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Abstract—In this work, honeypots were set up on several public
cloud infrastructures of Amazon, Microsoft and Google located
in different regions around the world, including North America,
Asia and Europe. The honeypots, simulating different popular
services like SSH and VNC, were used to collect data over a
period of two month, resulting in over 170 million log entries.
Further analysis of the log entries regarding attack patterns
and geographic characteristics are presented in this paper. For
example, the attacks originated from 216 countries involving
268,614 unique IPs, dominated by China with a share of 25.83%.

Index Terms—cloud computing, security, public cloud, attack,
intrusion detection, honeypot

I. INTRODUCTION

For years a recent trend for companies has been to move
IT infrastructures from private data centers to specialized
public cloud providers. Over the years, a number of large-
scale data breaches happened on cloud-based systems [16, 17,
21]. These attacks not only affect private companies, but also
their customers and users, who wittingly or unwittingly upload
their most personal photos and videos, contact lists and private
messages to the cloud.

To learn more about the reasons and methods of such
attacks, honeypots can be deployed to capture the interaction
of attackers with cloud systems. Honeypots are decoy systems,
as they attract attackers and trick them to interact with them.
They are set up to “be probed, attacked or compromised” [23]
and usually have no economic value added for a business.
They are not connected to any production systems and are
merely part of the underlying company network. Any user
would need to explicitly search for such systems. If the threat
is new and still unknown to Intrusion Detection Systems (IDS)
and anti-malware solutions, forensic investigators can analyze
and learn how a vulnerability is exploited. This is achieved by
collecting and analyzing the log files of the honeypot system.
Insights from the analysis can be used to implement new threat
signatures for IDS and firewalls, for example.

For this work, honeypots were used for research, analyzing
current threats and methods of attackers. Specifically, low-
interaction honeypots were deployed, a category first defined
by Makube and Adams [15]. These honeypots simulate a
limited portion of a real system, usually confined to a sin-
gle service or file system, as opposed to high-interaction

honeypots which often consist of an actual operating system
and real services. High-interaction systems generally yield
more relevant data for analysis, but for our experiment, low-
interaction honeypots were sufficient to analyze how popular
services are exploited.

A. Contributions

In this paper, our goal is to get a holistic view about
current cyber threats and dangers affecting systems hosted on
platforms of public cloud providers around the world. The
contributions of our work are:

• Attack Patterns: We present the results of our empirical
research of log entries from honeypots that were hosted
at Amazon Web Services (AWS), Microsoft Azure and
Google Cloud Platform (GCP). For a period of 63 days,
we collected data from real-world attacks and analyzed
recurring patterns in access credentials, session durations
and post-compromise actions. For example, the most
typical SSH attacks log-in as root user with empty pass-
word, last 0 to 30 seconds and perform several cleanup
operations, trying to hide their activities from log files.

• Geographic Characteristics: We set up honeypot in-
stances of Cowrie, Vnclowpot, Honeytrap, Mailoney,
Dionaea, Glastopf and RDPY on five physically different
machines in North America, Asia and Europe. While the
location of the honeypots was centralized, the attacks
originated from IPs world-wide, dominated by China
(25%), the United States (25.21%), Russia (14.50%) and
a single IP from the Seychelles (~5%). For example, in
Russia the majority of attacks is generated at 7 a.m. and
7 p.m. local time, indicating a large amount of attacks
that is started before and after typical business hours.

B. Related Work

Honeypots have been used extensively to research network
traffic and malware. The majority of papers in the field involve
honeypot software operating on regular physical hardware.

The security of cloud instances of various providers has first
been researched in 2012 [3]. Incoming traffic was analyzed
using a limited number of honeypots for different cloud
providers. Compared to our study, the duration of their exper-
iment and the available resources were limited, and the results



are not as representative. Similar studies on cloud services
focus on SSH attacks only [1, 13]. Related research focuses
on attack vectors of mobile devices, using honeypots that
emulate Android and iOS systems [29] and Internet-of-Things
(IoT) devices [5]. Multiple studies set up honeypots on local
or virtual systems to catch and analyze malware samples [2,
12, 27]. There are also implementations of honeypots for
detecting botnets [23], both on physical hosts [4] and cloud
infrastructures [5].

II. EXPERIMENTAL SETUP

For the experiment, a number of five servers were used.
Table I shows the configuration of the virtual instances, with
two servers belonging to Amazon Web Services (AWS), two
servers from Microsoft Azure and one machine provided by
the Google Cloud Platform (GCP).

TABLE I: Overview of used servers for the experiment

Server name Provider Region identifier Actual region
aws-us Amazon us-east-2 Ohio

aws-mumbai Amazon ap-south-1 Mumbai
azure-us Microsoft East US 2 Virginia
azure-eu Microsoft North Europe not specified
gcp-us Google us-east1-b South Carolina

A. Architecture

The physical machines are distributed over three different
regions of the world: North America, Asia and Europe. For
every provider, one machine was selected that is located in
the east of the US for comparison. The other regions were
selected based on operational costs. The goal was to have a
geographical comparison of the results, based on the location
of the honeypot system.

In order to reduce the financial costs, the machines were
set up with enough computing power to run the honeypots,
but limited storage space. Therefore, a sixth server was used
to store the collected log data. A similar architecture was first
proposed in [28], where multiple honeypots send their log data
to a central database for storage and analysis. Figure 1 depicts
the relationships between the servers.

azure-eu
40.112.89.227

Data Collector
35.206.76.158

gcp-us
35.207.53.10

aws-us
13.59.140.109

azure-us
137.116.37.224

aws-mumbai
35.154.66.201

Fig. 1: Architecture of the honey network

In our setup, the data collector server hosts Elasticsearch [9],
a search engine with an integrated document-based database.

The software is part of the ELK stack, a popular combination
of three individual tools for analytics and data visualization:
Elasticsearch, Logstash and Kibana. This combination is used
in similar works [1, 18] to perform analysis on data sets of
any size. Logstash [11] is a software that parses various log
files and converts them to a data format that is readable by
Elasticsearch. It can handle both binary and plain text files,
which is ideal to unify the outputs of different honeypot
tools. The last software is Kibana [10], a visualization tool
that directly communicates with Elasticsearch. It offers an
interactive user interface for working on the data and allows
to create visualizations and aggregations on the Elasticsearch
database.

To collect and store the honeypot outputs, the data collector
uses two methods to retrieve information. The first method
collects the raw output of the different honeypot tools. For
this, SSH is configured on the honeypots such that the data
collector can safely download the log files through the SSH
File Transfer Protocol (SFTP). As an additional measure, the
connection is protected by public-key cryptography and pass-
word authentication is explicitly disabled. The second method
involves Logstash, which is deployed on every honeypot
system and sends the relevant log entries to the Elasticsearch
instance on the data collector. This has multiple advantages:
the data is available in near real-time for live analysis and it
is directly saved to the database. This allows to work on the
data in a timely manner without having to import or convert
the raw data in the analysis phase of the experiment, saving
time and resources.

B. Software

All servers for the experiment run the same honeypot tools,
which simulate a wide range of services. To facilitate the setup
of all servers, T-Pot [6] was used. T-Pot offers a collection
of preconfigured honeypots, an IDS and various other tools
to enrich the honeypot data. Through various scripts and the
use of the container technology Docker, the honeypots are
deployed in separate environments on the system, but run on
the same network interface.

For the data collection we exclusively used low-interaction
honeypots. Compared to high-interaction honeypots, they are
easier to deploy and configure, as they mostly operate on
the application layer and can be easily secured and put in
isolated environments. The scope of the experiment is to
monitor the interactions with specific popular services, thus
low-interaction honeypots were used, even though the output
of high-interaction honeypots is often considered superior.
Also, Denial-of-Service (DoS) attacks were excluded, as they
offer no insights into single attacker patterns. The following
software packages were deployed for the data collection:

• Cowrie [19]
• Dionaea [7]
• Glastopf [25]
• Honeytrap [30]
• Mailoney [8]
• RDPY [22]



• Vnclowpot [14]
Additionally, the Suricata IDS [20] was used in order to

identify known threats and the fingerprinting software p0f [31]
added information about the incoming requests.

C. Security

The security of the connection between honeypots and data
collector is a key problem. Any attacks on the data collector
or the connection to the honeypots can harm the integrity
and correctness of the log data. Additionally, a compromised
honeypot system could be hijacked to access the data collector.
While the honeypots used in our experiment do not have any
elevated privileges on the system, potential vulnerabilities in
the software could lead to a machine takeover, so the prob-
ability of a compromise is not negligible. In our experiment,
these dangers are countered by two different security policies.

First, as the single honeypot systems should be accessible
from the Internet, the firewalls on the systems are configured
to allow all inbound connections, which means any port on the
system is accessible by any IP. At the same time the outbound
connections, the connections going from the honeypot to other
hosts, are strictly limited. Only connections on port 80 (HTTP)
and to the data collector are allowed. This is a compromise
to both minimize damage if a host is compromised and
allow malicious scripts to download payloads and additional
software, exposing more useful data.

The second policy affects the connection between data col-
lector and honeypot. The data collector has more strict firewall
rules, only allowing incoming connections to Elasticsearch
on port 9200. The access is further limited to the specific
honeypot IPs, therefore no external access is possible. This
policy was adapted to include additional personal computers
in order to access the data for analysis once the data collection
phase was terminated.

III. RESULTS

The experiment was conducted between March 2018 and
August 2018 for 63 days and 176,158,872 individual log
entries were collected. These involve about 268,614 unique
origin IPs. The following results are divided into two cate-
gories: Attack patterns and geographic analysis.

A. Analyzing Attack Patterns

Every connection to the honeypots has a specific motivation
and target. As Table II shows, the majority of requests targeted
SSH, Telnet and VNC services. The remaining 24.6 % of
connection is split between Honeytrap, which covers any
unused port, and the other honeypots.

1) Credentials: We further inspected SSH sessions, as
collected by the Cowrie honeypot, in order to find common
patterns used by attackers. For this, Cowrie is configured to
accept up to five username and password combinations before
it gives access to a user. During the authentication phase, these
credentials are logged by the honeypot. As most password-
protected systems, SSH authentication is vulnerable to brute-
force or dictionary attacks, therefore password authentication

TABLE II: Share of connections to honeypots

Honeypot Percentage
Cowrie 39.49 %

Vnclowpot 35.91 %
Honeytrap 12.37 %
Mailoney 6.45 %
Dionaea 3.37 %
Glastopf < 2.00 %
RDPY < 1.00 %

is often disabled and replaced with public-key authentication,
which requires elevated resources and time to break.

TABLE III: Top usernames and passwords attempted during
SSH attacks

Username Count Password Count
root 2,786,944 (empty) 344,588

admin 657,464 system 260,939
enable 259,427 sh 201,674
shell 259,314 admin 106,217

(empty) 149,456 1234 104,116

The captured credentials can be seen in Table III. Some
usernames, such as root, Administrator or admin are the most
common ones for privileged accounts on Linux and Windows
systems. Therefore a high occurrence was expected for these.

Regarding the passwords used during the login procedure,
there are more distinct results. This is because a password
can be totally random and unique, while usernames are often
chosen to be more memorable and a lot of systems share
the same usernames. It is also notable how most attempts at
guessing passwords try to omit the password. This could be
intentional or caused by faulty automated clients as a reaction
to unsuccessful password attempts.

2) Session Duration: As the honeypot saves timestamps of
all interactions, it was possible to calculate the duration of
every SSH session. A session starts with the first connection
request to the server and ends when the client disconnects from
the server. If during a session the client successfully logs into
the service, a terminal session is created, where the user is
able to enter commands.

Figure 2 shows the duration of both types of sessions in
comparison. The duration of full sessions ranges primarily
between 0 and 30 seconds. This includes different attempts at
password guessing, or failed attempts that are aborted quickly.
Between 30 and 60 seconds, there is a significant increase in
terminal sessions. Therefore, sessions that last this long have
a greater chance at using the hacked credentials to login and
execute commands. Also, a greater terminal session duration
might be an indicator that users manually enter commands,
while quick SSH sessions may indicate automated hacking
attempts.

The vast majority of attacks on SSH take less than a minute.
The greater the duration of full sessions and terminal sessions,
the greater the probability for a human behind the request.
Since it is difficult to define a threshold for a correlation
between session length and attacker type, more factors need
to be considered.



Fig. 2: Average duration of full SSH sessions (green) com-
pared to terminal sessions (blue).

3) Post-compromise Actions: Once the authentication pro-
cess is passed, attackers usually connect with their successful
credentials to access the system through an interactive terminal
session. The Cowrie honeypot simulates a Unix-like system,
therefore typical bash commands (e.g. cd) are available. By
analyzing these inputs, one can gain more insights on how
attackers operate.

During the data acquisition phase, a total of 83,278 entries
were collected, consisting of 79,946 (96 %) valid commands.
Of these, 778 distinct commands were identified. The mean
duration of a command, more precisely the timespan between
two commands, is approximately 792 milliseconds.

We manually analyzed the commands and developed a cat-
egorization method, adapted from two related approaches [24,
26]. Every command was mapped to one of the following
categories:

1) Check – Information gathering and exploring. Check the
system and identify versions, users, and file system.

2) Persist – Secure the access to the system. This step
involves increasing the foothold into the system, creating
(privileged) users and/or changing passwords to be able
to access the system even after disconnecting.

3) Exploit – Install and run software and scripts. This
should be the main action of an attacker.

4) Cleanup – Cover traces and remove evidence of an
intrusion. Often attackers try to eliminate traces of
the compromise by manipulating or deleting log files.
Deactivation of terminal logging features also falls under
this category.

5) Human – Commands that hint at a human attacker.
Some commands only make sense for humans, such as
man or clear.

A summary of the resulting categorization is provided in
Table IV. Any entry that could not be mapped to a valid
command is marked as unmatched. Commands that had no
significant side effects, such as sleep, were grouped as no
operation commands. Since the categorization was developed
based on the analyzed commands, over 97.5 % of commands

could be successfully matched to one of the categories.

TABLE IV: Categorization of individual commands

Category Commands Percentage
Check 51 6.56 %
Persist 1 0.13 %
Exploit 653 83.93 %
Cleanup 26 3.34 %
Human 25 3.21 %

(unmatched) 19 2.44 %
(no-op) 3 0.39 %

Total 778 100.00 %

Once the categories are assigned to commands, they can
be chained to build specific attack patterns. These patterns
have actions – the specific command – and states, which is
the assigned category. When state changes are analyzed, for
example going from a Check to an Exploit phase, they form
a graph that can be plotted as a state diagram.

This concept is visualized in Figure 3. The plot shows the
type of operations an attacker has taken and the order in which
these are executed, including only the main categories. For
example, most attackers either start an Exploit or try to disable
logging mechanisms directly after an intrusion.

Fig. 3: State diagram of attacker behavior after login

The most encountered pattern is composed by several
Cleanup operations, followed by Check commands. This pat-
tern is repeated several times per day.

B. Geographic Observations

Through geolocation databases, it is possible to map IP ad-
dresses to geographic locations. The T-Pot framework includes
the MaxMind GeoLite21 database, which was also used for
the experiment. Overall, traffic originated from 216 different
countries. The following sections present results of our traffic
analysis, differences between providers, regional differences
and an hourly comparison of attacks.

1) Traffic: Using IP geolocation, we matched request IPs
to countries. The resulting overview shows where the requests
to the honeypots originate from and how much of the traffic
is generated by specific countries or users.

In total, devices from 216 different countries have con-
nected to our honeypots. Table V shows the ten countries with

1https://dev.maxmind.com/geoip/geoip2/geolite2/



the most amount of requests. In summary, China, USA and
Russia are responsible for nearly 2/3 of the connections to
our honeypots, while the other countries have a significantly
smaller share. As the results show, the other 206 countries that
are missing from the table have a total share of 12.88 %, with
any country contributing below 1.4 % of connections.

TABLE V: Top 10 originating countries

Country name Number of connections Percentage of total
China 26,342,814 25.83 %

United States 25,713,416 25.21 %
Russia 14,793,086 14.50 %

Seychelles 5,881,405 5.77 %
Netherlands 4,603,325 4.51 %
Hong Kong 3,770,987 3.70 %

Canada 3,007,309 2.95 %
Vietnam 1,809,847 1.77 %
France 1,515,002 1.49 %

Germany 1,426,856 1.40 %
Total (top 10) 88,864,047 87.12 %

Total 101,994,243 100.00 %

These results are even more revealing when looking at
the individual IP addresses. The most active IP was located
in China and accounted for 12.53 % of all and 48.5 % of
Chinese connections. This can also be observed with other
countries, such as Seychelles, Hong Kong, the Netherlands
and Canada, where a single IP makes over 50 % of requests
in the respective country. In comparison, USA has two IPs
in the top 10 list, with around 13 % and 16 % of all US
connections. In short, most countries that generated significant
traffic to our honeypots have only a limited number of IPs from
where attacks are launched. This could be attributed to both
criminals and specific organizations with elevated resources,
such as governments or research facilities.

2) Provider Differences: Every cloud instance in our ex-
periment has the same configuration, runs the same honeypots
and they only differ in provider and physical location. For our
provider analysis, we compared three servers located in the US
east region. The findings show that GCP was targeted most,
with 5,292,372 connections compared to AWS (4,124,037)
and Azure (2,973,389). As Azure is often associated with
Microsoft services and systems and our honeypots only offered
limited emulation of Windows services, we assume that our
deployed honeypots were not attractive enough for attackers
of the Azure cloud platform. We did not find further indicators
that could reasonably explain the above differences.

3) Regional Differences: We selected three different loca-
tions to compare, having three servers based in the US. With a
server located in Europe and one in India, we have a measure
of how other continents are affected by the attacks, compared
to the US region.

We found that the US servers collected 67 % of traffic,
averaging 4,129,932 requests per server, while India collected
3,150,499 requests (17 %) and Europe 2,921,225 requests
(16 %). As the cloud providers and several popular services
on the Internet are based in the US, attackers might focus

on infrastructures located in the US regions to compromise
attractive targets.

4) Daytime Evaluation: An approach that is not much
explored for intrusion detection is the extraction of timestamps
from the data in order to attribute attack waves to specific
countries or regions. The main idea is to aggregate timestamps
of incidents and time zones retrieved through fingerprinting
tools.

In our analysis, we aggregated the number of attacks and
the individual timestamps and created a distribution over the
day. The results show the distribution of attacks over the
day, for any country in the local timezone determined by the
geographic IP location.

The results for Russia are shown in Figure 4. This graph
has peaks around 7 am and 7 pm, suggesting that most
attacks happen outside of business hours. Such graphs can
be created for countries, regions or even cities, depending
on the precision of the geolocation data source, even though
a minimum number of requests need to be collected over a
longer period of time.

Fig. 4: Hourly distribution of connections originating in Russia

IV. CONCLUSION

In this work we presented a methodology to capture hon-
eypot data and analyze it for typical attack patterns and
regional differences. The analysis reveals that the majority of
attacks originate in China, USA and Russia and target mostly
VNC and SSH services. Often the attacks are automated and
repeated over time, and IP ranges of cloud providers are
constantly scanned for exposed or vulnerable services. We
also demonstrated how honeypot data can be used for cyber
attribution when combined with additional data sources. For
the future, our setup and our database of log entries offers the
potential for an even more in-depth research in this field.
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