Scene Illumination as an Indicator of Image Manipulation

June 28th, 2010

Christian Riess

Elli Angelopoulou

Pattern Recognition Lab (Computer Science 5) University of Erlangen-Nuremberg

Subtopics in Image Forensics

- Verification of expected camera properties
 - Sensor noise
 - Lateral chromatic aberration
 - Bayer pattern

- Detection of output image artifacts
 - JPEG compression inconsistencies
 - Copy-move artifacts
 - Resampling artifacts

Images from [1].

- Verification of scene properties
 - Lighting direction
 - Specularity distribution

Images from [2]

- [1] B. Mahdian and S. Saic: "Detection of Copy-Move Forgery using a Method Based on Blur Moment Invariants", Forens. Sc. Int. (2) 2007, pp. 180-189.
- [2] M. Johnson and H. Farid: "Exposing Digital Forgeries in Complex Lighting Environments", Inf. Forens. and Sec. (2) 2007, pp. 450-461.

June 28th, 2010

Scene Illumination as an Indicator of Image Manipulation

Related Work on Scene Analysis

Johnson/Farid

- Illumination direction of objects
- Position of light sources from reflections in the eye

Lalonde/Efros, Cao et al.: Color consistency

Yu et al.: Specularities for recapturing detection

Christian Riess

June 28th, 2010 Scene Illumination as an Indicator of Image Manipulation

Page 3

Christian Riess

June 28th, 2010

Scene Illumination as an Indicator of Image Manipulation

Page 5

In this work, we present a method for **locally** estimating the **color of the illuminant** from a single image, and apply these estimates in **image forensics**.

Christian Riess

Prior Work on Color Constancy

Page 6

- Color constancy: create an image, where the object representation is independent of the illumination color.
- Under some assumptions this is equivalent to estimating the illuminant color
- Well-known illuminant estimation / color constancy methods:
 - Gray world, maxRGB: baseline methods
 - Gamut mapping: machine learning
 - Gray edge-* methods: machine learning + constrained variants
 - Color by correlation: physics-based, hard constraints
 - Inverse-intensity chromaticity: physics-based + specularity segmentation

Christian Riess

our starting point

Intensities: Sum of diffuse and specular components

$$I_c = m_d(\mathbf{x})\Lambda_c(\mathbf{x}) + m_s(\mathbf{x})\Gamma_c$$

$m_s({f x})$	Specular geometry
$m_d(\mathbf{x})$	Diffuse geometry
$\Lambda_c(\mathbf{x}) = B_c(\mathbf{x}) / \sum B_i(\mathbf{x})$	Diffuse chromaticity
$\Gamma_c = G_c / \sum_i G_i$	Specular chromaticity
$\left. \begin{array}{c} G_c \\ B_c(\mathbf{x}) \end{array} \right\}$	Diffuse and specular camera response
$i \in \{R,G,B\}$	Color bands

Christian Riess

Inverse-Intensity Chromaticity Space

is a line equation with slope $p_c(\mathbf{x})$ and intercept Γ_c .

 [1] R. Tan, K. Nishino, K. Ikeuchi: Color Constancy through Inverse-Intensity Chromaticity Space. Journal of the Optical Society of America A. 21(2004) 321-334.
Christian Riess

Ensure minimum

slope &

elongation

Illuminant Estimation – Our Version

This can be extended to real-world images [1]

- Draw local samples
- Project them in IIC-space
- Discard samples that fail some consistency checks
- Let the rest vote for an illuminant

Best-performing physics-based method on Ciurea/Funt benchmark database [2].

[1] C. Riess, E. Eibenberger, E. Angelopoulou: Illuminant Estimation by Voting, Technical Report, 2009.

[2] F. Ciurea, B. Funt: A Large Image Database for Color Constancy Research. Color Imaging Conference. (2003) 160-164.

Christian Riess

Ensure minimum

slope &

elongation

Illuminant Estimation – Our Version

This can be extended to real-world images [1]

- Draw local samples
- Project them in IIC-space
- Discard samples that fail some consistency checks
- Let the rest vote for an illuminant

ethod on Ciurea/Funt

stimation by Voting, Technical Report, 2009. onstancy Research. Color Imaging Conference.

Underlying Assumptions

Page 10

- Dielectric surfaces: Non-metallic, non-fluorescent, ...
- Neutral interface assumption (NIA): Color if specularities equals color of the illuminant
- Linear camera response, i.e. compensate gamma
- Objects
 - Curved
 - Directly lit
 - Not fully diffuse

Christian Riess

Local Patches: Evident Consequence

Perform the voting on parts of the image

- This leads to a what we call "Illuminant Map" of the scene
- Influences of multiple illuminants depend on the scene geometry
- Handling of multiple illuminants is a barely explored research problem (see e.g. [1])

[1] E. Hsu, T. Mertens, S. Paris, S. Avidan, F. Durand: Light Mixture Estimation for Spatially Varying White Balance. ACM Transactions on Graphics 27 (2008) 70:1-70-7

Christian Riess

Illumination Color: Indicator of Manipulation

Proposed method

- Estimate illuminant colors locally
- Create the illuminant map
- Let user select a region with estimates of the dominant illuminants
- Create a grayscale image where the shading of the pixels is

$$I_d(\mathbf{x}) = (\Gamma_I(\mathbf{x}) - I_1) \circ (I_2 - I_1))$$

 $\Gamma_I(\mathbf{x})$ Local estimate

i.e. the "membership" to an illuminant

Call this output distance map

 I_1 Est. Dom. Illum 1

 I_2 Est. Dom. Illum 2

Christian Riess

June 28th, 2010

Image Illuminant map Scene Illumination as an Indicator of Image Manipulation

Distance map

Ground Truth Results Illuminant Estimation

 Competitive results on two standard ground-truth datasets [1,2]

Error measure:

Angular error

$$e = \cos^{-1} \left(\frac{\Gamma_l \cdot \Gamma_e}{\|\Gamma_l\| \|\Gamma_e\|} \right)$$

median over test set

[1] K. Barnard, L. Martin, B. Funt and A. Coath: A dataset for Color Research. Color Research and Application (3) 2002, pp. 147-151.

[2] F. Ciurea, B. Funt: A Large Image Database for Color Constancy Research. Color Imaging Conference 2003, pp. 160-164.

Christian Riess

MethodMedian eGamut mapping**3.1°**Gray-World8.8°White-patch5.0°Color-by-Corr.8.6°Proposed method4.4°

Method	Median e
Gamut with offset-model	5.7°
Gray-World	7.0°
White-Patch	6.7°
Color-by-Correlation	6.5°
1 st -order Gray-Edge	5.2°
2 nd –order Gray-Edge	5.4°
Tan et al.	5.6°
Proposed method	4.4 °

[2]

Why a Physics-based Method?

- Illuminant color estimation from a single image is underconstrained
- Therefore, every method fails under certain conditions
- Machine-learning caused failures are sometimes counter-intuitive
- Using a physics-based model increases the chances that an educated user can explain the failures

Christian Riess

An Introductory Example

Christian Riess

A Complex Example

Christian Riess

Another Example

Page 17

Christian Riess

Page 18

- The goal of our work is to perform forensics analysis on top of the physics of the shown scene.
- We presented a method for estimating the illuminant color locally.
- This information can be exploited for assessing the illumination consistency.
- Future work: a metric for the inconsistency of illumination
- Source Code at http://www5.informatik.uni-erlangen.de/code

Christian Riess