSESSMENT

To assess how many apps are affected by the Ul design issues and
attacks described above, we decided to test the most downloaded
apps from the Google Play Store. Specifically we wanted to test
if and how the most typical apps are affected regarding sniffing
attacks against login credentials.

5.1 Test Setup

For our assessment, we focused on Android versions 6.0 to 8.1. As of
mid 2018, the distribution of Android versions is 23.5% for Android
6, 30.8% for Android 7 and 12.1% for Android 8%. Remaining devices
use even older Android versions. To create a significantly sized
dataset, we implemented a Play Store crawler and downloaded
the first 500 apps from the “top charts” category. Additionally, we
focused on the categories business, communication, dating, enter-
tainment, finance, games, health, shopping, social and travel, and also
downloaded popular apps from these categories if they were not pro-
cessed yet, yielding a total of 1100 apps. The test device was a Nexus
5X with 32 GB of storage. Furthermore, we used crawlers for the
third-party app stores f-droid.org, uptodown.com, shouji.baidu.com,
eoemarket.com, and apkpure.com to create datasets of the 500 most
downloaded APKs for each 3rd party store.

We focus on login screens of apps only since to bypass a login
screen, e.g., to enter other information such as credit card numbers,
a valid account per app would be required. Opening up a new ac-
count per app can not be automated well, sometimes requiring days
until valid credentials are obtained. For these reasons we manually
inputted fake credentials into the apps while our PoC attack imple-
mentations were sniffing credentials in the background. Afterwards
we compared the sniffed credentials with the fake credentials to
assess the effectiveness of the data leak.

In an initial run of our dataset, we determined that 722 apps
have a login field. Furthermore, 81 apps did not have their own
login screen but supported logins via third-party accounts. Testing
malicious keyboards, screen recordings and accessibility events
simultaneously is possible as they do not overlap as attack vectors.
If an app came packaged with its own keyboard, or even enforced
an exclusive IME for an input field, we rated it as immune to the

4 According to Google’s distribution dashboard on https://developer.android.com/
about/dashboards/.
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Figure 5: Number of ally service per app category. This graphic shows that implementing an ally service is not uncommon
for legitimate apps. The sample size for the Play Store was 1100 and the third-party stores was 500 apps each.

keyboard attack. Likewise, if an app filtered or disabled outgoing
accessibility events, we rated it as immune against data leakages via
accessibility events. If FLAG_SECURE was set for the login window,
we still checked whether the default keyboard appears to be visible
on screen recordings.

5.2 Use of Ally Services

We briefly clarify how and in which apps ally services are used
today. Overall we encountered 59 ally services in the Play Store
dataset (1100 apps), 11 on f-droid, 25 on uptodown, 47 on shouji.ba-
idu, 60 on eoemarket, and 59 on apkpure. As listed in Fig. 5, we
grouped the ally services into the categories “security”, “automa-
tion”, “accessibility”, “health and fitness”, “shopping”, and “others”.
“Security” contains all apps providing device security, like anti-virus
apps, file cleaners and password managers. “Automation” includes
all apps that use triggers to automate everyday tasks, like location
or time dependent UI automation. The categories “shopping” and
“health and fitness” contain apps that allow the user to buy articles
from online shops or have a health focus, respectively. The Play
Store already categorizes its apps according to these categories. For
third-party store apps not present in the Play Store, we performed
a manual categorization. There were some apps with Chinese ti-
tles and UI which we could not associate correctly, and choose to
distribute them into the “other” category.

Fig. 5 displays the categories and the number of ally services
in each category for each app store. The most prominent category
for ally services is security, closely followed by automation. Quite
striking is that nearly all anti-virus apps had their own ally service,
often to support protecting web sessions and file cleaning. To sum
up the use of ally services in today’s apps, improving the usability
for disabled users is rarely the intended use case.

5.3 Test Results

We analyzed the whole dataset from Google Play (1100 apps) with
respect to its vulnerability against the attack types described in sec-
tion 4. Testing the 1100 apps provided a good trade-off, as it allowed

us to make statistically significant statements while keeping the
manual overhead manageable, as credentials needed to be manually
entered for each app. We discovered that 38 apps deactivated ac-
cessibility events while further 21 filtered the events in a way that
makes extracting the password impossible. Both methods prevent
ally event sniffing and pose an effective countermeasure against
it. On Android 7.0 and 7.1.2, WebViews pose another limitation for
event sniffing because the password is fully transformed, includ-
ing the last character. In our dataset, 144 apps used a WebView to
authenticate the user, hence making them immune to event sniff-
ing. This behavior was removed with Android 8.0 and 8.1, where
WebViews fully leak passwords again.

A possible countermeasure against the screen recording attack is
FLAG_SECURE. We encountered 72 apps that used this flag to secure
their screen’s content. However, as explained above, FLAG_SECURE
does not protect the keyboard, thus allowing attackers to extract
typed in credentials despite this flag being set. The cursor is also not
protected by FLAG_SECURE, thus leaking information about which
field is currently selected. An effective countermeasure to prevent
these kind of attacks is to create an in-app keyboard, at least for
password fields and logins. We encountered 10 apps with their own
keyboard, with one creating an all-purpose IME and asking the user
to use it, while the rest used exclusive in-apps IMEs. The implemen-
tation of these IMEs, however, was often flawed and sometimes
worse than Google’s default IME. They leaked the entered char-
acters via ally events and FLAG_SECURE was not set in 8 out of
10 cases. Only 2 in-app IMEs proved to be invulnerable to both
ally-based sniffing and screen recordings. We also encountered
two apps warning the user with a pop-up dialog about active ally
service, typically referred to as “screen readers”. This seems quite
ineffective, as an ally service can interact with the pop-up and
confirm it.

Table 1 summarizes the state of vulnerable login screens per app
category. While app-based countermeasures as a quick-fix exist,
those are not wide-spread. We found 99.25 % of all app logins to be
vulnerable to at least one of our attacks, and 90.21% to be vulnerable
to all of them. Above that, all third-party login screens, including
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Category Number of apps Percentage of logins vulnerable against
with a login Ally Events ‘ Screen Records ‘ Malicious IMEs
Business 116 100% 100% 100%
Communication 47 100% 100% 100%
Dating 63 100% 100% 100%
Entertainment 58 100% 100% 100%
Finance 172 84.9% 96.5% 94.2%
Games 104 95.2% 100% 100%
Health 57 98.3% 100% 100%
Shopping 42 95.2% 100% 100%
Social 99 100% 100% 100%
Travel 45 97.7% 100% 100%
Summary 803 95.6% 99.3% 98.8%

Table 1: Out of 1100 apps 803 had a login screen, most of them being vulnerable. This table divides the detected login screens
into their subsequent category and provides an overview of what percentage of these logins screens were vulnerable against
data leakages by ally event sniffing, screen recordings, and malicious IMEs.

Facebook and Google logins, were found vulnerable against all at-
tacks, with Facebook being employed most often. Fig. 6 summarizes
which and how many countermeasures had been deployed per app
category. Note that when app-level countermeasures have been
employed, the app likely belongs to the category “Finance®. Above
that, for mobile banking apps, two-factor authentication (2FA) is
often used, thus sniffing credentials alone often being not sufficient.
If the second factor is a second app running on the same device,
both apps must be protected against ally attacks. If SMS is used
as a second factor, the protection is reduced considerably because
SMS are readable through UI interaction by ally services using
Android’s default SMS app.

5.4 Responsible Disclosure

Naturally Google must be the party to fix the UI bugs disclosed
above, not the app developers. We submitted bug reports to Google
starting in December 2017. The reports include vulnerabilities and
attacks concerning the broken password transformation method
(PTM), screen recordings (SR), and malicious IME activation (mIME),
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which were reported on December 1st, 14th and 18th, respectively.
The PTM and the mIME were assigned within a week and have
remained in this status since then. Both security reports were as-
signed a low “Android Security Reward” (ASR) severity, and remain
unfixed at the time of writing. SR of IMEs were set to “Won’t Fix”
after initial review and given an ASR severity of “Non-Security
Bulletin Class”. “Non-Security Bulletin Class” is assigned to all bugs
that will not be featured on Google’s security bulletins.

Four additional bug reports covering the insufficient setting
synchronization, PiP overlays, misleading ally capabilities, and
ally-based DoS attacks were reported in February/March 2018.
While the DoS attacks and misleading ally capabilities were as-
signed a “Won’t Fix”, the other two reports were assigned but have
not been updated since. Note that the DoS attacks we reported
to Google have been omitted due to spacial constrains, but relies
on the missing synchronization between the settings vulnerability
described in section 3. Our line of argument was that, as described
in Sect. 3, hidden settings allow the configuration of the mobile
network and WiFi settings. Exploiting missing synchronizations

— | [ | —
Finance Games Health Shopping Social Travel
Categories
Sanitized Events u WebView M Flag Secure

Fingerprint AP| B Exclusive IME

m Disabled Events

Figure 6: Employed security mecanisms per category. Applying only one of these protective mechanism is usually not enough

to protect against all our attacks.
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with the regular settings, we created DoS attacks on the phone’s
ability to interact with the mobile network by disabling a device’s
mobile antenna or changing the default SMS center, for example.

From a security point of view this puts application developers in
charge of securing their own applications. Considering we found
all tested Android versions to be vulnerable and 99.25 % of the
apps in our dataset to be vulnerable to attacks this shows a great
potential for improvements. Most developers might simply not be
aware of ally based attacks or trusting the Android OS to secure
them from these attack vectors. The past has seen exploitation of
this API in academia ([10, 17]) and malware research alike ([21, 23])
so the need for a clear baseline of who is responsible for ally
security is apparent but can only be established in dialog with
AOSP maintainers.

6 COUNTERMEASURES

In the following, we propose countermeasures for app develop-
ers who want to protect against the attacks shown in section 4
independent of Google. With the proposal of in-app protection
measures, we try to deal with the situation that Google will not fix
some of the bugs we reported. We focus on countermeasures that
can be implemented by unprivileged apps, not requiring system
privileges or root. We additionally evaluate relevant attacks from
previous work for their malicious capabilities up to Android 8.1 to
show which attacks endanger third party apps on the most recent
Android version and their countermeasures.

Ally Event Filtering. Since any default view element generates
events that can be sniffed by an ally service, our first countermea-
sure aims at filtering these events explicitly. To prevent ally events
either custom views can be employed or event propagation can
be disabled. A View object implements the AccessibilityEventSour-
ce interface, which is responsible for sending events to an ally
service. By overwriting the methods sendAccessibilityEvent and
sendAccessibilityEventUnchecked it is possible to remove the default
propagation for custom views which inherit from View. For already
existing views, however, such as LinearLayout and RelativeLayout,
modifying the source code is not possible. Thus, developers can
use the View AccessibilityDelegate class to modify the accessibility
behavior of the view. When set, it is used to delegate calls to the
sendAccessibilityEvent* methods to an object the developer controls,
effectively allowing the event generation to be prevented without
modifying the source.

Behavior Listeners and A11y Services. While ally services pose a
powerful tool and are quite adept at simulating user behavior, i.e.,
taking UI actions for the user we found ways to distinguish and
prevent ally services from taking Ul actions if required. Specifically,
ally services have two major limitations when the ACTION_CLICK is
performed on an UI element. First, no click coordinates are available
from this event contrary to a user generated click that contains
the X and Y coordinates. Checking for the click coordinates can
very well determine if a real user was the initiator. Second, an
ally service can only trigger OnClickListeners and is unable to
trigger OnTouchListener. This results in app logic encoded in, e.g.,
TouchDown or TouchUp MotionEvents from never being triggered
by ally services at all.

Anatoli Kalysch, Davide Bove, and Tilo Miiller

In-App Keyboards. A dedicated keyboard per app, implementing
particular security measures, can counter data leaks through screen
recordings and malicious third-party keyboards alike. While a gen-
eral IME, which the user installs as a separate app, might be a
viable solution to prevent screen recordings, it depends on the
user to take security actions. An app-exclusive IME bound to spe-
cific input fields, e.g., the password input, can provide protection
independently of the user behavior. Such keyboard must first be
secured with the FLAG_SECURE and second employ event filtering,
as explained above. Some apps already have a custom app keyboard
implemented, however, during our vulnerability assessment, we did
not encounter any custom IME that had its ally events sanitized,
and less than half had the secure flag set.

Window Punching. Recent advances in Android Ul-based attacks
combined ally services with overlays, by either overlaying the
whole app [9] or its login fields [10]. While deactivating ally events
would ensure that the user detects the attack, the detection would
happen only after entering credentials when the information leak
already happened. A proactive way to prevent users accidentally
entering input into overlay screen builds on the “window punching”
technique proposed by AlJarrah and Shehab [3]. Using the Instru-
mentation library of the Android SDK to simulate touch events in
random intervals, it can be tested whether input fields are overlayed.
Whenever a touch event is fired and hits a window not owned by
the current app, a SecurityException is thrown by the app.

Fingerprint Authentication. Constitutes an alternative authentica-
tion mechanisms, not allowing for credential sniffing, and offering
high usability. The use of Android’s fingerprint API protects against
many ally-based attacks. There were, however, no apps in our
dataset offering only a fingerprint-based authentication. Naturally
an appropriate device with fingerprint sensor and hardware-backed
key storage is needed, as the API is used in conjunction with the
Android Keystore System to store cryptographic keys on the device.

Android 8 Ul Security Features. Android 8 introduced additional
countermeasures against Ul-based attacks. The impact of these
protection mechanisms has not been assessed so far and it is thus
unknown if the previously proposed ally-based attacks still pose a
threat to the latest Android version. To fill this gap we evaluated our
proposed attacks and re-implementations of previously proposed
ally and overlay-based attacks for the Android versions 6.0 to 8.1.
We focus on selected attacks that target third party applications,
e.g., overlays over a login screen or sniffing credentials, and not
attacks on the Android OS itself like the installation of an app and
enabling its permissions with the help of overlays and ally services.

Table 2 provides an overview of our investigation. A11ly focused
attacks seem not affected by the most recent version of Android,
resulting in an incredibly powerful tool for attackers. However,
apps still have possibilities to counteract this attack vector on their
own. Ally event sanitizing offers powerful capabilities because it
allows to define custom behavior for events, e.g., clean ally events
of any relevant information, which is helpful for credential fields,
or even suppress ally events which can prevent ally-based ad
hijacking. To counteract the overlay and ally assisted password
stealing introduced by Fratantonio et al. window punching can
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Ally-enabled Malicious IME
Ally-based Ad Hijacking [10]

Overlay and ally assisted password stealing [10]
Keyboard App Hijacking [10] )

—
~

Attack Vulnerable Android Versions Possible Countermeasures
6.0 | 7.0 | 712 | 80 | 81
A1lly Event Sniffing ally event sanitizing, fingerprint auth.
Ally Screen Recording secure flag and in-app keyboard

in-app keyboard and behavior listeners
ally event sanitizing
ally event sanitizing, window punching
in-app keyboard or enforcing Gboard update

Full App Passthrough / Clickable Overlays [17]
Partial App Clickable Overlays [9]
Context-aware Clickjacking / Hiding [10]
Keystroke Inference [10]

NSNS NS SNNANANSN

AN NIRRT

x NN NIx NSNS
AN A R RN

window punching
window punching
window punching
in-app keyboard and window punching

DN N N N N N N NN

Table 2: A11y and overlay-based attacks presented in this paper and in previous work. A check mark v signals a vulnerable
Android OS version while the x mark X signals effective protection mechanisms by the OS. In addition to our own attacks we
reimplemented and evaluated attacks from prior work for Android 8 and 8.1 which introduced new UI security mechanisms.

be used against the overlays and ally event sanitizing can pre-
vent the events and their AccessibilityNodelnfo objects of the login
activity and its Ul elements to be leaked to the malicious ally
service. Without them an ally service is unable to act upon Ul
elements effectively preventing this attack. Using behavior listen-
ers allows to ensure certain Ul elements can not be triggered by
an ally service, e.g., in the case of requiring user consent a but-
ton could implement an OnTouchListener and only act in case of
a TouchUp MotionEvent. The downside quite obviously is the in-
creased engineering effort, as several use cases need to be analyzed
and attack vectors guarded against. Depending on the number of UI
elements involved in critical app operations this introduces a con-
siderable overhead. The Keyboard App Hijacking [10] which used
the ally flag FLAG_RETRIEVE_INTERACTIVE_WINDOWS was fixed
for Android’s stock input method, the Gboard app. This also results
in previous versions being secured as well, as long as they have
updated the application.

Overlay-based attacks see themselves confronted with new secu-
rity mechanisms. Passthrough, clickable, and “hole” overlay-based
attacks will result in a notification in Android’s notification bar. The
overlay will still be displayed however, so the effectiveness of this
countermeasure hinges on whether the user is able to notice the
new notification or not. Additionally, Android 8 prevents overlays
altogether during certain critical system operations, e.g., enabling
an ally service. However, third party applications currently have
no possibility to disable overlays during their critical operations.
Lastly, the side-channel Fratantonio et al. used to infer information
for their invisible grid has been fixed, preventing the keystroke
inference attack on Android 8. Window punching can be very well
used to counteract overlays. The punches need to be quite random
in terms of timing intervals and placement inside the UI to prevent
timed overlay attacks.

7 RELATED WORK

Lin et al. [18] realized Ul-based credential leakages by utilizing
Android’s Debug Bridge (ADB). They present a PoC implementation
that is able to derive the correct timing to sniff user credentials

through screen shots initiated through ADB [18]. Conceptually, this
is closest to our ally screen recording, however, we leverage ally
services and the MediaProjection API to initiate screen recordings
due to the inability to use screen shots during FLAG_SECURE enabled
windows.

Kraunelis et al. [17] presented malware using an ally service
to enhance the effectiveness of phishing attacks. Similar to our
work, the introduced attack leveraged the ally API to sniff user
credentials. Contrary to our work, however, Kraunelis et al. use
ally services as a side channel to detect recently launched apps
and present a fake login activity to the user. The sniffing operation
takes place in the fake login activity which needs to be adapted for
each app, while our approach is independent from the target app
and relies on the ally API directly for its sniffing purposes.

Jang et al. [13] analyzed accessibility features of Microsoft Win-
dows, Ubuntu Linux, iOS and Android. Their evaluation led to the
discovery of three design flaws in Android’s ally APIL. We focus
on Android versions 6.0 — 8.1 while Jang et al. [13] focused on 4.4
which was prior to major design changes, e.g., the introduction of
the Android RunTime and runtime permissions. Also, we complete
our assessment with a study on the vulnerability of Google Play
Store apps to our attacks, possible defenses, and the use of ally
services in the wild.

Fratantonio et al. [10] presented a security assessment of An-
droid’s UI and uncovered design flaws and several innovative at-
tacks which combine the use of Ul-elements and ally services. In
addition, they describe overlay-based attacks that can be used to
bootstrap the activation of an ally service. Contrary to Fratantonio
et al., our attacks rely less on overlays and focus more on ally ser-
vices. E.g., while the password stealing described in this document
listens to ally events, their password stealing leverages overlay
elements over the input fields. Resulting from our focus on ally
services, we conduct an in-depth investigation on the use of the
ally APl including Google’s Play Store and third party app stores.
So we focus on the current state of the Google Play Store and assess
the effect to the most downloaded apps while Fratantonio et al.
focus on the effectiveness of their attacks in a user study.
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Clickjacking attacks were prominently featured in research and
malware reports utilizing Android’s overlay feature to obscure
underlying windows. In 2012, Niemietz and Schwenk [20] were the
first to identify Ul-based clickjacking attacks on Android devices. By
adopting known web-based clickjacking techniques, they examined
which attacks can be ported to mobile devices. While the focus of
their work were mobile web browsers, they also investigated an
app-based approach, using full-screen toast overlays to trick users
into dialing a premium phone number. Further research that aims
at tricking users into giving away personal information, or granting
permissions to malicious apps, by Ul attacks can be categorized in
overlay-based attacks [2, 24, 25] and the use of side channels [6, 7, 9]
for improved phishing attacks. While clickjacking attacks may allow
credential sniffing, they need to be tailored to a specific app. This
is not the case when exploiting the ally API instead.

8 CONCLUSION

To summarize, we presented vulnerabilities and design shortcom-
ings in Android’s Ul design and the accessibility API in particular.
Exploiting the vulnerabilities, we created proof-of-concept attacks
that allow an attacker to steal sensitive information of third-party
apps such as login credentials. We have proven the practicability of
our approach on Android 6.0 to 8.1 by testing a dataset of 1100 apps
from the Play Store. We found all tested Android versions to be
vulnerable and 99.25 % of the apps in the dataset to be affected. To
facilitate bug fixing of the discovered vulnerabilities, we reported
them to Google resulting in seven reports from December 2017 to
March 2018. To help the developers of apps with protecting their
apps, despite Google’s reaction, we presented countermeasures that
allow mitigating these attacks and attacks from previous work on
vulnerable Android versions.

To conclude, Android suffers from a series of UI designs that have
deliberately been introduced by Google but pose a security threat
beyond their intended use case. This applies to both the feature
of overlays, including PiP, as well as the omnipotent accessibility
API. From a usability point of view, one could argue these “features®
increase the user experience, but Apple iOS, typically not perceived
less usable by end users, goes without them. Furthermore, Apple
i0S enforces the system’s default keyboard for all password fields -
a reasonable protection missing on Android.
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