Color Constancy in 3D-2D Face Recognition

Manuel Meyer¹, Christian Riess¹, Elli Angelopoulou¹, Georgios Evangelopoulos², Ioannis A. Kakadiaris²

ikakadia@central.uh.edu ¹Pattern Recognition Lab, University of Erlangen-Nuremberg, Germany ²Computational Biomedicine Lab, University of Houston, USA

FRIEDRICH-ALEXANDER UNIVERSITÄT ERLANGEN-NÜRNBERG

Color-Aware Face Recognition

- State-of-the-art Face Recognition (FR) methods assume white illumination
- Object color appearance varies with illuminant color

Contributions:

- First group to study color constancy (CC) in FR
- Controlled ground truth experiments to determine theoretical maximum performance improvement
- Integration of a CC method in 3D-2D FR system to determine practical performance gain

Databases

Dataset 1: Strong illumination changes

- 5 subjects under 9 lighting conditions
- Scenes contain Lambertian surface

Dataset 2: Real-world conditions

- 9 subjects under natural illumination
- Gallery computed on indoor, probe on outdoor images

Methodology

Investigate FR performance under

- no color correction
- near-perfectly known illuminant color information
- a more realistic setup, using illuminant color estimates

FR Framework based on Toderici *et al.* [1]: **3D-aided 2D FR** Illuminant normalization in relighting step:

$$\mathcal{R}(\vec{x}) = \mathcal{T}^p(\vec{x}) - \vec{i}_s^p(\vec{x}) - (\vec{i}_d^p(\vec{x}) + \vec{i}_a^p(\vec{x})) \cdot \frac{\mathcal{T}^g(\vec{x}) - \vec{i}_s^g(\vec{x})}{\vec{i}_d^g(\vec{x}) + \vec{i}_a^g(\vec{x})}$$

Gallery texture $\mathcal{T}^{g}(\vec{x})$ is adapted to the probe texture $\mathcal{T}^{p}(\vec{x})$, taking into account the specular and diffuse components $\vec{i}_{s}(\vec{x})$, $\vec{i}_{d}(\vec{x})$ of scene reflectance, respectively, and the ambient illumination $\vec{i}_{a}(\vec{x})$ for gallery and probe.

The illuminant color can be incorporated in the FR system by directly inserting its chromaticity in $\vec{i}_s(\vec{x})$, $\vec{i}_d(\vec{x})$, and $\vec{i}_a(\vec{x})$.

Two ways to estimate illuminant color from input:

- Ground truth with a Lambertian surface: Positioned next to subject, in the background of the scene
- Compute via a physics-based CC algorithm: Illuminant estimation by voting [2] on face region

Experiments

Performance gain in different CC scenarios:

- **GT** from Lambertian surface: **16% AUC**
- CC on gallery and/or probe: 4% 7% AUC
- For real-world images, the verification performance

considerably increases at low FARs: **17% at 10**-3

Short identifier	Setup	AUC
White	fixed illuminant to white	0.605
P LS	LS on probe	0.577
G LS	LS on gallery	0.527
P+G LS	LS on probe and gallery	0.705
P ICE	illuminant color estimation on probe	0.642
G ICE	illuminant color estimation on gallery	0.564
P ICE G LS	illuminant color estimation on probe, LS on gallery	0.630
P LS G ICE	LS on probe, illuminant color estimation on gallery	0.650
P+G ICE	illuminant color estimation on probe and gallery	0.635

Table 1: Experimental setup and their respective short identifiers.

References

- [1] Toderici et al.: "Bidirectional Relighting for 3D-Aided 2D Face Recognition", IEEE CVPR, pp. 2721-2728, 2010.
- [2] Riess et al.: "Illuminant Color Estimation for Real-World Mixed-Illuminant Scenes", IEEE CPCV, pp. 782-789, 2011.

Verification and Identification on the 5-subject colored light dataset.

Verification and Identification on the indoor/outdoor dataset.