Technische Berichte in Digitaler Forensik

Herausgegeben vom Lehrstuhl fiir Informatik 1 der Friedrich-Alexander-
Universitat Erlangen-Niirnberg (FAU) in Kooperation mit dem
Masterstudiengang Digitale Forensik(Hochschule Albstadt-Sigmaringen, FAU,
Universitat des Saarlandes)

Does the dark side still have (ever)cookies?

Jonathan Schmidt
06.03.2020

Technischer Bericht Nr. 18
Zusammenfassung

Evercookie ist eine quelloffene JavaScript Bibliothek, die es ermdglichen soll, persistente
Cookies in Browsern zu platzieren, indem verschiedene Speichermechanismen redundant
benutzt werden. Laut Kommentaren auf GitHub kdnnen jedoch einige dieser Mechanismen
nicht mehr verwendet werden. Dieser Bericht untersucht mit mehreren Browsern und in
unterschiedlichen Szenarien, welche von Evercookie’s Methoden noch funktionieren und
welche nicht.

Entstanden im Rahmen des Konferenzseminars IT Sicherheit des Studiengangs Informatik im
Wintersemester 2019/2020 unter der Anleitung von Gaston Pugliese.

Hinweis: Technische Berichte in Digitaler Forensik werden herausgegeben vom Lehrstuhl fiir
Informatik 1 der Friedrich-Alexander-Universitat Erlangen-Niirnberg (FAU) in Kooperation
mit dem Masterstudiengang Digitale Forensik (Hochschule Albstadt-Sigmaringen, FAU,
Universitat des Saarlandes). Die Reihe bietet ein Forum fiir die schnelle Publikation von
Forschungsergebnissen in Digitaler Forensik in deutscher Sprache. Die in den Dokumenten
enthaltenen Erkenntnisse sind nach bestem Wissen entwickelt und dargestellt. Eine Haftung
fur die Korrektheit und Verwendbarkeit der Resultate kann jedoch weder von den Autoren
noch von den Herausgebern Glbernommen werden. Alle Rechte verbleiben beim Autor.
Einen Uberblick iiber die bisher erschienen Berichte sowie Informationen zur Publikation
neuer Berichte finden sich unter https://wwwl.cs.fau.de/df-whitepapers

Does the dark side still have (ever)cookies?*

Jonathan Schmidt
Friedrich-Alexander-Universitit
Erlangen-Niirnberg (FAU)

ABSTRACT

Cookies were initially introduced to bring persistence to
the stateless HTTP protocol. While first-party cookies can
augment a website’s functionality, the primary purpose of
third-party cookies is tracking web users, mostly to pro-
vide tailored advertisement. In addition to HTTP cookies,
there are several other storage mechanisms a website can
use to place data persistently on client machines. To demon-
strate how persistent, Samy Kamkar developed evercookie,
a JavaScript library to set insistent cookies. It was released
in 2010 and stores the data redundantly in as many places
on the client’s device as possible. Back then, it was hardly
feasible for an inexperienced user to get rid of this cookie.
However, since then, the web has evolved in many ways;
browsers do provide more functionality to enhance pri-
vacy and issues on GitHub claim that evercookie’s abili-
ties are restricted. We present an introduction to the tech-
niques used by evercookie to obtain this level of tenacity and
test evercookie in multiple scenarios using different desk-
top and mobile browsers. Thereby, we provide an overview,
which of evercookie’s mechanisms still work under which
circumstances and which not and why.

KEYWORDS

evercookie, cookies, web tracking, web privacy

1 INTRODUCTION

Cookies are required to enable essential features for modern web
applications (e.g., Login sessions). However, they are largely em-
ployed to track users on the web [1, 6, 7]. Since we spend more and
more time on the internet, our online activity uncovers a lot about
our interests, our social life and our financial situation. This data
is valuable for advertisers, insurance companies and banks [6]. To
analyse users’ online activity accurately, they need to be tracked
over as many websites and as long as possible. Third-party cookies
allow tracing users among multiple domains. For instance, studies
by Englehardt and Narayanan discovered Google Analytics, the
most prominent tracker, on almost 70% of the top 1 million web
pages [7].

One option to address the persistence of cookies is evercookie,
a JavaScript library released by Kamkar [24] in 2010. It utilises
several storage mechanisms redundantly to preserve the cookie’s
information and resets it automatically whenever the user deletes
some of them [19, 24]. Previous studies revealed that evercookie’s
methodology of using multiple storage mechanisms (e.g., HTTP

“This paper was written as part of the conference seminar “IT Security” which was
organized by the chair of IT Security Infrastructures at the FAU during the winter term
2020. Special thanks to Gaston Pugliese for the provided support during the course of
this paper.

cookies and Flash storage) redundantly is employed on 41 of the
top 100 websites [1].

This paper is intended to provide an overview of how modern
browsers deal with evercookies. Since it was presented back in
2010, the web has changed in many ways. The widespread HTML4
standard did not have any support for media or interactive content,
which is why users had to install additional plugins like the Adobe
Flash Player, Microsoft Silverlight or Java. With the introduction
and adoption of HTML5 over the recent years and its native sup-
port for audio, video and interactive pages, those plugins became
obsolete. No current web browser except the Internet Explorer
supports Silverlight, and Adobe is going to stop supporting the
Flash Player by the end of 2020 [28]. Furthermore, all common
browsers discontinued the support for Java Applets between 2015
and 2017 [29, 34, 36, 37], and Oracle deprecates these applications
since JDK 9 [35]. The exploits evercookie uses (Java CVE-2013-
0422 [33] and CSS History Knocker [21]) have been known for
almost a decade and should have been fixed for quite some time.
Issues filed on GitHub [18] claim that evercookie would not be
persistent anymore when cookies are removed [17] or when using
the private browsing mode [11]. The cross-browser functionality is
said to not work as well [15]. That leads to the questions of whether
evercookie is still a useful tool to track users on the web and what
can be done to stop it from working?

The paper is structured as follows: Section 2 explains the instru-
mented storage mechanisms and how evercookie utilises them. This
includes Storage APIs, the browser’s cache, HSTS Pinning and the
CSS History Knocker. In Section 3 we describe, how our test setup
works, which OS and browser combinations are instrumented and
which scenarios are analysed. The results of the performed test are
presented in Section 4. In Section 5 we discuss the test results and
finally summarise the paper in Section 6.

The contributions of this paper are as follows:

(1) To the best of our knowledge, we performed the first exten-
sive test of evercookie on both desktop and mobile browsers
and demonstrated that evercookie is significantly limited in
its abilities.

(2) We evaluated evercookie and present an analysis that shows
why particular storage mechanisms are not accessible at all
or are ineffective as persistent data storage, respectively.

2 BACKGROUND

In this section, we introduce the mechanisms applied by evercookie
to set and maintain a tenacious cookie on client machines. Generally,
evercookie uses all of the following techniques to store a single
key-value pair redundantly [24]. Whenever the script detects that
some data has been deleted, it tries to restore the value from another
mechanism and reestablishes the removed data [19].

2.1 HTTP cookies

The most trivial way for a website to store data on a client’s device is
an HTTP cookie [4]. An HTTP cookie is a key-value pair that can be
set either by a Set-Cookie statement in the HTTP response header
or by JavaScript [31]. Every time the client requests a website, the
browser sends all cookies set by the requested domain in the HTTP
header. Besides, cookies that are not marked as '"HTTP only’ can
also be accessed via JavaScript [4, 31].

2.2 Web storage APIs

The HTMLS5 standard defines four new client-side data stores. Local
Storage, Session Storage, Web SQL and IndexedDB. Local Stor-
age and Session Storage [23] are domain-specific databases that
can store key-value pairs, which can be accessed using the corre-
sponding JavaScript API. While the Session Storage gets deleted
automatically when the browser window is closed, the Local Stor-
age keeps information until it is removed by either the user or the
website that set it.

Web SQL [22] and IndexedDB [2] are database interfaces, en-
abling websites to store more extensive amounts of data. While
IndexedDB is available in all common browsers, Web SQL was
deprecated by the World Wide Web Consortium (W3C) but is still
available in Chromium-based browsers [22].

Evercookie would also support the HTML5 Global Storage, which
no popular browser ever implemented, as it neglects the same-origin
policy [6].

In Internet Explorer (IE), the userData Storage [27] is available.
It was introduced with IE 5 and deprecated as of IE 7 [6], but still
works under IE 11. It allows websites to store attributes within
HTML elements persistently in the user agent.

If the plugins for Flash Player or Microsoft Silverlight are in-
stalled and enabled, a website is able to store data in the Local Shared
Objects (LSO) Storage, also called Flash cookies, or the Silverlight
Isolated Storage [26]. Both the LSO and the Isolated Storage are
accessible for all browsers on a device. This empowers evercookie
to set a cookie across different browsers by setting the remaining
cookies based on the value from the LSO storage or the Isolated
Storage, respectively [1, 6, 24].

Java Applets provided a similar interface: the Java Persistence
Service. Since no customary browser supports Java Applets any-
more [29, 34, 36, 37], evercookie can no longer use it.

Finally, evercookie renames the window.name property [8],
which is a read and writable string for each tab that is resistant to
page reloads. This enables cookie reviving if the website containing
the evercookie is still open.

2.3 Cache

Browsers set up caches to accelerate page loads by avoiding re-
dundant network traffic like static files. It is indiscernible for the
website if a document was delivered by the requested server or the
browser’s cache. The HTTP protocol allows the client to indicate
that there is no need to send a file if it has not been updated since a
particular date (If-Modified-Since header). The server, on the other
hand, can send a 304 response to the user agent, indicating that
the requested document has not been changed since it was last

delivered [9]. Evercookie uses the following techniques to place
and retrieve data from the cache:

Cached document: First, evercookie sends a request with the
cookie to be set to a PHP script that responds with a simple docu-
ment that contains the data from the cookie and a Cache-Control
header, telling the browser to cache the document. To retrieve the
data, evercookie requests the same PHP script again, but without
any request parameter. In this case, the server responds with 304
and thus, forces the browser to get the file from the cache. If it is
present in the cache, the delivered document contains the original
cookie value [6, 24].

ETag: Further, evercookie uses entity tags (ETags) [9] to store
information in the cache. ETags were introduced as a cache-control
technique, equipping a certain version of a resource with a unique
identifier. When the browser wants to know, if a cached document
is still up-to-date, it sends a conditional request, containing the
ETag, to the server. The server can now determine if the cached
resource is still the valid one and will only respond when the file
has been updated. When evercookie sets a new cookie, it sends a
request containing the data to a backend server which responds
with a resource marked with the specified ETag. Later, the value
can be recovered by demanding this file. The browser requests
the document from the server and sends the ETag in the HTTP
header. The server reads this ETag value and forwards it back to
the client-side script. [6, 24]

PNG image: Finally, caching is used with pictures. Evercookie
requests a PNG image with the cookie in the request arguments.
The server-side script generates a PNG image where the characters
of the cookie are written into the RGB values of the pixels. The
generated image is sent back to the user agent where it is cached.
To retrieve the image from the cache, evercookie requests the image
source again without a cookie. The server responds with 304 to
force the browser to load the image from its cache. Then, the HTML
Canvas API is used to access the PNG file as an array of pixels,
where evercookie can iterate over the pixels and thus, reconstructs
the cookie value. [24]

2.4 HSTS Pinning

Cache mechanisms exist not only for website content but also for
internal browser data. For instance, to remember which sites should
be accessed encrypted using the HTTPS protocol, a server can send
a Strict Transport Security header, forcing the browser to perform
all future requests (till the expiration date) over HTTPS. This proto-
col is called HT TP Strict Transport Security (HSTS) [32]. Therefore,
the browser stores the domains that sent an HSTS header in a pre-
vious request and should be accessed over HTTPS by default [32].
As a single domain can store only one bit of information, multiple
domains are needed to enable tracking, as shown in Figure 1. When
evercookie wants to store an n-bit integer, n domains are needed,
all pointing to the same PHP file. The client-side script converts
the integer into its bit representation and initiates requests to each
domain, with the command to either set or delete this bit. When
the script gets the set command, it responds with an HSTS header
that has its expiration date far in the future. Otherwise, when it
gets the delete command, it sends an HSTS header with the max-
age attribute set to 0, which deletes an existing HSTS rule in the

browser. The integer can be reconstructed by requesting each do-
main. The server responds with the information if the request came
over HTTP or HTTPS. Evercookie then combines the information
from all domains and rebuilds the integer [3].

2.5 CSS History Knocker

The browsing history is not accessible for any website. However,
Grossman [21] found a way to check if a particular site has been
visited. First, the website places a link to the site to be checked.
Then it reads the computed style of this link. Whenever the link is
painted purple, instead of blue, the website is in the history [21].
When initialising, Evercookie accesses non-existent links in the
pattern shown in Figure 2. When evercookie wants to read the
cookie from the browser’s history, it determines the cookie’s value
letter by letter. By iterating through all characters and digits, and
checking if it matches an entry of the history, the first letter can be
determined. This procedure is continued until the minus symbol is
found, which indicates that the last letter was read [24].

2.6 Java Applet exploit

If Java Applets were still supported, evercookie could also take ad-
vantage of the Java CVE-2013-0422 exploit [33], which is a vulnera-
bility in Java 7 Update 10 and earlier, allowing the Java application
to abscond its sandbox and to access the clients file system [24].

3 METHODOLOGY

In this section, we explain the circumstances under which the tests
were performed, define the browsers we instrumented and describe
the scenarios we tested.

3.1 Test setup

To run the experiments, we use an NGINX server to host all the
required documents, PHP scripts and to export our test results as
shown in Figure 3. Further, we created a test page, containing the
example of the index.html file from GitHub [19], which visualises
the used storage mechanisms. Also, we added a text box to name
the tested scenario and a button to export the result. When the
button is clicked, a JavaScript function wraps the name together
with the current values of each storage mechanism into a JSON
string and sends it to the server. To efficiently evaluate our results,
we implemented a Python script using the Flask framework, which
processes the data from the client and writes it as a new line to a
CSV file.

To enable HSTS Pinning, the server needs to support SSL. There-
fore, we created an SSL certificate using OpenSSL and added it to
the server. Besides, we added the corresponding root certificate to
the macOS Keychain and the Windows Certificate Store. Thereby,
all desktop browsers, except Firefox, trust the certificate and allow
HTTPS communication without any warning. Firefox does not use
the OS, but its own database to validate certificates, but allows us
to add exceptions for our local domains manually [30].

3.2 Instrumented browsers

Our survey on evercookie should be as comprehensive as possible.
That is why we chose to test the browsers with the highest market

share according to StatCounter [38, 39], each of them in their lat-
est published version. This results in Google Chrome Version 78,
Mozilla Firefox Version 71, Apple Safari Version 13, Microsoft Edge
Version 44 and Microsoft Internet Explorer 11 on the desktop side.
Chrome, Safari and Firefox are running on macOS 10.15, Edge and
Internet Explorer are running on Microsoft Windows 10 Version
1909. On the mobile side, Chrome for Android Version 78 and Sa-
fari for iOS are employed. Chrome for Android is operating on a
Samsung Smartphone running Android 9, Safari for iOS is running
on an Apple iPhone with iOS 13.3.

3.3 Scenarios & storage mechanisms

As mentioned in Section 2, evercookie cannot use particular storage
mechanisms as the browsers removed the support. More specifically,
HTML Global Storage, Java Persistence Service and the Java Applet
exploit [33] are not supported by any of the reviewed browsers,
and we see no need to test them.

Apart from that, all supported storage mechanisms are used.
More precisely: HTTP cookies, Local and Session Storage, Web
SQL, IndexedDB, Internet Explorer userData, the window.name
property, Local Shared Objects, Silverlight Isolated Storage, cache
data, ETag, PNG image, History and HSTS Pinning.

To test HSTS Pinning, we modify the hosts file of the OS so that
it resolves the domains {a-j}.ec to the local IP address where our
server with the corresponding PHP script is running. Since the
hosts file is only accessible on desktop operating systems, at least
one public domain, including a trusted SSL certificate, would be
necessary to test HSTS Pinning on mobile devices. Since we do
not have this infrastructure available, we leave the testing of HSTS
Pinning on mobile devices to future work.

Issues filed on GitHub [18] claim that evercookie does not have
the persistence anymore, that one would expect from its name. The
most relevant and repetitive issues relate to the persistence when
clearing the history [13, 17], private mode [11], the cross-browser
functionality [15], Flash Storage (LSO) [14] and the CSS History
Knocker [16]. From this, we derive the following test cases:

Default settings: Here, we use the browsers freshly installed
and with no settings changed. After we created an evercookie, we
monitor the storage mechanisms it uses. Afterwards, we delete all
cookies with the standard tool the browsers offer and examine if
the evercookie can be restored.

Private mode: In this scenario, we set an evercookie within
the private mode (Incognito mode in Chrome). Unlike in the default
mode, the expectation is, that all cookies are gone once the window
is closed. Manual removal of any browsing data should not be
necessary.

Flash Player + Silverlight enabled: This test is executed only
on the desktop side, as mobile browsers support none of the plugins.
The Flash Player is available in all browsers, whereas Silverlight
is only available in Internet Explorer. In this scenario, we use the
default browsing mode again and do not have installed any other
plugins or extensions. After we created a new evercookie, we ob-
serve, which storage mechanisms are in use and delete the cookies
using the standard tools again.

p
Client-side Script

e p\
Server

hsts1.evercookie.com/?hsts=SET

N

Strict-transport-security: maxage=999999

Store #5 —>| hsts2.evercookie.com/?hsts=DEL

hsts3.evercookie.com/?hsts=SET

Strict-transport-security: maxage=0

Strict-transport-security: maxage=999999

Client-side

e a\
(Client-side Script Browser

1 Server \ Script

HTTPS

http://hsts1.evercookie.com/ HSTS
http://hsts2.evercookie.com/ > NO HSTS
http://hsts3.evercookie.com/ HSTS

HTTP
HTTPS

responds with #5

Figure 1: Storing an identifier (here: an integer with the value of 5) by using HSTS across multiple domains [3]

com/evercookie/cache/v
com/evercookie/cache/va
google.com/evercookie/cache/val
google.com/evercookie/cache/valu
google.com/evercookie/cache/value
google.com/evercookie/cache/value-

google.
google.

Figure 2: Pattern of accessing websites in the background to
efficiently use the History Knocker to read a cookie from the
browsing history [24]

Evercookie's
files and scripts

* @

Python script

Figure 3: Our test setup: An NGINX server for evercookie’s
backend and a Python script to export the results

CSV file

4 RESULTS

In this section, we present the outcomes of our tests. The results of
our evaluation are described below and depicted in Table 1.

4.1 Default settings

Desktop: When we create an evercookie, it can use the following
storage mechanisms in all browsers. HTTP cookies, Local- and Ses-
sion Storage, IndexedDB, the window.name property, the cached
document and HSTS Pinning. Chrome, Firefox and Safari support
all three cache mechanisms. In contrast, Internet Explorer does only
support the cached document and PNG image. Edge only maintains

the ETag beside the cached document. Chrome additionally sup-
ports the Web SQL interface and allows evercookie to use it as well.
Although Internet Explorer has support for it, the userData storage
is not in use.

Next, it is about deleting the website data with the tools the
browsers offer. Clearing browsing data while the tab with the
evercookie is still open, removes the information from all mecha-
nisms, except the window.name attribute. This allows evercookie to
revive the other cookies in all browsers. However, when the tab has
been closed before clearing all website data, evercookie gets deleted
reliably, except in Firefox, where offline website data (IndexedDB)
remains by default when the history is cleared.

Mobile: On our mobile devices, we can see quite similar results
as on the desktop side. In both Safari for iOS and Chrome for
Android, evercookie can use conventional HTTP cookies, Local-
and Session Storage, all cache mechanisms, HSTS Pinning and the
window.name attribute. In Chrome for Android, we have support
for Web SQL additionally. When we clear the browsing data, after
we close the tab, the evercookie gets annihilated on both iOS and
Android. However, if we do not, it can restore the value through
the window.name attribute, again.

4.2 Private mode

Desktop: When using the private browsing mode, we can see
only minor differences compared to the default mode. Firefox, Edge
and Internet Explorer disable the support for the IndexedDB, and
the cached PNG image is not accessible in the Internet Explorer
anymore. Besides, evercookie is still able to instrument the same
storage mechanisms as when using a conventional window. Nev-
ertheless, after the private window has been closed, evercookie
cannot restore its value in any browser in neither the default mode
nor a new private window.

Mobile: The same applies to our mobile browsers. Evercookie
can make use of the same storage mechanisms as in the default
mode, but cannot restore the cookie value from any storage after
we closed the private window.

4.3 Flash and Silverlight enabled

Although all reviewed desktop browsers do support Flash,
evercookie only manages to embed data in the Local Shared Objects
in Firefox and Internet Explorer. Details, why evercookie could not
use the LSO in Chrome, Safari and Edge, are given in Section 5.3.

Next, we delete the browsing data again and observe if Flash
cookies are getting removed as well. The Internet Explorer clears
the LSO Storage, and the evercookie gets deleted. Firefox, however,
does not and thus, enables evercookie to restore the cookie from
the Flash storage.

4.4 Cross-browser functionality

First, the cross-browser synchronisation is technically only possible
among desktop browsers, as it requires at least one of the plugins
for Flash, Silverlight or Java. Neither Android nor iOS has support
for them. Since we did not test Java Applets and evercookie could
not enter the Silverlight Isolated Storage, there is only the Flash
plugin left to enable a cross-browser cookie. Evercookie manages
to enter the LSO in Firefox and Internet Explorer. Thus, we run the
test on Windows using Firefox and Internet Explorer. We reset both
browsers, set a new evercookie in Firefox, click on restore in the
Internet Explorer and observe that evercookie can read the value
from the Local Shared Objects and sets the remaining mechanisms
appropriately.

5 DISCUSSION

In this section, we discuss the results of our tests that we presented
in Section 4. We evaluate the results separately for each tested
scenario.

5.1 Default settings

When we analyse our results, the essential observation we make
is that except for Firefox, no browser is vulnerable to evercookie.
Firefox does not delete the IndexedDB by default, but this can be
changed via an option in the clear history dialogue. All browsers
deleted HTTP cookies, the history, all data stored through Web
Storage APIs, the cache and the HSTS rules.

A surprising fact is that HSTS Pinning works well in Safari,
although WebKit, the engine behind Safari, implements a feature
to prevent this. By accepting HSTS headers only for the current
sub-domain and for the current second-level domain, there is a
maximum of two HSTS rules that a single site should be able to
set [10].

Although Internet Explorer has support for the userData Storage,
evercookie cannot utilise it. We examined the corresponding code
with the debugger and observed that the addBehavior function,
which is necessary to store information, is unavailable.

The CSS History Knocker does not work in any browser. The
getComputedStyle function now always returns the default colour,
no matter if the link was visited or not, making it impossible for
evercookie to determine the previously visited pages.

Finally, we want to examine, why the PNG image mechanism is
not accessible in Edge, and why the ETag mechanism is not usable
in Internet Explorer. For some reason, the Edge browser does not
request the PNG image and thus, the onload function, in which

the cookie value gets extracted from the image, is never called. The
ETag mechanism is unavailable in Internet Explorer, as the cache of
the Internet Explorer does not validate the topicality of a resource
within a browsing session [25]. However, this is required, as only
the server can read the ETag.

Overall, evercookie is not a significant threat when the browsers
are used with default settings, and the user knows how to delete
browsing data.

5.2 Impact of private mode

Next, we want to examine if the private mode impacts the effec-
tiveness of evercookie. In short: The private mode does, what it
is supposed to do: Clearing all data of a browsing session once
the window is closed. None of the browsers allowed evercookie
to recover any data in the default mode or a new private window.
One interesting point is, that Firefox, Edge and Internet Explorer
disable the support for the IndexedDB interface when a website is
visited in private mode, as this API is meant as long term storage
for offline data.

According to evercookie’s GitHub page [19], the HSTS Pinning
should have worked in the Incognito mode of Chrome. That is
because previous versions of Chrome had only a single file to store
all HSTS rules, which were adopted when switching to the private
mode. Though, this has been changed so that Chrome creates an
isolated HSTS rule set for the private browsing session [5].

The other difference is that evercookie cannot set data through
the cached PNG image in the Internet Explorer for the same reason
as it is in Edge in default mode. The PNG image is never requested
although its source is specified.

5.3 Plugins enabled

First, we want to discuss why evercookie could not manage to
set a cookie in the LSO in Chrome, Safari and Edge. Evercookie
uses SWFODbject [20] to embed Flash content into a web page. The
developers of this open-source library stopped maintaining it six
years ago, and its JavaScript code is in an obfuscated, unreadable
format, making investigations complicated. The browsers are set to
ask before Flash content is launched, but none of them displayed any
message asking if Flash content should be executed, which indicates
that SWFObject could not manage to start the Flash application.
Since Adobe is going to drop the support for Flash by the end of
2020, we do not see any reason for further research here.

Next, we analyse how the two browsers Firefox and Internet
Explorer, where evercookie could embed data in the Local Shared
Objects, deal with it when we clear the cookies. We already ob-
served that Internet Explorer removes Flash cookies when we delete
the history. However, Firefox does not, and thus, enables cookie
reviving not only through the IndexedDB but also through the
LSO storage. Again, Firefox is able to delete Flash cookies and the
IndexedDB, but only after manual configuration.

Finally, we examine why evercookie cannot use the Silverlight
Isolated storage in the Internet Explorer. Therefore, we use the
debugger and execute the function, where Silverlight is initialised
and embedded, line by line. This results in an exception when the
Silverlight HTML object gets appended to the body of the page.

) 2 o
a0 v O
%) §° § o) 5 "Q g T

ii8a3ii:, B,
B S 522 2 3% 2 & w8 2
. E g8 2 22 g £ 8 3 R E Z 2 o
Scenario Browser oS T 3 4 S 2 32 B S 2 0 m & E I
Chrome 78 mac0S1015 O O O O O - @@ - - O O O = O
Firefox 71 mac0S1015 O O O @ = - @ - - O O O - O
Safari 13 mac0S1015 O O O O = = @ - - O O O - O
Default Edge 44 Windows10o O O O O = = @ = - O O - = O
Internet Explorer 11 Windows10 O O O O = = ® O - O - O = O
Safari 13 i0S 13 oOo0oo0oo0o=-=-0-=-000"-x
Chrome 78 Android9 O O O O O - 0 - - O O O = x
Chrome 78 mac0S1015 O O O O O - O = = O O O - O
Firefox 71 mac0$1015 O O O = = = O - - O O O - O
Safari 13 mac0S10.15 O O O O = = O - = O O O - O
Private mode Edge 44 Windows10 O O O = = - O = - O O - - O
Internet Explorer 11 Windows10 O O O = = = O O - O = = = O
Safari 13 i0S 13 0O o0oo0Oo0O=-=-0=-=-000-x
Chrome 78 Android9 O O O O O -_ O — = O O O = x
Chrome 78 mac0S1015 O O O O O - @ - = O O O - O
Firefox 71 mac0S10015 O O O @ - - 0 @ — O O O - O
Flash + Silverlight Safari 13 mac0$1015 O O O O = - @@ - - O O O = O
enabled Edge 44 Windows10 O O O O = = @@ - - O O - - O
Internet Explorer 11 Windows10 O O O O = - ® O - O = O = O

Table 1: Comprehensive overview of the tested scenarios, browsers and which storage mechanisms are used

=: evercookie cannot use the storage mechanism, see Section 5 for details

O: evercookie uses the storage, but it gets cleared on cookie deletion (In private mode: when the window is closed)

@: storage remains as long as the page containing the evercookie is still open

@: evercookie recovers itself from the storage, although cookies were removed (In private mode: after the window was closed)

%: not tested

This bug has already been reported on GitHub but does not seem
to be fixed so far [12].

5.4 Cross-browser capability

The cross-browser functionality is only possible when Flash is en-
abled and working. If evercookie had managed to use the Flash
storage in the other browsers as well, the cross-browser synchro-
nisation would have worked among more browsers. By the end
of 2020, when Flash reaches its end of support and all browsers
will remove the plugin, the cross-browser functionality will stop
working entirely.

6 CONCLUSION

We tested evercookie with modern desktop and mobile browsers
and found out that evercookie is still capable of using nearly all
of its original storage mechanisms. Despite, it still does not work
reliably in any of the analysed browsers and is not persistent in
private browsing mode. There are two essential reasons for this:
First, browsers do not only delete HTTP cookies and the browsing
history but also clear the cache, HSTS rules and all data stored

through web storage APIs. Second, the plugins for Flash, Silverlight
and Java are not necessary anymore, since the HTML5 standard
provides all of their functionality. By the end of 2021, Silverlight
will be the last of these plugins to reach its end of support and
thus, will limit evercookie’s abilities even more. This development,
combined with minor changes in Firefox’s default settings, would
cause evercookie to be entirely ineffective within the reviewed
browsers.

REFERENCES

[1] Gunes Acar, Christian Eubank, Steven Englehardt, Marc Juarez, Arvind
Narayanan, and Claudia Diaz. 2014. The web never forgets: Persistent tracking
mechanisms in the wild. In Proceedings of the 2014 ACM SIGSAC Conference on
Computer and Communications Security. ACM, 674-689.

Ali Alabbas and Joshua Bell. 2018. Indexed Database API 2.0. https://www.w3.
org/TR/IndexedDB-2/ visited on December 30, 2019.

Zbigniew Banach. 2019. Why Websites Need HTTP Strict Transport Secu-
rity (HSTS) | Netsparker. https://www.netsparker.com/blog/web-security/
http-strict-transport-security-hsts/ visited on December 2, 2019.

A. Barth. 2011. RFC 6265 - HTTP State Management Mechanism.
//tools.ietf.org/html/rfc6265 visited on December 30, 2019.
Chromium bugs. 2017. 774643 - Clearing non-incognito data results in retainining
history in incognito’s TransportSecurityPersister. https://bugs.chromium.org/p/
chromium/issues/detail?id=774643 visited on January 4, 2020.

[2

[3

[4

https:

5

le]

(7]

(1

[10]

[11]

[12]

[13]

[14]

[15]
[16]

[17]

[18]
[19]
[20]

[21]

[22]
[23]
[24]

[25]

[26]

[27]
[28]

[29]

[30]

[31]

[32]

[33]
[34]
[35]

[36]

Tomasz Bujlow, Valentin Carela-Espaiiol, Josep Sole-Pareta, and Pere Barlet-Ros.
2017. A survey on web tracking: Mechanisms, implications, and defenses. Proc.
IEEE 105, 8 (2017), 1476-1510.

Steven Englehardt and Arvind Narayanan. 2016. Online tracking: A 1-million-site
measurement and analysis. In Proceedings of the 2016 ACM SIGSAC conference on
computer and communications security. ACM, 1388-1401.

Steve Faulkner, Arron Eichholz, Travis Leithead, Alex Danilo, and Sangwhan
Moon. 2017. HTML 5.2: 6. Loading Web Pages. https://www.w3.org/TR/html52/
browsers.html#dom-window-name visited on December 30, 2019.

R. Fielding and J. Reschke. 2014. RFC 7232 - Hypertext Transfer Protocol
(HTTP/1.1): Conditional Requests. https://tools.ietf.org/html/rfc7232 visited on
December 30, 2019.

Brent Fulgham. 2018. Protecting Against HSTS Abuse | WebKit. https://webkit.
org/blog/8146/protecting-against-hsts-abuse/ visited on January 4, 2020.
GitHub. 2012. Evercookie doesn’t work with Private Browsing mode - Issue #19 -
samyk/evercookie. https://github.com/samyk/evercookie/issues/19 visited on
November 29, 2019.
GitHub. 2013-2015.
samyk/evercookie.
on January 4, 2020.
GitHub. 2014 - 2015. if i clean cookies in chrome evercookie forget me - Issue
#81 - samyk/evercookie. https://github.com/samyk/evercookie/issues/81 visited
on November 29, 2019.

GitHub. 2016. Clearing History/Browsing Data - No More Persistence - Issue #118
- samyk/evercookie. https://github.com/samyk/evercookie/issues/118 visited on
November 29, 2019.

GitHub. 2016. cross browser not working - Issue #119 - samyk/evercookie.
https://github.com/samyk/evercookie/issues/119 visited on November 29, 2019.
GitHub. 2016. CSS history knocking / leak fixed? - Issue #115 - samyk/evercookie.
https://github.com/samyk/evercookie/issues/115 visited on November 29, 2019.
GitHub. 2017 - 2018. Evercookie is not persistent in Chrome and Safari anymore -
Issue #125 - samyk/evercookie. https://github.com/samyk/evercookie/issues/125
visited on November 29, 2019.

GitHub. 2019. Issues - samyk/evercookie. https://github.com/samyk/evercookie/
issues visited on November 29, 2019.

GitHub. 2019. samyk/evercookie. https://github.com/samyk/evercookie visited
on November 29, 2019.

GitHub. 2019. swfobject/swfobject.
visited on November 29, 2019.
Jeremiah Grossman. 2006. Jeremiah Grossman: I know where you've been. https:
//blog.jeremiahgrossman.com/2006/08/i-know-where-youve-been.html visited
on December 4, 2019.

Tan Hickson. 2010. Web SQL Database. https://www.w3.org/TR/webdatabase/
visited on December 30, 2019.

Tan Hickson. 2016. Web Storage (Second Edition).
webstorage/ visited on December 30, 2019.

Samy Kamkar. 2010. Samy Kamkar - Evercookie. https://samy.pl/evercookie/
visited on November 29, 2019.

Eric Lawrence. 2010. Caching improvements in Internet Explorer 9
| Microsoft Docs. https://docs.microsoft.com/en-gb/archive/blogs/ie/
caching-improvements-in-internet-explorer-9 visited on January 4, 2020.
Microsoft. 2011. Isolated Storage | Microsoft Docs. https://docs.microsoft.com/
en-us/previous-versions/windows/silverlight/dotnet-windows- silverlight/
bdts8hk0(v=vs.95) visited on December 22, 2019.

Microsoft. 2013. userData Behavior | Microsoft Docs. https://docs.microsoft.
com/en-us/previous-versions/ms531424(v%3Dvs.85) visited on January 4, 2020.
Microsoft. 2019. Adobe Flash end of support. https://support.microsoft.com/
de-de/help/4520411/adobe-flash-end- of-support visited on December 10, 2019.
Microsoft. 2019. Microsoft Edge - Frequently Asked Questions. https:
//docs.microsoft.com/en-us/microsoft-edge/deploy/microsoft-edge-faq visited
on December 20, 2019.

Mozilla. 1998 - 2020. Mozilla CA Certificate Store - Mozilla. https://www.mozilla.
org/en-US/about/governance/policies/security-group/certs/ visited on January
28, 2020.

Mozilla and individual contributors. 2005 - 2019. Document.cookie - Web APIs |
MDN. https://developer.mozilla.org/en-US/docs/Web/API/Document/cookie
visited on December 2, 2019.

Morzilla and individual contributors. 2005-2019. Strict-Transport-Security -
HTTP | MDN. https://developer.mozilla.org/en-US/docs/Web/HTTP/Headers/
Strict-Transport-Security visited on December 2, 2019.

NIST. 2013. NVD - CVE-2013-0422. https://nvd.nist.gov/vuln/detail/
CVE-2013-0422 visited on December 4, 2019.

Oracle. [n. d.]. Java and Apple Safari Browser. https://java.com/en/download/
fag/safari.xml visited on December 20, 2019.

Oracle. 2017. java.applet (Java SE 9 & JDK 9). https://docs.oracle.com/javase/9/
docs/api/java/applet/package-summary.html visited on December 4, 2019.
Justin Schuh. 2014. Chromium Blog: The Final Countdown for NPAPL. https:
//blog.chromium.org/2014/11/the-final- countdown-for-npapi.html visited on

document.body.appendChild throws error - Issue #45 -
https://github.com/samyk/evercookie/issues/45 visited

https://github.com/swfobject/swfobject

https://www.w3.org/TR/

(371

[38]

(39]

December 20, 2019.

Benjamin Smedberg. 2015. NPAPI Plugins in Firefox - Future Releases. https:
//blog.mozilla.org/futurereleases/2015/10/08/npapi-plugins-in-firefox/ visited
on December 20, 2019.

StatCounter. 2019. Desktop Browser Market Share Worldwide | StatCounter
Global Stats. https://gs.statcounter.com/browser-market-share/desktop/
worldwide visited on November 29, 2019.

StatCounter. 2019. Mobile Browser Market Share Worldwide | StatCounter Global
Stats. https://gs.statcounter.com/browser-market-share/mobile/worldwide
visited on November 29, 2019.

