The Spectral Relation between the Cube-Connected Cycles and the Shuffle-Exchange Network

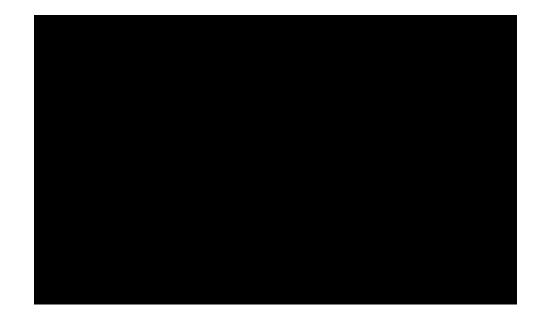
Christian Riess¹ Rolf Wanka² Volker Strehl³ February 29, 2012

¹Pattern Recognition Lab (CS 5) ²Hardware-Software Co-Design (CS 12), ³Artificial Intelligence (CS 8)

TECHNISCHE FAKULTÄT

Spectra of Networks

- Spectral set () contains information on
 - Network throughput
 - Fault-tolerance
 - ...
- Known spectra:
 - Linear array
 - Cycle
 - Hypercube
 - Butterfly
 - De Bruijn

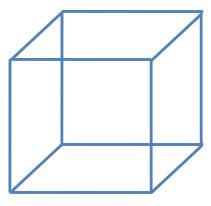


Spectra of Networks

- Spectral set () contains information on
 - Network throughput
 - Fault-tolerance
 - ...
- Known spectra:
 - Linear array
 - Cycle
 - Hypercube
 - Butterfly
 - De Bruijn

Parallel Computations on the Hypercube

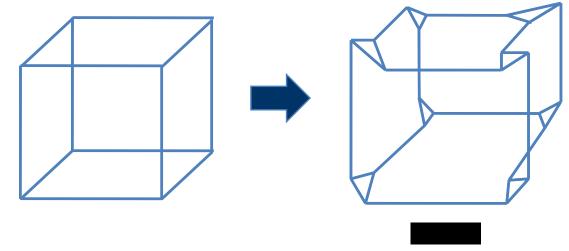
- I-dimensional Hypercube: a popular architecture for parallel computations
- Versatile connection structure for many algorithms
 - Finite differences
 - Spanning trees
 - Connected components
 - Sorting networks
 - Nearest neighbor search
 - Chinese remaindering
 - ...



• Drawback: degree ■ in every node

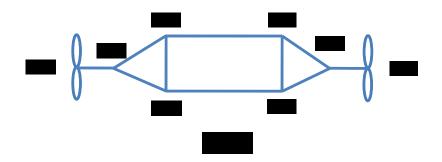
Hypercubic: Cube-Connected Cycles Network

- I-dimensional Cube-Connected Cycles
 Image: Image of the second seco
- Starting from a hypercube, every node is replaced by a cycle



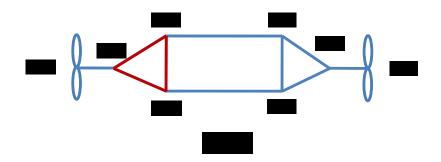
- Runs hypercube algorithms with constant slowdown
- Constant degree

- I-dimensional Shuffle-Exchange Network
- Connections according to bit pattern:
 - Cyclic left- or right shifts
 - Flip (exchange) of the last bit



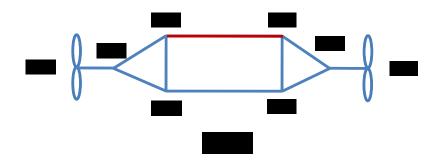
- Runs hypercube algorithms with constant slowdown
- Constant degree

- I-dimensional Shuffle-Exchange Network
- Connections according to bit pattern:
 - Cyclic left- or right shifts
 - Flip (exchange) of the last bit



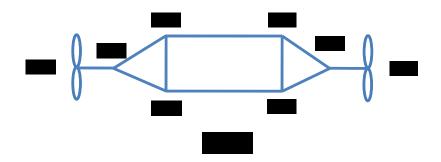
- Runs hypercube algorithms with constant slowdown
- Constant degree

- I-dimensional Shuffle-Exchange Network
- Connections according to bit pattern:
 - Cyclic left- or right shifts
 - Flip (exchange) of the last bit



- Runs hypercube algorithms with constant slowdown
- Constant degree

- I-dimensional Shuffle-Exchange Network
- Connections according to bit pattern:
 - Cyclic left- or right shifts
 - Flip (exchange) of the last bit



- Runs hypercube algorithms with constant slowdown
- Constant degree

Mathematical Tools for Network Characterization

- Network = Graph (represented by its adjacency matrix)
- Spectral graph theory:

Examine relationship between the network and its Eigenvalues/Eigenvectors

• A small example:

 \searrow

Eigenvalues:

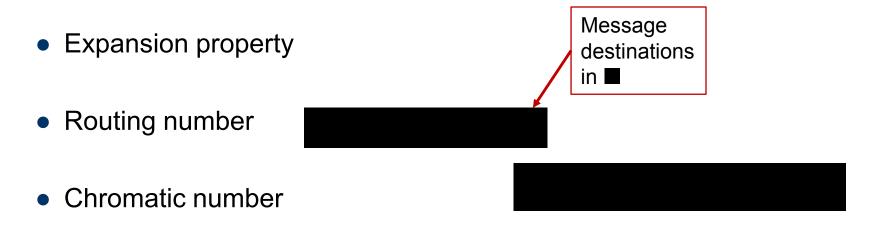
Average degree:

- Isoperimetric number
- Expansion property
- Routing number
- Chromatic number
- Independence number
- Bisection width

- Isoperimetric number
- Expansion property
- Routing number
- Chromatic number
- Independence number
- Bisection width

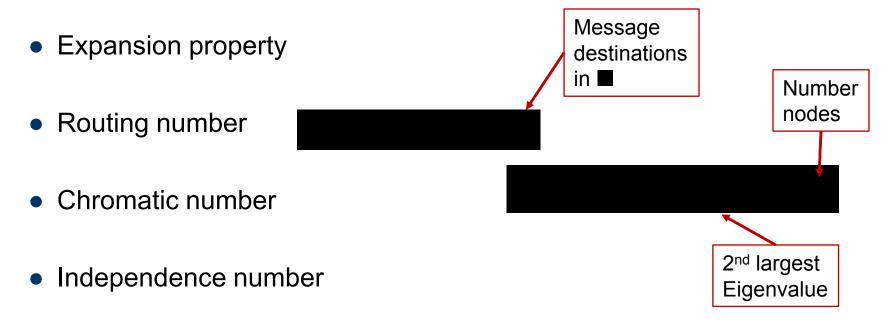
- Isoperimetric number
- Expansion property
 Routing number
- Chromatic number
- Independence number
- Bisection width

• Isoperimetric number



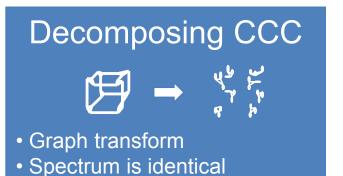
- Independence number
- Bisection width

• Isoperimetric number



Bisection width

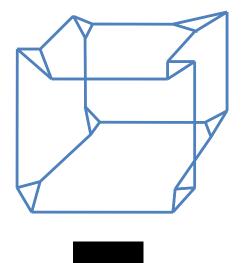
Spectral Relation of CCC and SE

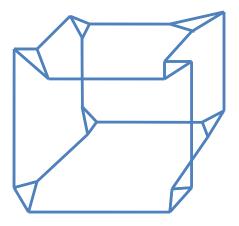


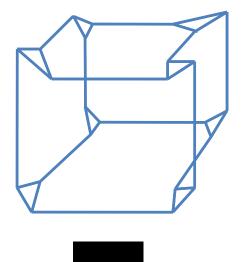
Decomposing SE KDA → ◄< ▷► • Similarity transform • Spectrum is identical

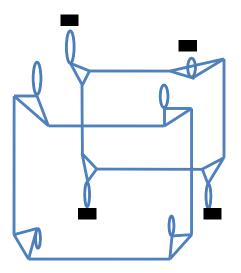
Relation of CCC and SE

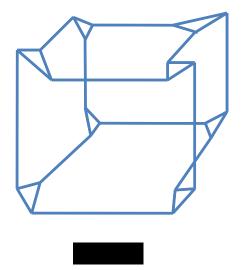
- Matching of subgraphs
- If d odd: SpS(CCC(d)) = SpS(SE(d))
- If d even: $SpS(CCC(d)) \supset SpS(SE(d))$

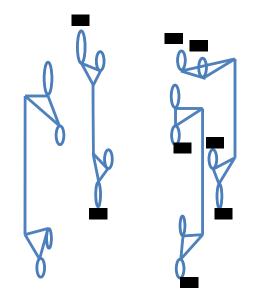


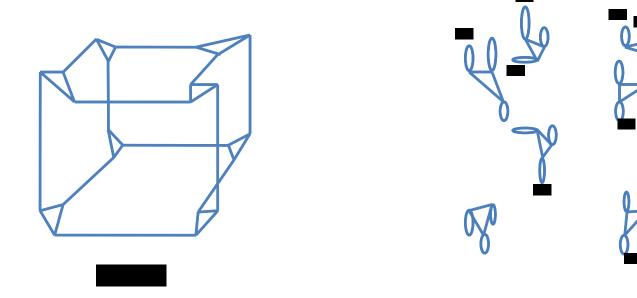


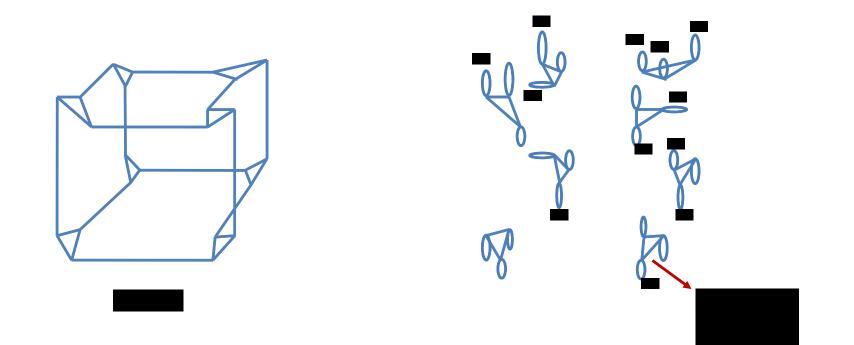


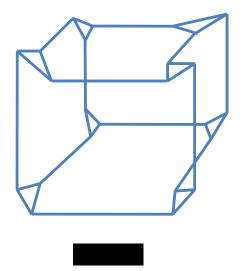


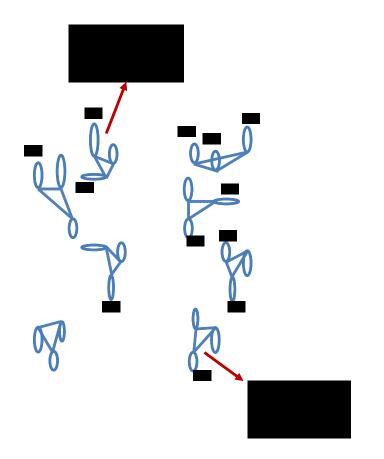


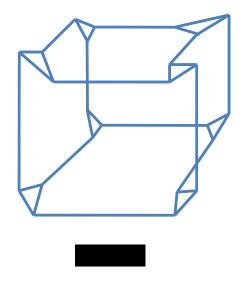


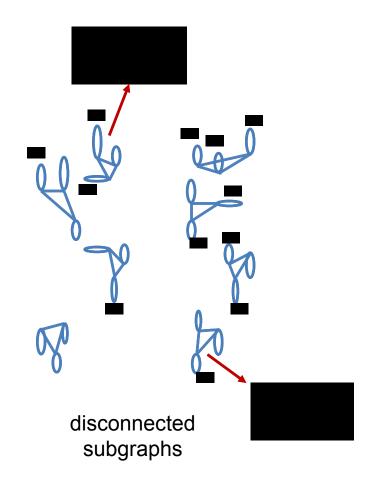


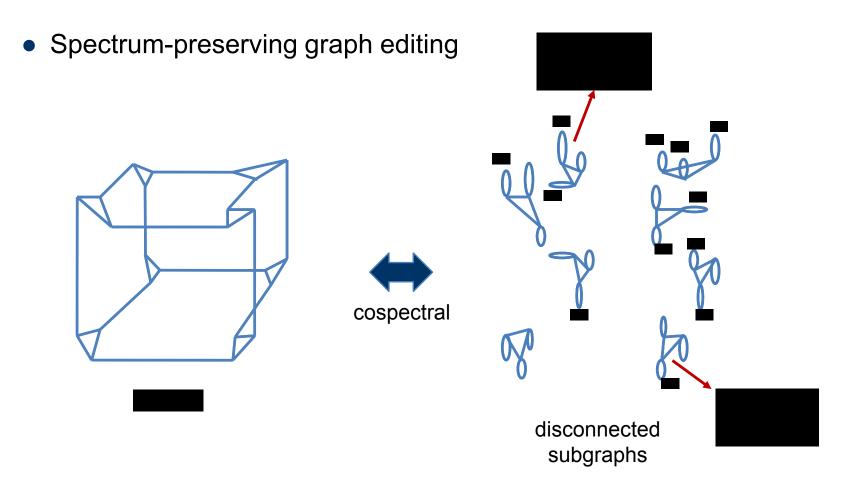




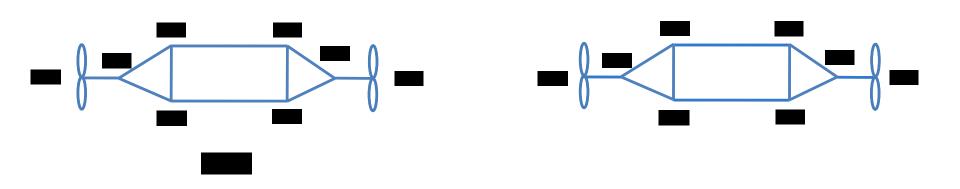




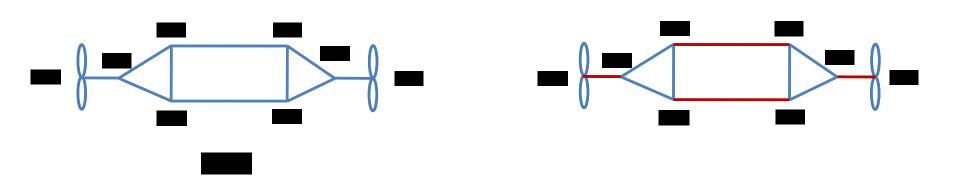




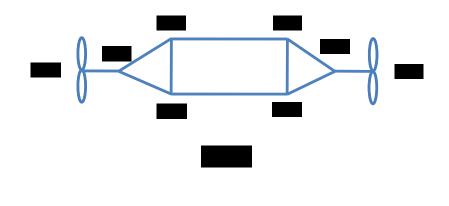
• Removal of "exchange edges"

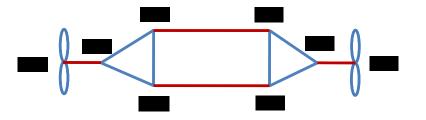


• Removal of "exchange edges"

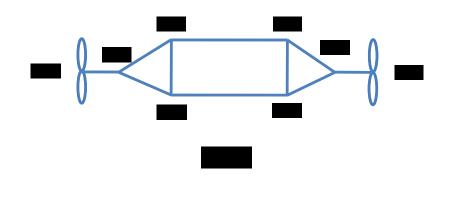


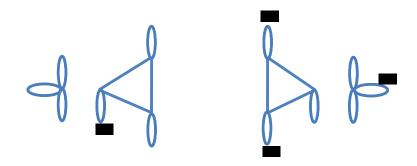
• Removal of "exchange edges"



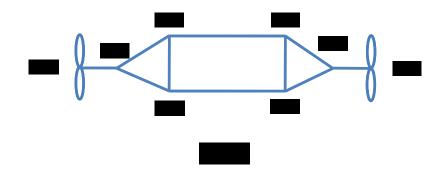


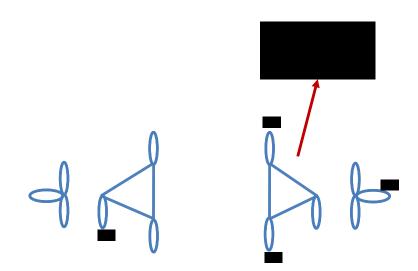
• Removal of "exchange edges"



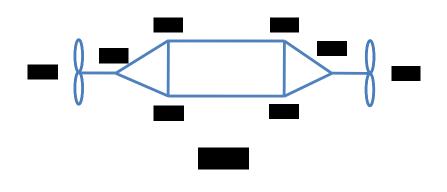


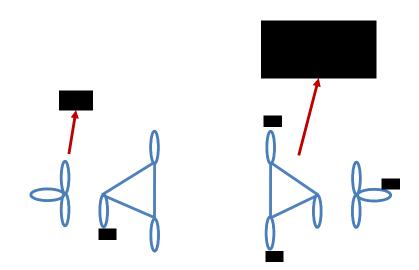
• Removal of "exchange edges"



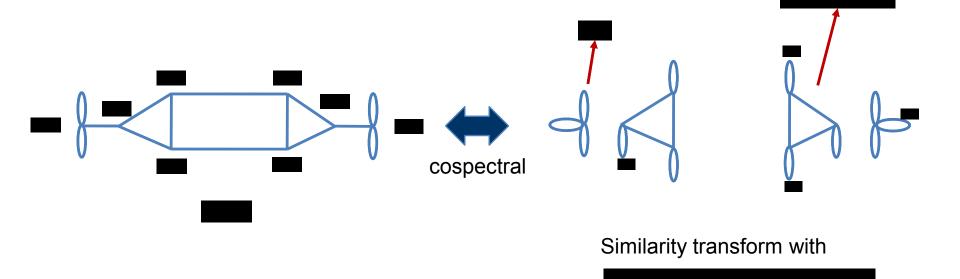


• Removal of "exchange edges"

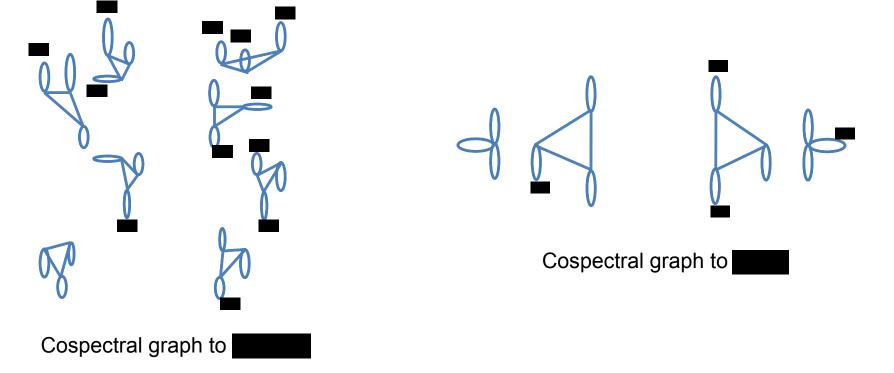




• Removal of "exchange edges"

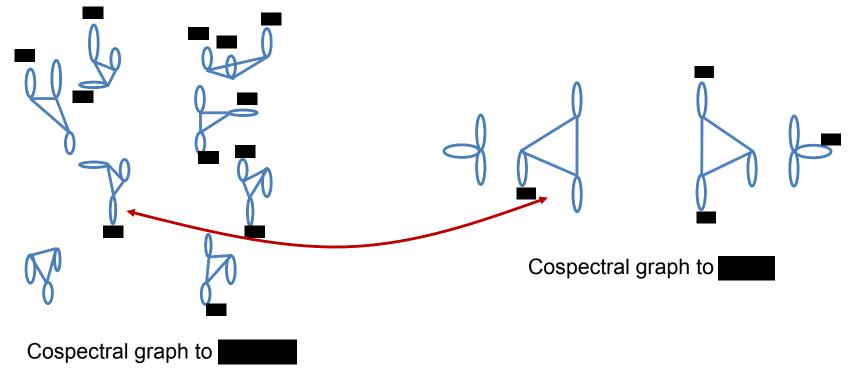


• We characterize the mappings i.e.

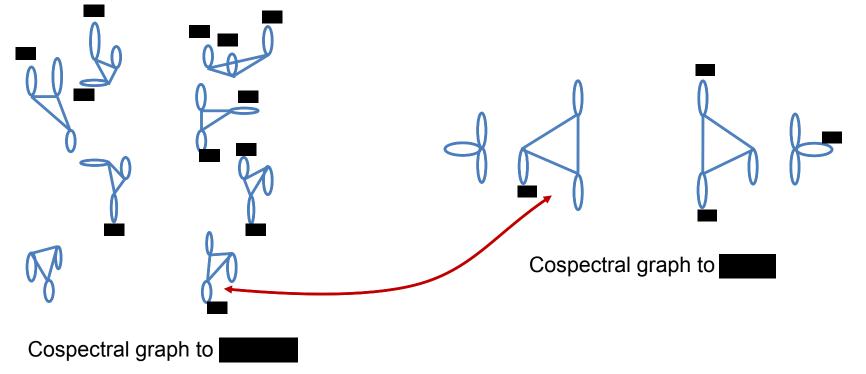


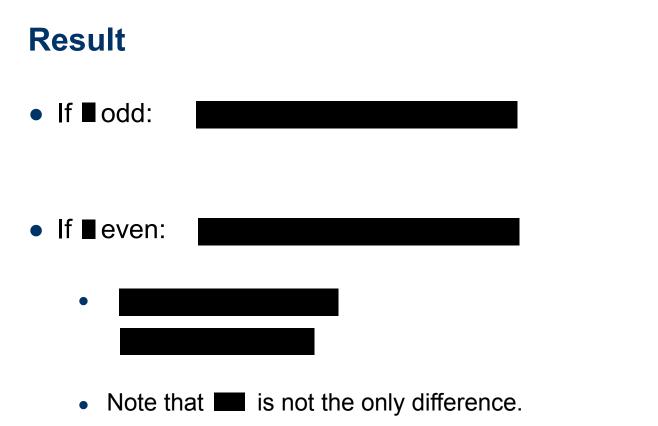
• We characterize the mappings i.e. Cospectral graph to Cospectral graph to

• We characterize the mappings i.e.

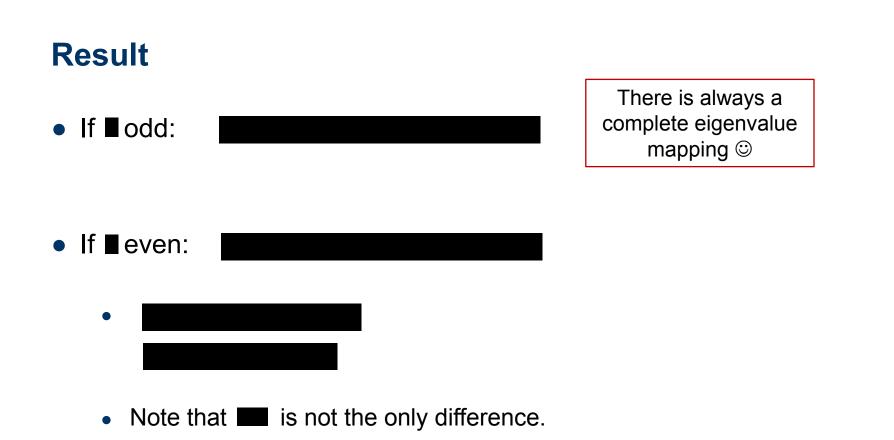


• We characterize the mappings i.e.

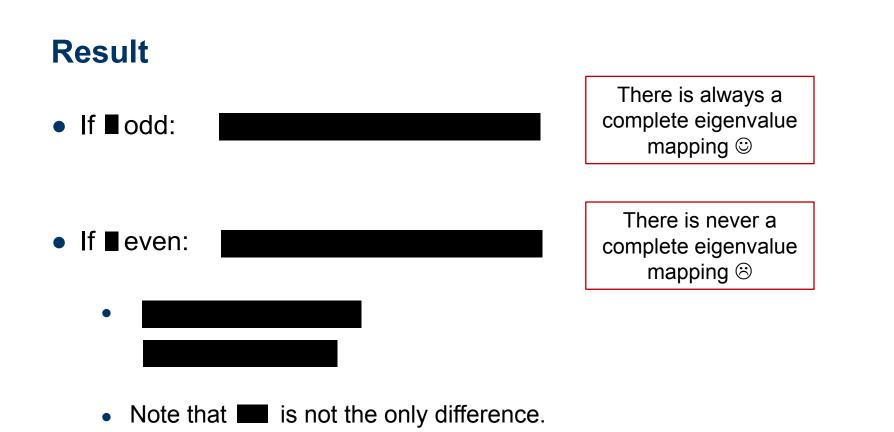




We illustrate that in a second.

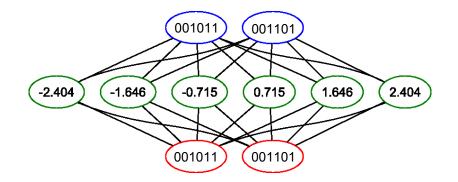


We illustrate that in a second.



We illustrate that in a second.

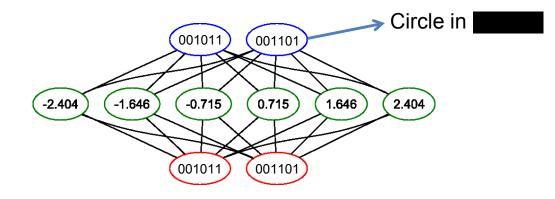
- Let
 Denote e.g.
 as
 (by the diagonal entries)
- Aperiodic case: a cycle appears in both graphs



Sometimes, this does not work!
 compresses periodic cycles

1 00000
100
10
1

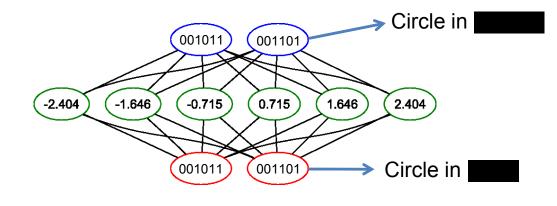
- Let
 Denote e.g.
 as
 (by the diagonal entries)
- Aperiodic case: a cycle appears in both graphs



Sometimes, this does not work!
 compresses periodic cycles

1 00000
1 00
10
1

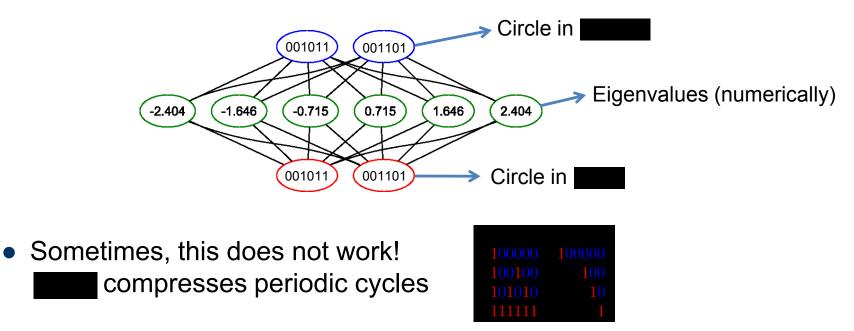
- Let
 Denote e.g.
 as
 (by the diagonal entries)
- Aperiodic case: a cycle appears in both graphs

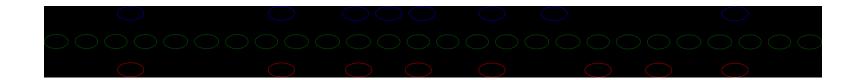


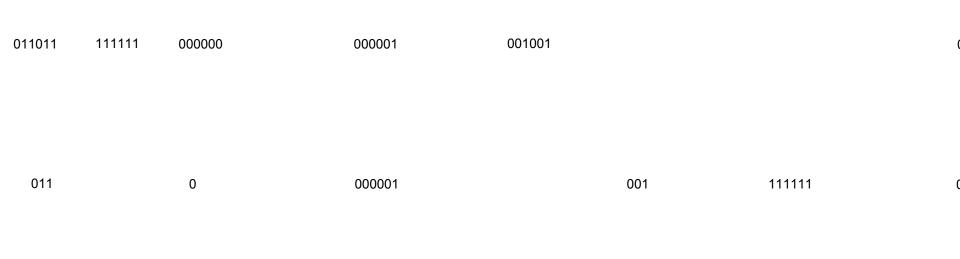
Sometimes, this does not work!
 compresses periodic cycles

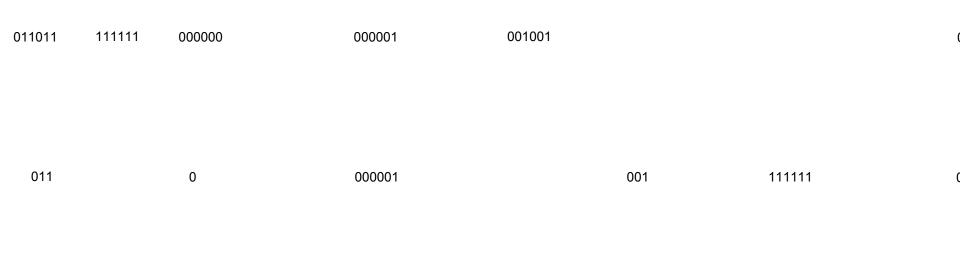
1 00000
100
10
1

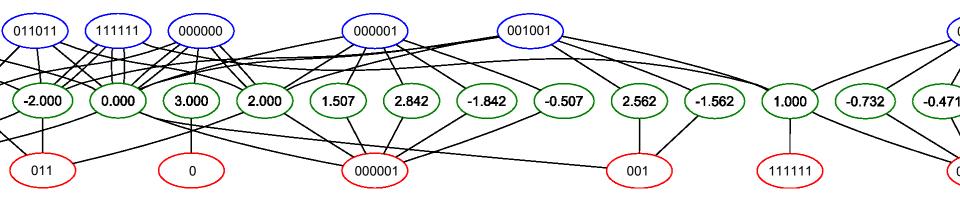
- Let
 Denote e.g.
 as
 (by the diagonal entries)
- Aperiodic case: a cycle appears in both graphs

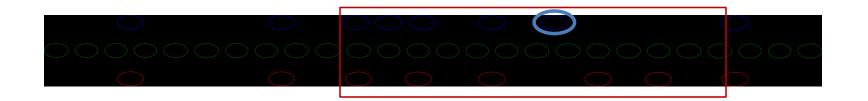


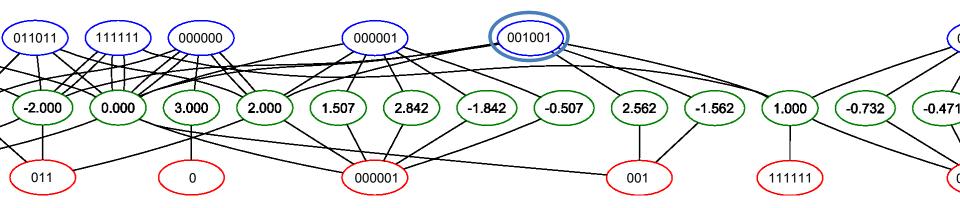


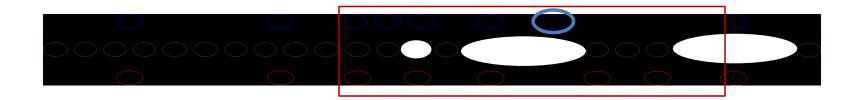


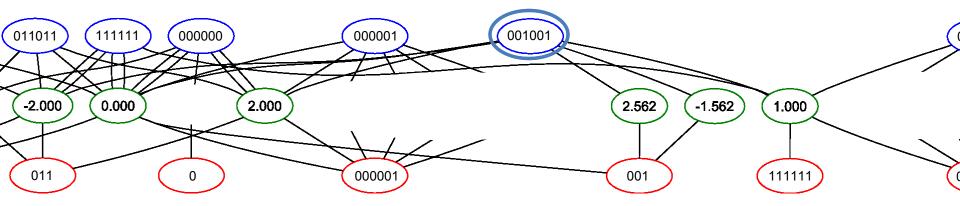


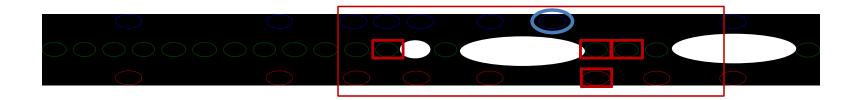


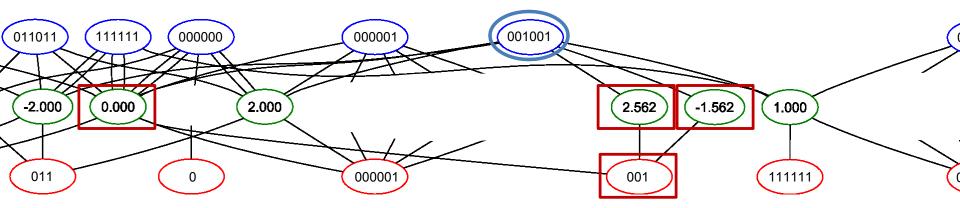


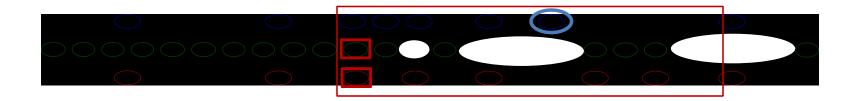


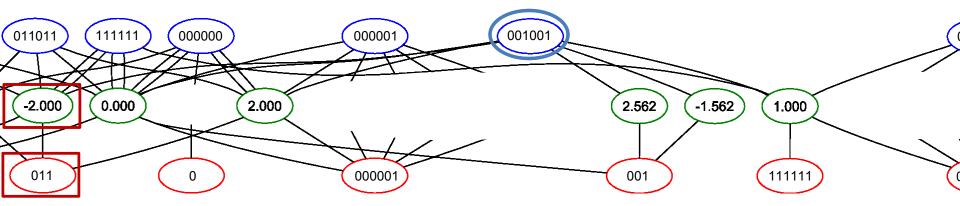


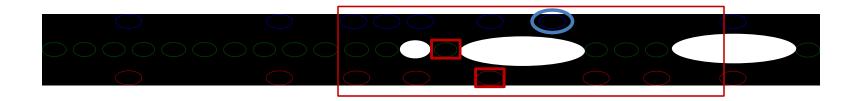


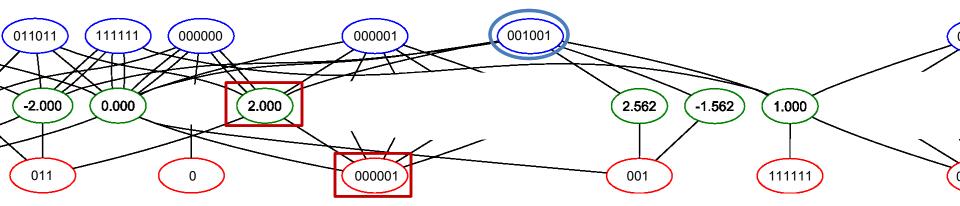


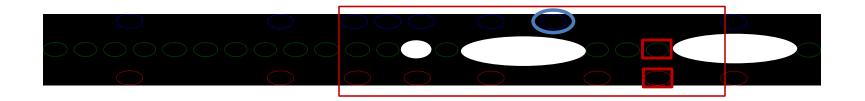


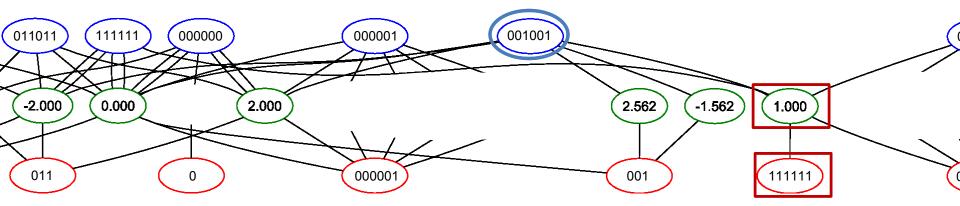


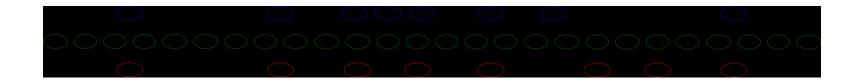


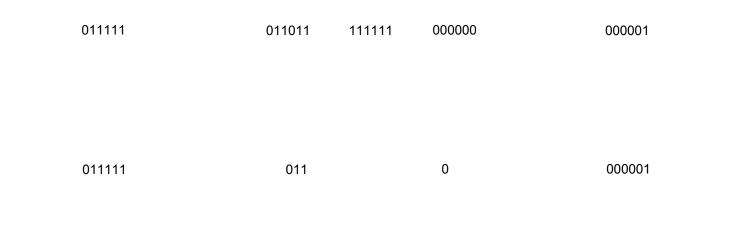




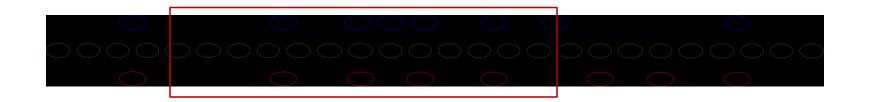


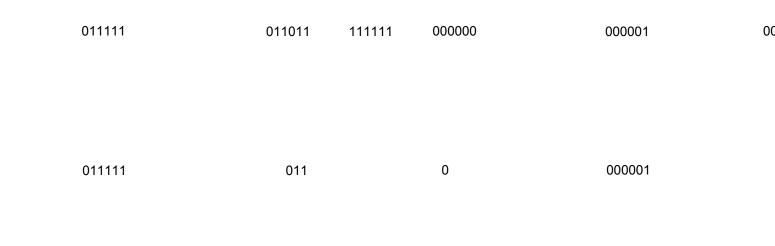


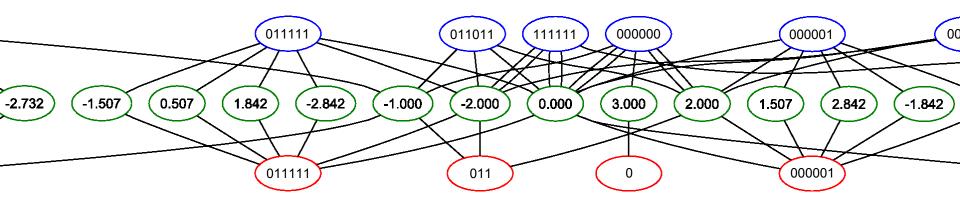


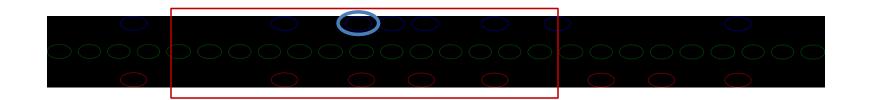


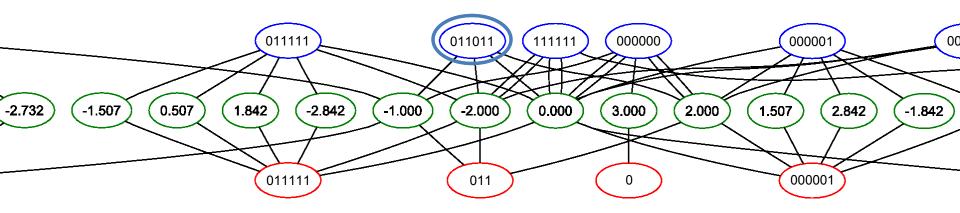
00

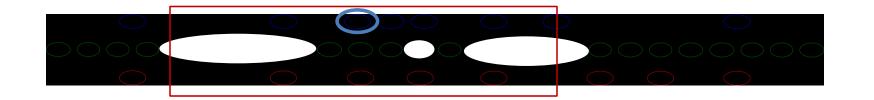


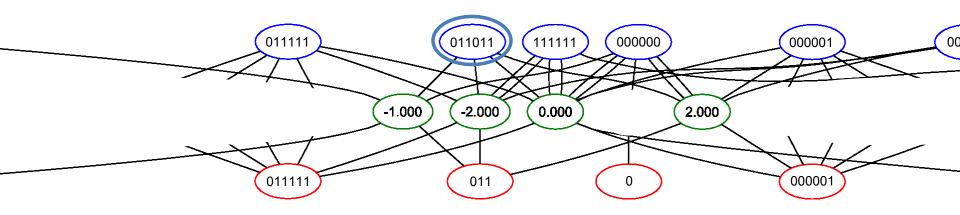


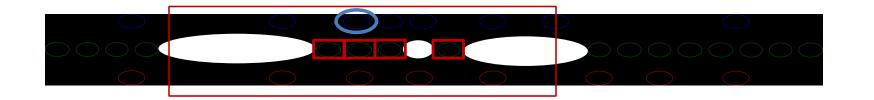


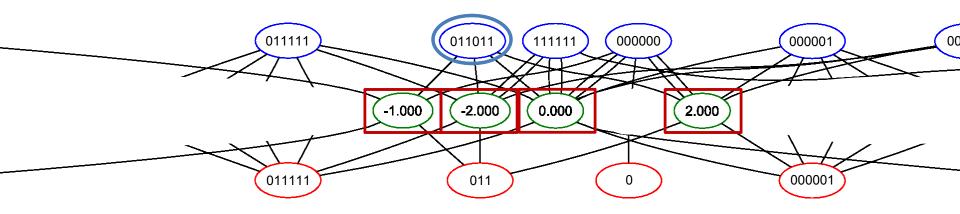


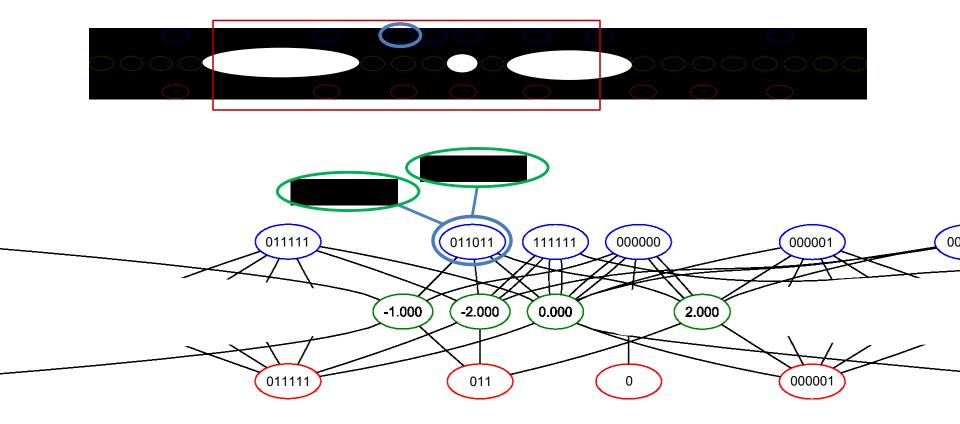


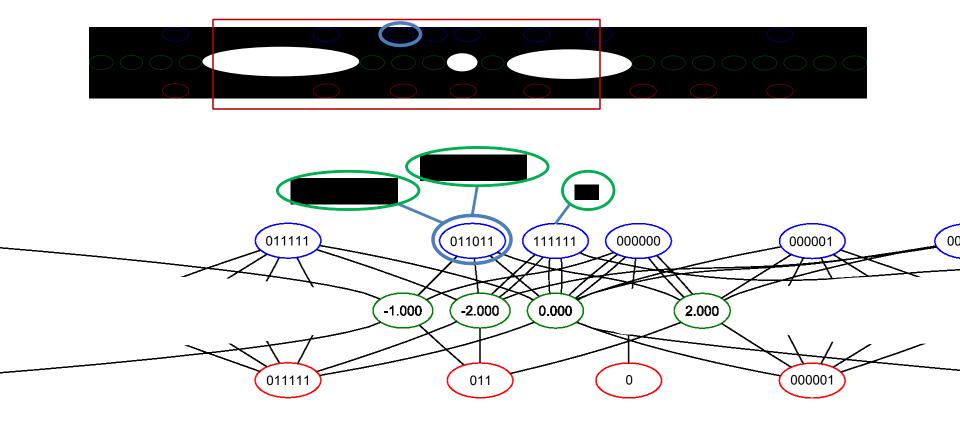












- Graph spectra characterize parallel networks
- d-dimensional Cube-Connected Cycles (CCC) and Shuffle Exchange (SE) Network offer similar properties

- Graph spectra characterize parallel networks
- d-dimensional Cube-Connected Cycles (CCC) and Shuffle Exchange (SE) Network offer similar properties
- Spectral relation:
 - Spectral sets are equal when ddd
 - Spectral sets **differ** when **■** even

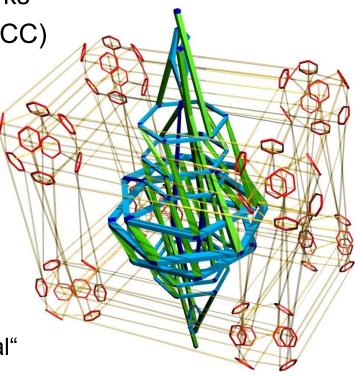
several eigenvalues are "accidentally equal"

- Graph spectra characterize parallel networks
- d-dimensional Cube-Connected Cycles (CCC) and Shuffle Exchange (SE) Network offer similar properties
- Spectral relation:
 - Spectral sets are equal when ddd
 - Spectral sets differ when even

al"

several eigenvalues are "accidentally equal"

- Graph spectra characterize parallel networks
- d-dimensional Cube-Connected Cycles (CCC) and Shuffle Exchange (SE) Network offer similar properties
- Spectral relation:
 - Spectral sets are equal when ddd
 - Spectral sets differ when even



several eigenvalues are "accidentally equal"

• Future work: pin down the "accidental"

Thank you for your attention.

TECHNISCHE FAKULTÄT