
IEEE TRANSACTIONS ON IMAGE PROCESSING 1

Multi-Illuminant Estimation with Conditional
Random Fields
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Abstract—Most existing color constancy algorithms assume
uniform illumination. However, in real-world scenes, this is
not often the case. Thus, we propose a novel framework for
estimating the colors of multiple illuminants and their spatial
distribution in the scene. We formulate this problem as an
energy minimization task within a Conditional Random Field
over a set of local illuminant estimates. In order to quantitatively
evaluate the proposed method, we created a novel dataset of two-
dominant-illuminants images comprised of laboratory, indoor
and outdoor scenes. Unlike prior work, our database includes
accurate pixel-wise ground truth illuminant information. The
performance of our method is evaluated on multiple datasets.
Experimental results show that our framework clearly outper-
forms single illuminant estimators, as well as a recently proposed
multi-illuminant estimation approach.

Index Terms—Color constancy, CRF, Multi-illuminant

I. INTRODUCTION

The vast majority of existing color constancy algorithms are
based on the assumption that there exists a single illuminant
in the scene. Many images, however, exhibit a mixture of
illuminants with distinct chromaticities. Consider, for example,
indoor scenes which are lit by both indoor light sources
and outdoor light coming through the windows. Or think of
an outdoor scene, where parts of the image are in direct
sunlight, while others are in shadow which is illuminated by
blue skylight. Another example, where single illuminant white
balancing is known to give unsatisfactory results, is pictures
taken with a camera-flash. Illuminant estimation methods that
assume uniform illumination cannot accurately recover the
illuminant chromaticity and its variations across such scenes.
Examples of multi-illuminant pictures, and the color-coded
pixelwise influence of each illuminant, can be seen in Fig. 1.

Extending existing color constancy methods to successfully
compute multi-illuminant estimates is a challenging problem.
Consider two of the most popular branches of existing color
constancy approaches: statistics-based methods and physics-
based ones. The success of statistics-based techniques [1]–[4]
depends on the size of the statistical sample. Applying these
methods to small image regions introduces inaccuracies [5]
and is unlikely to yield stable results. Physics-based methods
either assume purely diffuse scenes, e.g., [6], [7], which is
not often applicable in real scenes, or exploit the presence
of specularities in an image, e.g., [8], which typically occur
very sparsely. As a result, a direct extension of global (image-
wide) color constancy methods to region-based ones is likely
insufficient. Spatial constraints between the estimates will be
required to obtain acceptable results.
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Fig. 1: Sample images from our datasets. The bottom row
shows the relative influence of the two incident illuminants
color-coded in blue and red.

We propose a multiple illuminant estimation method which
first extracts local estimates. We overcome the inherent insta-
bility of local measurements by globally solving the illuminant
labelling problem by means of a Conditional Random Field
(CRF). We prove that several existing approaches, namely
statistics- and physics-based methods, can be written in the
form of a CRF. The CRF formulation provides a natural
way to: a) combine various approaches into a single multi-
illuminant estimate and b) incorporate spatial information
about the illuminant distribution. We show that representing
these methods by such a model allows us to robustly extend
them to multi-illuminant estimation. Furthermore, we created
two new datasets for multi-illuminant color constancy with
highly accurate, computationally extracted (instead of man-
ually annotated) pixelwise ground truth. The first database
contains laboratory images, designed for evaluation under
close-to-ideal conditions. The second dataset is composed
of real-world multi-illuminant scenes (indoor and outdoor),
which more closely approximate real-world scenarios.

In summary, the main contributions of this paper are:
• The formulation of multi-illuminant estimation as a CRF

model.
• The expression of existing bottom-up approaches to color

constancy as an energy minimization problem.
• The creation of two new datasets for multi-illuminant

estimation.
• An extensive experimental evaluation which shows that

the proposed method addresses the intrinsic challenges
in multi-illuminant scenes, i.e. the estimation of the illu-
minant colors and their spatial distribution, with superior
accuracy compared to prior work.
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The paper is organized as follows. In Sec. II, we present
related work in color constancy, and in particular methods that
have been used as a foundation for the proposed approach.
An overview and the theoretical foundation of the proposed
framework is introduced in Sec. III. Unary and pairwise
potentials for the CRF are derived in Sec. IV and Sec. V,
respectively. In Sec. VI, we provide implementation details of
our algorithm. Section VII contains a description of the new
multi-illuminant datasets, as well as the computation of the
ground truth. Experimental results are presented and discussed
in Sec. VIII. We summarize the findings of this work in
Sec. IX. Additional mathematical details are presented in the
appendix.

II. RELATED WORK

Statistics-based color constancy methods derive the estimate
of the illuminant color from assumptions on the statistics of
reflectances in the world. The grey-world algorithm [1] is
the most well-known method of this family. It computes the
illuminant of a scene by assuming that the average scene
reflectance is grey. Another popular method is the MAX-
RGB algorithm which computes the illuminant in a scene
from the maximum responses in the RGB channels [9]. It
was noted by Gershon et al. [10] that it is often beneficial
to assume that the average of the intensity values of a scene
is equal to the average reflectance of a database. Finlayson
and Trezzi [3] showed that both the grey-world and the MAX-
RGB algorithms are instantiations of the more general shades-
of-grey method which estimates the illuminant of images by
computing the Minkowski norm of the pixels in a scene. Van
de Weijer et al. [2] further extended this theory to also include
image derivatives. Finally, Gijsenij et al. [4] showed that
weighting edges according to their physical cause (shadow,
specularity, or material transition) can further improve results.

In comparison, physics-based methods exploit the inter-
action between light and material to infer the illuminant
color in an image. Some methods, e.g. [6], [7], assume the
scene is entirely composed of diffuse surfaces, while others,
e.g. [8], [11], exploit the presence of specular highlights.
These latter methods are based on dichromatic reflectance [12]
which models the reflected light as a combination of diffuse
and specular reflection. Based on the assumption of neutral
interface reflection, the color of specular highlights is the same
as the illuminant color and therefore an important cue for color
constancy (see, e.g., [8], [12]).

Gamut based methods exploit the fact that only a limited
set of RGB values can be observed under a known canonical
illuminant. This set of RGB values can be represented by a
canonical convex hull in RGB space [13]. Thus, feasible illu-
minants can be estimated by computing all possible mappings
from a single image’s convex hull to the canonical convex
hull. The scene illuminant is heuristically selected from the
feasible illuminants. This method was further extended by
Finlayson et al. [14] by constraining the possible illuminants
to be on the Planckian locus. Gijsenij et al. [15] expanded
this theory to higher-order derivative structures of the images.
For a more complete overview of color constancy, see e.g. the
recent overview articles [16]–[18].

There are illuminant estimation methods explicitly designed
to handle varying illumination. In 1997, Barnard et al. [19]
were the first ones to develop a methodology that automatically
detects non-uniform illumination. They then proceeded with
removing the illumination variation, at which point they could
apply any gamut-based color constancy method. Though this
method was pioneering at that time, its smooth illumination
assumption restricts its applicability on real-world images.
Ebner [20] followed a different approach of applying a
diffusion-based technique on pixel intensities. However, he
too assumes a smoothly varying illumination, which together
with his underlying theory of regional grey-world can result
in inaccuracies, especially in colorful scenes [21]. More re-
cently, Kawakami et al. [22] proposed a physics-based method
specifically designed to handle illumination variations between
shadowed and non-shadowed regions in outdoor scenes. Due to
its explicit assumption of hard shadows and sky-light/sunlight
combination (or even more general Planckian illuminants),
this method does not generalize well on arbitrary images.
Gijsenij et al. [23] recently proposed an algorithm for scenes
with two light sources . The reported experimental results are
promising. However, it is not clear how to extend this method-
ology for non-local illuminant cues. When the chromaticity
of the two incident illuminants is known, Hsu et al. [24]
proposed an algorithm for high quality white-balanced images.
However, their assumption of two known illuminants limits the
applicability of the method to close-to laboratory conditions.
Thus, by construction, none of the existing multi-illuminant
estimation methods can handle arbitrary images and as such,
none of them has been extensively tested on a large variety of
real-world images.

The usage of a CRF for estimating the intrinsic properties
of a scene, has been applied in several other papers. Lu and
Drew [25] apply a Markov Random Field (MRF) for shadow
segmentation. Their method is based on a Planckian illumi-
nant assumption, which allows them to formulate a pairwise
potential which enforces label consistency when chromaticity
variations could be explained by an illuminant change. How-
ever, their method does not explicitly compute the illuminants
of a scene. Lalonde et al. [26] identify shadow-regions based
on local features. They subsequently use a CRF to group the
shadow edges into coherent shadow contours. Serra et al. [27]
use a CRF approach to estimate both reflectance and shading
intrinsic images of scenes. However, their method assumes a
single white illuminant.

III. METHODOLOGY

A. Overview

When multiple illuminants are present in a scene, the
spatial distribution of the illumination conditions becomes very
important. We propose a new algorithm for multiple illuminant
estimation based on a Conditional Random Field (CRF) frame-
work. Our approach, called Multi-Illuminant Random Field
(MIRF), estimates illuminants locally and uses the random
field to resolve topological inconsistencies in the extracted
illuminant colors. More specifically, MIRF is composed of the
steps outlined in MIRF Overview.
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MIRF Overview
1: Divide an image into N patches p1, p2, ..., pN .
2: Extract local illuminant-color estimates ij per patch pj .
3: Determine the dominant illuminants via K-means cluster-

ing on the ij’s.
4: Find the optimal labelling by minimizing the CRF energy

function. The energy function encourages both the local
illuminant labels xj to be close to the local illuminant
estimates ij , and neighboring patches to have the same
label, when applicable.

A key component of MIRF is the setup of the conditional
random field. The nodes in the graph represent image patches
p1, p2, ..., pN with local observations F1,F2, ...,FN . The la-
bels correspond to local illuminant colors x1,x2, ...,xN , while
the edges connect neighboring patches. In such a representa-
tion local illuminant estimation becomes equivalent to finding
the maximum a posteriori (MAP) labelling of the CRF. Such a
framework facilitates both the local computation of illuminant
color, as well as the incorporation of spatial information about
the distribution of illuminants.

B. Conditional Random Field Setup
We will first introduce our conditional random field setup.

Details on how we adapt it to the task of multiple illuminant
estimation will be presented in the following sections. A
conditional random field can be viewed as an undirected graph
model, globally conditioned on observations. Let G = (V, E)
be a graph where V = {1, 2, ..., N} is the set of nodes
representing the N patches and E is the set of edges connecting
neighboring patches. We define a discrete random field X over
the graph G. Each node i ∈ V is associated with a random
variable Xi ∈ X , which can take on a value xi from the
illuminant-color label set L = {l1, l2, ..., lk}. At each node
i ∈ V we also have a local observation Fi, which is the
set of (R,G,B) values of all the pixels belonging to the
corresponding patch pi together with their spatial distribu-
tion. The probability P (X = x̆|F) of a particular labelling
x̆ = {x1,x2, ...,xN} conditioned on the observations F of
the entire image will be denoted as P (x̆|F). Then according
to the Hammersley-Clifford theorem,

P (x̆|F) ∝ exp

(
−
∑
c∈C

ξc(x̆c|F)

)
, (1)

where ξc(x̆c|F) are potential functions defined over the ob-
servations F and the variables x̆c = {xi, i ∈ c} belonging
to clique c. A clique c is a subgraph in which every node is
connected to all other nodes in the subgraph. C is the set of
all cliques in G. Finding the labelling x̆∗ with the maximum
a posteriori (MAP) probability x̆∗ is then equal to

x̆∗ = argmax
x̆∈L

P (x̆ |F ) = argmin
x̆∈L

E (x̆|F) , (2)

where L is the set of all possible labellings on X and E(x̆|F)
is the corresponding Gibbs energy defined as

E (x̆|F) =
∑
c∈C

ξc(x̆c|F) . (3)

Hence, computing the MAP labelling is equal to finding the
labelling which minimizes the energy E(x̆|F). In our case,
this means that obtaining the MAP assignment of illuminants
to patches can be accomplished by finding that assignment
which minimizes the corresponding Gibbs energy. Considering
only up to pairwise clique potentials, the energy function
becomes

E(x̆|F) =
∑
i∈V

φ(xi|Fi) + θp
∑

(i,j)∈E

ψ((xi,xj)|(Fi,Fj)) ,

(4)
where φ denotes the unary potential and ψ the pairwise poten-
tial. The unary potentials φ penalize the discrepancy between
the observations, i.e., the colors of the pixels in a patch Fi,
and the solution, i.e., the illuminant-color label assigned to
the patch. The pairwise potentials ψ provide a definition of
smoothness. Our CRF uses the image data to decide when to
allow differences in labels of adjacent patches. Consider, for
example, an object in the foreground that is illuminated by a
camera flash. Such an object may have neighboring patches
that belong to the background which is illuminated by ambient
light. In this particular case, dissimilarities in the labels of
the adjacent patches should be allowed. The constant θp > 0
controls the balance between smoothness and data fit. When
we use a pairwise potential function that enforces a single label
for all patches, we obtain similar result as traditional single
illuminant estimation methods. In the next section we propose
various unary potentials which allow us to represent several
well-known illumination estimation algorithms as CRFs.

IV. UNARY POTENTIALS

Unary potentials measure how well the local evidence
supports the assigned label. In the context of illuminant color
estimation we need to compare the locally obtained illuminant
estimate with the color of the dominant illuminant assigned
to a node. Different illuminant estimation methods can be
used. Thus, MIRF can express several existing color constancy
methods as an error minimization problem.

A. Statistics-based Color Constancy
There exists a family of color constancy methods which are

based on the statistics of reflectances in the world. Examples
of this group of methods are the grey-world, the grey-edge
and the MAX-RGB algorithms [1]–[3]. We show that several
of these algorithms, when used in MIRF, can be formulated
within an error minimization problem.

Let f j = (f jR, f
j
G, f

j
B)

T be the observed color at the j-th
pixel in an image. We assume that an image is segmented into
a number of patches P = {p1, p2, ..., pN} where pi contains
the indices to the pixels in patch i. From the set of observations
Fi in a patch we can obtain an estimate of the local illuminant
color i(Fi), which, for conciseness, we will denote as ii.

If the estimate is computed with the grey-world algorithm,
then the local illuminant color is determined by the average
color in the patch, as defined by

ii =

∑
j∈pi

f j∥∥∥ ∑
j∈pi

f j
∥∥∥
2

, (5)
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where ‖.‖2 is the L2 norm. It is applied to ensure that ii has
unit length.

Once the local illuminant is computed, its distance from
the assigned label should be measured. A typical metric for
comparing two normalized illuminant colors ii and ij is their
angular distance given by

α(ii, ij) = arccos
(
(ii)

Tij
)
. (6)

In MRFs and CRFs it is preferred to use normalized distances
in the [0, 1] range when comparing vertices. Thus, we can use

ϕ(ii, ij) =
(
1− (ii)

Tij
)
. (7)

We now define the statistics-based unary potential φs, which
specifies the cost for patch pi to take on illuminant xi as

φs(xi|Fi) = wiρ(ii,xi) (8)

where wi is a scalar weight per patch, and ρ is the error norm.
The influence of outliers on the unary potential can be reduced
by choosing a robust error norm. One can directly use Eq. 7 as
the error norm. We discuss several choices of error norms and
weights at the end of this subsection. When using the grey-
world algorithm an appropriate weight value is the sum of the
intensities in a patch, wi = ‖

∑
j∈pi f j‖1. We, thus obtain the

following unary potential

φs(xi|Fi) =
∥∥∥∑
j∈pi

f j
∥∥∥
1
ϕ(ii,xi) . (9)

When the illuminant given by the label xi and the illuminant
derived directly from the observations are equal, this unary
potential is zero. When they are maximally different, this unary
potential is equal to the summed intensity of the patch. In
Appendix IX-A we prove that this particular unary potential
leads to the standard grey-world solution when we enforce a
single illuminant label for all patches in Eq. 4.

Alternatively, one can also use the more general class of
statistics-based illuminant estimation [2], given by

in,mi ≈ m

√√√√∑
j∈pi

∣∣∣∣∂nf jσGW

∂xn

∣∣∣∣m , (10)

where n is the order of the partial differentiation, m is the
Minkowski norm, and fσGW

= f ⊗ GσGW
is the image

smoothed with a Gaussian of standard deviation σGW. De-
pending on the choice of parameters m and n, the illuminant
estimation becomes the grey-world, shades of grey, or grey-
edge algorithm. We propose the following unary potential for
this general case of statistics-based estimators

φs(xi|Fi) =

∥∥∥∥∥∥ m

√√√√∑
j∈pi

∣∣∣∣∂nf jσGW

∂xn

∣∣∣∣m
∥∥∥∥∥∥ϕ(xi, ii) . (11)

For n = 1 and m = 1, minimizing Eq. 4 with this unary
potential results in the standard grey-edge algorithm [2].

In general, a large θp in Eq. 4, forces the whole image to
have the same label resulting in a single illuminant estimate
for the entire image. In that case, MIRF can encode a number
of well-known color constancy algorithms by simply varying
the error norm ρ and the patch weight wi. If we look at the

other extreme, where θp = 0, every patch would take on the
label of the illuminant which is closest (in an angular error
sense) to its local estimate. However, the local estimates of
the statistical color constancy algorithms are very noisy and
this can lead to unsatisfactory results. This can be countered
by choosing an intermediate θp (by means of cross validation),
that enforces multiple neighboring patches to take on the same
label, and thereby reducing the noise of the statistical estimate.
Additionally, one can apply the following two adaptations to
the unary potential in order to further improve robustness with
respect to noisy statistical measurements.
Robust error norm: In order to reduce the influence of
outliers on the energy functional, MRFs and CRFs often use
an exponential error norm, e.g., [28], [29]. Thus, throughout
the paper we use the robust error norm

ρσr (ii,xi) = 1− exp
(
−α(ii, ij)

2

2σ2
r

)
, (12)

where σr is a scaling parameter that controls the decay of the
exponential function.
Uneven color balance: Statistical methods are known to
be biased towards large segments of uniform color [30]. To
counter this we propose the following adaptation:

φs(xi|Fi) = (wi)
q
ρσr

((ii,xi)) . (13)

The parameter q allows the dampening of the effects of uneven
color balance in an image. In our experiments we used q ∈{
0, 12 , 1

}
.

B. Physics-based Color Constancy

Another family of color constancy methods is based on the
physics of light-surface interactions [6]–[8], [11]. In this work
we focus on the approach by Tan et al. [8] because it is very
competitive performance-wise and is applicable to a wider
family of surfaces that exhibit a mixture of diffuse and specular
reflectance. More specifically, we follow the extension by
Riess et al. [31] which can be locally applied, even in patches
that are just moderately specular.

Specularity-based approaches assume neutral interface re-
flection which states that the color of pure specularities is the
color of the illuminant. These methods are often comprised of
two steps: a specularity detection step, which identifies regions
which may contain specularities; and an illuminant estimation
step, which exploits the color of the detected specular regions.

Tan et al. [8] introduce the inverse-intensity chromaticity
(IIC) space. Per color channel, IIC is a two-dimensional
space where the horizontal axis represents the inverse intensity
1/‖f j‖1 and the vertical axis is a pixel’s chromaticity. Thus,
a pixel f j = (f jR, f

j
G, f

j
B)

T is mapped to

f jC →

(
1

‖f j‖1
,
f jC
‖f j‖1

)
, (14)

where ‖·‖1 is the L1 norm and C ∈ {R,G,B}.
The advantage of IIC is that the relationship between image

chromaticity and illumination chromaticity becomes linear.
According to [8], one generates per color channel a scatterplot
of the pixels in IIC space. Pixels of the same material and
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albedo that are purely diffuse form a horizontal cluster. If,
however, they also have a specular component, they form a
triangular-shaped cluster. The base of the triangle intersects the
diffuse horizontal cluster. The tip of the triangle intersects the
vertical axis. This vertical-axis intercept is the corresponding
illuminant chromaticity component ijC .

Riess et al. [31] also exploit this cluster geometry but
they obtain multiple estimates per patch. More specifically,
following [31], we subdivide each patch pi into a rectangular
grid of cells. The pixels of each cell k are projected onto IIC
space (one IIC space per color channel). If the scatter plot
of a cell k satisfies two straightforward shape criteria (i.e., it
forms an elongated non-horizontal cluster) see [31], then an
illuminant estimate ik is obtained by analyzing the covariance
ellipse of the scatter plot. The intersection of its major axis
with the vertical axis of the IIC space becomes the illuminant
color estimate ick for color channel C in cell k.

The illuminant color estimates from all the cells in a patch
pi are collected in single color histograms Hi,R, Hi,G, Hi,B ,
where Hi,R is the histogram of the red chromaticities of the
illuminant estimates of the various cells in patch pi. The other
two histograms are similarly defined for the remaining two
color channels. The illuminant estimate for a patch pi is then
determined by

ii = argmax
ikC

Hi,C(ikC) ∀C ∈ {R,G,B} , (15)

where Hi,C(ikC) denotes the number of occurences of iC in
all the cells k ∈ pi. For further details, please refer to [31].

Our physics-based unary potential is then defined as

φp (xi|Fi) = wiρσr
(ii,xi) , (16)

where ρσr is the robust error norm of Eq. 12 and the weight
wi is proportional to the specular component of patch pi. More
specifically, we compute a measure of specularity as follows.
Let Si be the set of specular pixels in patch pi. Similarly to Tan
et al. [8], we consider a pixel to be specular if its brightness
and saturation values exceed two corresponding thresholds
tb = 0.2 and ts = 0.8. We define the following measure
of a patch’s specularity, ssp = 1

3

∑
j∈Si

(f jR + f jG + f jB). One
could set wi = ssp. However, the identification of specular
pixels, especially when using simple thresholding, is error-
prone. Therefore, in our implementation we use a binary
weight, where wi = 1 only if ssp ≥ tsp, where tsp is a patch-
specularity threshold. Hence, the specularity-based illuminant
estimate is only employed if a sufficiently large percentage of
pixels within a patch are detected as specular.

C. Combining Statistics- and Physics-based Illuminant Esti-
mation

Both statistics- and physics-based illuminant estimation
methods can be incorporated in a CRF framework using
different unary potentials. An advantage of expressing each
method as an energy minimization problem is that there is a
natural way of combining them into a single color constancy
technique by defining the local potential as

φ (xi|Fi) = (1− λp)φs (xi|Fi) + λpφ
p (xi|Fi) , (17)

where λp is weighting the importance of the physics-based
unary potential versus the statistics-based one. Thus, we can
combine information from statistical cues, as well as specu-
larities, into the final local illuminant estimate.

D. Constrained Illuminant Estimation

Constrained illuminant estimation methods have been pop-
ular because they allow the incorporation of prior knowledge
about the illuminants. For example, several existing methods
confine the illuminant set to lie on the Planckian locus [14].
Such constraints can be incorporated in the MIRF framework
by placing restrictions on the illuminant label set L. In
this paper, we use a simple constraint where we exclude
very saturated illuminants, i.e., {∀m|α (lm, iw) < φd}, where
iw = 1√

3
(1, 1, 1)

T is the white illuminant, lm ∈ L is an
illuminant label and φd is an illuminant saturation threshold.

As a second constraint on the illuminants, we use the
fact that in the majority of the multi-illuminant scenes only
two dominant illuminants are typically present. Given a pair
of labels lm and ln, the optimal labeling x̆∗(m,n) for an
observation F is determined by

x̆∗(m,n) = arg min
x̆∈Lmn

E (x̆|F) , (18)

where Lmn is the set of all possible labellings on X when us-
ing only illuminants lm and ln. The two-illuminant constraint
is enforced by finding the two labels which minimize the
energy function. Thus, the selected illuminants are computed
by

L̂ = argmin
(lm,ln)∈L2

(E(x̆∗(m,n)|F)) . (19)

Note that, this formulation also allows for single illuminant
estimation when m = n.

V. PAIRWISE POTENTIAL

The purpose of the pairwise potential function,
ψ ((xi,xj)|(Fi,Fj)) is to ensure, when appropriate, the
smooth transition of labels in neighboring vertices. Similar
to Boykov et al. [32] we consider pairwise potentials that
resemble a well. In MRFs, especially as described in [32],
ψ(xi,xj) = u(1 − δij), where u is the well ”depth” and the
function (1 − δij) controls the shape of the well. In [32], u
is defined as a constant and δij is the unit impulse function.

In a CRF (see also [29]) the ”depth” depends on the
observations u = h(Fi,Fj). Thus, our pairwise potential
function has the form

ψ ((xi,xj)|(Fi,Fj)) = h(Fi,Fj)(1− δij) , (20)

where we use δij = δ(xi − xj). If two neighboring labels
are distinct, then there are two possibilities. It can be that the
two patches, though spatially close, are illuminated by distinct
illuminants. In such cases, we should allow for a transition
in labels and not significantly penalize the difference in their
values. It may, however, be the case that an erroneous label
was assigned and the two patches are illuminated by the same
illuminant. The goal of the depth function h(Fi,Fj) is to
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distinguish between erroneous versus justified differences in
adjacent labels.

This is a challenging task. We tried a number of different
depth functions. We experimented with a function that is
based on the photometric classification of edges using the
photometric quasi-invariants [33]. We also investigated the
employment of the Retinex [9] heuristic which states that
illumination is expected to vary slowly, thus large changes in
surface reflectance are due to differences in material. Within
our system we obtained the best results when we applied the
following function:

h(Fi,Fj) = boundary length (Fi,Fj) , (21)

where boundary length is the number of pixels in patch
pi which have at least one neighboring pixel (assuming 4-
connectedness) belonging to pj . This depth function ensures
that the pairwise potential between two patches pi and pj is
proportional to the shared border between the two patches.

VI. MIRF ALGORITHM

The main concept of MIRF is to segment an image in
patches, obtain local illuminant estimates per patch and then
consolidate the local estimates using a CRF. Such a general
framework allows for the incorporation of many existing
methodologies. This, however, also implies that several design
decisions should be made during implementation.

A. Implementation Details

The very first step of MIRF involves the formation of
patches. There are several ways for dividing an image into
subregions. Superpixels generated by a segmentation algorithm
tend to follow object boundaries and significant illumination
changes. A uniform grid, on the other hand, provides more
diverse content per patch, and thus more information for
statistics-based estimators. In MIRF we experimented with
both types of tessellations. Overall, our methodology is not
very sensitive to the image-subdivision method. Image seg-
mentations based on [34] and [35] and uniform grids produced
comparable results (see Section VIII). Hence, we decided to
use a uniform-grid tessellation for ease of computation. All
the reported results in this paper were produced using a grid.

Once an image is split into patches, we obtain per patch
a statistics-based illuminant estimate using Eq. 10 and, if
the patch is sufficiently specular (see end of Sec. IV-B), an
additional physics-based estimate according to Eq. 15. We then
create our set of illuminant labels, by separately grouping the
statistics-based estimates into Ks clusters and the physics-
based ones into Kp clusters, for a total of K = Ks + Kp

clusters. In both cases, we use K-means clustering based on
the angular distance (see Eq. 6) of the illuminant chromaticity
values iC/‖i‖1, where C ∈ {R,G,B}. The mean values of
the K clusters become the set of illuminant labels L. We also
add a single “ambient” illuminant estimate I0 to the illuminant
labels, L = L∪{I0}, where I0 is obtained by applying Eq. 10
on the entire image. In order to reduce the computational cost,
we further decrease the cardinality of L by merging labels
which differ by less 0.5◦.

We then evaluate Eq. 18, i.e. for every possible pair of labels
lm, ln ∈ L. We use Bagon’s [36] graph-cut Matlab implemen-
tation to minimize the CRF’s energy function shown in Eq. 4.
Unary potentials are computed using Eq. 13 and Eq. 16. The
pair of labels and their corresponding labelling that minimizes
the CRF energy function is then chosen (see Eq. 19) as the
solution to the multi-illuminant labelling problem. Finally, the
derived label colors are assigned to the corresponding patches
and the estimated illumination map M is generated. In the
last step of the algorithm, a Gaussian smoothing filter with
standard deviation σp is applied to M as a post-processing
step in order to reduce artifacts created by patch boundaries.
The methodology is compactly presented below.

MIRF Detailed Algorithm

1: Divide an image into a set of patches P = {p1, p2, ..., pN}
2: Extract at each patch the local illuminant colors I =
{i1, i2, ..., iN} (using Eq. 10 and Eq. 15).

3: Cluster the illuminants (using K-means) and get the K
centers. Add an avg image illuminant estimate I0.

4: Decrease the number of labels by grouping labels whose
angular distance is less than 0.5◦. L now denotes the
reduced set of illuminant labels.

5: for all lm and ln ∈ L do
6: Calculate x̆∗(m,n) (Eq. 18)
7: end for
8: Select the pair of illuminants L̂ (Eq. 19) which generates

the MAP labelling x̆∗.
9: Backproject x̆∗ to form an illumination map M .

10: Apply Gaussian smoothing on M to soften possible arti-
ficial edges induced by the image tessellation.

B. Parameters

Unless explicitly stated otherwise, the following parameter
settings were used in generating the results reported in this pa-
per. First of all, we always used a 20×20 uniform rectangular
grid to tessellate the images into patches. The only exception
was the outdoor images of Gijsenij et al. [23], where, due to
their smaller size, we employed a 10 × 10 grid. In all cases
the resulting patch-size was approximately 15×20 pixels. The
number of cluster centers for the K-means algorithm was set
to Kp ≤ Ks =

√
N , where N is the number of patches.

For the physics-based illuminant estimates, we set the
brightness and saturation thresholds to tb = 0.2 and ts = 0.8
respectively, and the overall specularity threshold to tsp = 10
(pixel values are in [0, 1]). The cell size within a single
patch was 20 × 20 pixels with a step size of 10 pixels1, as
in [31]. The parameters of the CRF itself were as follows. The
saturation threshold φd for illuminant labels (see Sec. IV-D)
was set to 15◦. The parameter σr in Eq. 12 for robust
thresholding on the unary potentials was 2.5◦. Finally, we used
a standard deviation σp = 10 for the Gaussian smoothing of
the reprojected illuminant labels.

1Note that this may lead to obtaining a single estimate per patch, i.e. the
voting aspect is essentially eliminated. However, when MIRF is applied on
larger images (or patches, respectively), the histogram voting is employed.
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Three parameter values were determined via two-fold cross
validation on each of the datasets on which MIRF was eval-
uated. These were the weighting between unary and pairwise
potentials θp (see Eq. 4), the power q (see Eq. 13) for
computing the unary potentials, and finally, λp (see Eq. 17)
for the relative influence of the statistics- and physics-based
estimators.

VII. MULTI-ILLUMINANT MULTI-OBJECT DATASET

Several datasets are available for single illuminant estima-
tion. The first datasets were taken under laboratory settings
with controlled illumination [30], [37]. Later datasets – often
much larger – consisted of images of real-world scenes where
the ground truth was computed from a reflectance target in
the scene, which was either a grey ball [38] or a Macbeth
color checker [39]. Recently, Gijsenij et al. [23] introduced
a multi-illuminant dataset, where the ground truth consisted
of manually annotating the areas where each light source was
dominant. Such manual annotations, however, are difficult to
do on complex scenes and error-prone.

To address these limitations, we created two new datasets2

for multi-illuminant estimation: one contains images taken
under a controlled laboratory setting, and one consists of real-
world indoor and outdoor scenes. Each of the sets includes
complex scenes with multiple reflectances and specularities. A
variety of lighting conditions and illuminant colors are present
in the datasets. Instead of manually annotating the ground
truth like [23], we computed a pixel-wise ground truth for
our images. This way we avoid the subjective task of manually
segmenting the image and obtain high-resolution ground truth.
In addition, this further allowed us to estimate the contribution
of each illuminant per pixel, rather than making a binary
decision on the dominant illuminant at each pixel. As can
be seen in Fig. 2 large regions in the image are lit by both
illuminants.

A. Data Acquisition

We used a Sigma SD10 single-lens reflex (SLR) digital
camera which uses a Foveon X3 sensor. We specifically chose
this photographic equipment for its Bayer-pattern-free image
acquisition and for its lossless raw 12 bit per color high quality
output. We captured the images in linear RAW format, i.e.
without additional gamma or JPEG compression. The original
image size is 2304×1531 pixels, i.e. roughly 3.5 megapixels.
However, in order to reduce the computational load of our
experimental evaluation, we rescaled the images to 20% of
their original size.
Laboratory dataset: The first dataset is taken in a controlled
laboratory setting. The scenes vary from simple single-object
setups to more challenging multi-object (cluttered) settings.
The scene content also varies between diffuse objects, specular
objects, and mixtures of diffuse and specular objects. In total,
the laboratory database consists of 10 scenes, each taken under
6 distinct illumination conditions. We used three differently

2http://www5.cs.fau.de/research/data/two-illuminant-dataset-with-
computed-ground-truth/

Fig. 2: Example images from our laboratory (top-left) and
real-world (top-right) datasets. In the bottom row, the relative
influence of the two illuminants is shown, color-coded blue
and red.

colored lights, referred to as “blue”, “white” and “red”, with
a chromatic difference of 5.9◦ between blue and white, 6.1◦

between white and red, and 11.4◦ between blue and red. Each
scene was lit by distinct pairs of illuminants from two different
angles (referred to as “left” and “right” illumination). For
computing the ground truth, each scene was also captured
under only a single illuminant from each position. In a couple
of images the ground truth and the multi-illuminant images
were misaligned. As a result, after removal of these images,
our laboratory dataset is composed of a total of 58 benchmark
images. To reduce the influence of ambient illumination, the
data acquisition for this set was performed in a box with black
diffuse walls.

The top-left images in Figs. 1 and 2 show two example
scenes illuminated by our red light source from the left side
and our white illuminant from the right. The lion in Fig. 1
is an example of a single object scene and the toys in Fig. 2
are an example of a mixture of specular and diffuse objects.
The bottom row shows the influence of the two illuminants.
A stronger blue component denotes stronger influence of the
left illuminant, while red represent the illuminant on the right.
Real-world dataset: In order to evaluate our framework on
more challenging real world images, we captured 20 additional
indoor and outdoor scenes. Here the data is converted to
sRGB to mimic a more typical user setting. We also generated
perceptually enhanced versions of the real-world images (using
the publicly available code of Parraga et al. [40]) in order
to increase the overall spread of colors in an image. The
scenes contain two dominant illuminants, namely an ambient
light source and a direct light. In the outdoor images, shadow
regions correspond to ambient light. In the indoor images, the
overall room illumination is treated as ambient light. A direct
light source is added either via a projector, the sun, or an
additional light bulb. The top-right images in Figs. 1 and 2
depict two such examples. One scene shows a two-illuminant
indoor scene, while the second shows a strong color shadow
in an outdoor scene. The main difference between the two
datasets is that in the real-world scenes, the ambient illuminant
is present on almost the entire image area, while the direct
illuminant covers only a part of each scene.
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Fig. 3: Example images required fot the ground truth computa-
tion. In the top row, from left to right: a scene under illuminant
ia, ib and ia+ ib. In the bottom row: the same scene together
with a Macbeth color checker under illuminants ia only and ib
only. On the bottom right, the ground truth is shown, i.e. the
two illuminant colors and their spatial distribution. Gamma is
added to the images for visualization.

B. Ground Truth Computation

In order to compute the contribution of each illuminant per
pixel, we need to capture additional images. Consider, for
example, a scene that is simultaneously illuminated by two
light sources ia and ib. Without loss of generality let ia be
the left illuminant and ib be the right illuminant. We take
two additional images of exactly the same scene: one under
only the left illuminant ia and one under only the right one
ib. We also capture two further single illuminant images of
the same scene again under only ia and under only ib but
this time we also include either a Macbeth color checker or
a grey reflectance target. From these last two pictures we can
estimate the illuminant color. Fig. 3 shows a multi-illuminant
scene (top-left) together with the additional images required
for the ground truth computation and the extracted ground
truth image. For the laboratory dataset we ony capture three
images per multi-illuminant scene. We do not capture the
pictures with the color calibration target. Instead, it suffices
to take the single illuminant images of the empty capture box
(which acts as a backdrop for all laboratory acquisitions) with
a grey reflectance target that covers most of the scene.

To compute the ground truth we exploit the linearity of light:
we use the fact that the scene taken under both illuminants
is equal to the sum of the two scenes taken under a single
illuminant. We verified that this assumption approximately
holds for our Sigma SD10 SLR camera. A pixel fab from
a two-illuminant scene is equal to the sum of the pixels
from the two images of the same scene under a single
illuminant, i.e. fab = fa + fb. As a first step, we use the
single illuminant images to derive per pixel the contribution of
each illuminant in the multi-illuminant scene. The chromaticity
of each illuminant, ia and ib, is extracted from the color
calibration target. Under the von Kries assumption, when we
divide each single illuminant image by its respective illuminant
chromaticity, f̂a,C = fa,C/ia,C and f̂b,C = fb,C/ib,C where
C ∈ {R,G,B}, we obtain the scenes under white illumina-
tion. The observed intensity differences in f̂a and f̂b are due
to the individual contribution of each illuminant.

The per-pixel relative contribution of illuminant ia in the
multi-illuminant image fab for the green channel is then

obtained by

r =
f̂a,G

f̂a,G + f̂b,G
. (22)

The details of this derivation can be found in Appendix IX-B.
In principle, any color channel could be used. However, we
found that the green channel yielded the most stable (noise-
resilient) results.

The ground truth illuminant color iab at a pixel fab of the
mixed-illuminant image is then a pixelwise linear interpolation
of ia and ib,

iab = r · ia + (1− r)ib . (23)

Note that, since the sum of the two single illuminants is
equivalent to the two-illuminant scene, two of the three scenes
suffice for the ground truth computation. We use this fact for
the scenes where it was not possible to obtain the two single-
illuminant images. Consider, for example, an indoor scene
with indoor illuminant and outdoor light coming through the
window (which we were unable to block). In such a case we
can take two images - one with both illuminants and one with
only the outdoor lighting after switching off the indoor light
source - and still compute the ground truth.

VIII. EXPERIMENTS

In this section we compare the performance of the proposed
MIRF method to several other approaches. Our error metric
per image is the mean pixelwise angular distance (Eq. 6)
between the estimated illuminant color and the corresponding
ground truth. Very dark pixels (i.e., for our 12-bit images,
pixels with intensities below 50) were excluded from the
evaluation due to their relatively low signal-to-noise ratio. We
used the per-image errors, to compute the median and mean
errors per dataset. The evaluation was conducted on three
datasets: our laboratory dataset, our real-world dataset, and
the outdoor dataset that has been used by Gijsenij et al. [23].

There is little prior work on methodologies explicitly de-
signed for non-uniform illumination. As a baseline, we evalu-
ated the performance on multi-illuminant scenes of a number
of well-established color constancy algorithms that assume
uniform illumination. We also implemented the recent multi-
illuminant method by Gijsenij et al. [23], as it showed very
competitive performance in a number of experiments.

Both the method by Gijsenij et al. [23] and MIRF use as
input illuminant estimates with small spatial support. Such
illuminant estimates can be obtained from different estimators.
We chose to use grey world (“GW”), which can be obtained
from Eq. 10 by using the parameters n = 0, m = 1, σGW = 0,
white patch (“WP”, with n = 0, m = ∞, σGW = 0), first
order grey-edge (“GE1”, with n = 1, m = 1, σGW = 1)
and second-order grey edge (“GE2”, with n = 2, m = 1,
σGW = 1). Additionally, we use the physics-based estimator,
as presented in Eq. 15, denoted as “IEbV” (derived from
“Illuminant Estimation by Voting”). We used these base es-
timators for comparing the performance of the three families
of methods as described above. Additionally, we provide a
“do nothing” (“DN”) error, where the image is assumed to be
already perfectly white balanced.
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Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 10.6◦ 10.5◦ - - - -
GW 3.2◦ 2.9◦ 6.4◦ 5.9◦ 3.1◦ (-3%) 2.8◦ (-3%)
WP 7.8◦ 7.6◦ 5.1◦ 4.2◦ 3.0◦(-41%) 2.8◦(-33%)
GE1 3.1◦ 2.8◦ 4.8◦ 4.2◦ 2.7◦(-13%) 2.6◦ (-7%)
GE2 3.2◦ 2.9◦ 5.9◦ 5.7◦ 2.6◦(-19%) 2.6◦(-10%)
IEbV 8.5◦ 8.3◦ - - 4.5◦(-47%) 3.0◦(-64%)

TABLE I: Comparative performance on our laboratory dataset.

A. Comparing Single- and Multi-illuminant Methods

In Tab. I, we present the mean and median errors on our
laboratory dataset. The “single-illuminant” column, shows the
results of a single global illuminant estimate. The columns
“Gijsenij et al.” and “MIRF” report results for the multi-
illuminant methods by Gijsenij et al. [23] and our proposed
algorithm “Multi-Illuminant Random Field” accordingly.

Some single-illuminant estimators, namely GW, GE1 and
GE2, already perform relatively well on our laboratory dataset.
This is mainly because the two colors of the two light sources
illuminating the scene are not very distinct (see Sec. VII).
Thus, the overall error can be small, even if only one of the
two illuminants (or a color in between the two) is reported
as global estimate. However, in all cases, MIRF improves
over these estimates. The physics-based estimates for IEbV
yield a considerably weaker performance in the mean error,
which might be due to the fact that the individual patches
are relatively small and thus the voting becomes ineffective.
The method by Gijsenij et al. [23] performed surprisingly
unsatisfactorily, even worse than the single-illuminant estima-
tors. We investigated this case more closely. It turned out that
relatively often, weak candidate estimates were selected by this
method, which in turn penalized the overall algorithm. MIRF
avoids this particular problem, as the remaining energy from
the energy minimization is used as a criterion for the quality
of a solution. In Sec. VIII-B, we excluded this source of error
by directly comparing the performance of only determining
the distribution of illuminants.

Table II shows the performance of the same algorithms on
our real-world dataset. One can observe similar tendencies in
the results. Note that, the overall errors are higher, mainly
because these images were perceptually enhanced in order to
increase the overall spread of colors in an image. The largest
performance gain is obtained by the localized estimates of the
physics-based method, IEbV. This improvement is mostly due
to the robust error metric, which suppresses gross outliers in
the physics-based estimates.

We also evaluated the same set of algorithms on the
outdoor dataset by Gijsenij et al. [23], see Tab. III. Note
that, the reported results for the method by Gijsenij et al.

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 8.8◦ 8.9◦ - - - -
GW 5.2◦ 4.2◦ 4.4◦ 4.3◦ 3.7◦(-16%) 3.4◦(-19%)
WP 6.8◦ 5.6◦ 4.2◦ 3.8◦ 4.1◦ (-2%) 3.3◦(-13%)
GE1 5.3◦ 3.9◦ 9.1◦ 9.2◦ 4.0◦(-25%) 3.4◦(-13%)
GE2 6.0◦ 4.7◦ 12.4◦ 12.4◦ 4.9◦(-18%) 4.5◦ (-4%)
IEbV 6.0◦ 4.9◦ - - 5.6◦ (-7%) 4.3◦(-12%)

TABLE II: Comparative performance on our real-world
dataset.

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 4.4◦ 3.6◦ - - - -
GW 15.0◦ 13.8◦ 12.2◦ 13.8◦ 10.0◦(-18%) 10.1◦(-27%)
WP 10.3◦ 11.3◦ 10.0◦ 8.4◦ 7.7◦(-23%) 6.4◦(-24%)
GE1 10.1◦ 10.1◦ 8.5◦ 7.6◦ 7.1◦(-16%) 4.7◦(-38%)
GE2 8.7◦ 8.5◦ 8.1◦ 7.4◦ 7.2◦(-11%) 5.0◦(-32%)
IEbV 10.0◦ 7.3◦ - - 9.3◦ (-7%) 7.3◦ (-0%)

TABLE III: Comparative performance on the gamma-corrected
version of the outdoor dataset by Gijsenij et al. [23]

deviate from what the authors reported in their paper. Upon
further investigation, we realized that the evaluation in [23]
was conducted on the non-gamma-corrected images. Without
gamma correction, we obtain the same numbers as reported
in [23]. In our implementation, we performed gamma cor-
rection on the input images, as it was also originally intended
by [23]. Overall, the errors are higher than in the previous two
experiments. This can be attributed to the nature of the images
in this dataset: they are relatively small, consisting mostly of
two relatively homogeneous regions of sunlight and shadow.
Thus, the underlying localized illuminant color estimators are
extracting information from relatively uninformative input.
Note that, we did not evaluate on the laboratory data by
Gijsenij et al., as we found upon manual inspection that the
ground truth for these images is not very reliable.

Lastly, we evaluated the performance of MIRF in single-
illuminant settings. We used the SFU single-illuminant lab-
oratory dataset [41], which contains 30 scenes taken under
eleven known illuminants. After removal of several images,
which were considered unusable, the dataset consisted of
321 images. The pixelwise ground truth was computed by
assigning the single illuminant to all the pixels in the image.
We applied two-fold cross-validation to train the parameters
of our algorithm. Table IV shows the results of our method
in comparison to Gijsenij et al. [23] and the single illumi-
nant methods. Our method outperforms the multi-illuminant
method of Gijsenij et al. The cross validation actually learns
that the smoothing parameter should be maximal and forces
the algorithm to a single illuminant solution for all patches
in an image. MIRF’s deviations from the standard single
illuminant methods are mainly caused by our use of the robust
error norm. In most cases (except GE2) this leads to improved
results even in this single illuminant dataset.

B. Benchmarking Separate Components of the Algorithm

Estimating multiple illuminants can be considered as two
interleaved tasks, namely estimating the illuminant colors and
their spatial distribution. The recovery of the spatial distribu-
tion was not required for single-illuminant estimators. Hence,
we empirically investigated the capability of finding the proper

Single-illuminant Gijsenij et al. MIRF
Mean Median Mean Median Mean Median

DN 17.3◦ 15.6◦ - - - -
GW 9.8◦ 7.0◦ 13.3◦ 11.6◦ 9.7◦(-1%) 5.2◦(-26%)
WP 9.1◦ 6.5◦ 11.6◦ 9.6◦ 8.8◦ (-3%) 5.4◦(-17%)
GE1 6.9◦ 5.8◦ 9.9◦ 9.0◦ 6.8◦(-1%) 5.2◦(-10%)
GE2 8.3◦ 7.8◦ 10.5◦ 9.5◦ 8.7◦(+5%) 8.1◦ (+4%)

TABLE IV: Comparative performance on the SFU single-
illuminant laboratory dataset.
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Gijsenij et al. MIRF
Mean Median Mean Median

GW 2.4◦ 2.3◦ 2.3◦ 2.3◦

WP 2.2◦ 2.1◦ 2.0◦ 1.9◦

GE1 2.1◦ 2.0◦ 1.8◦ 1.7◦

GE2 2.2◦ 2.1◦ 1.9◦ 1.8◦

TABLE V: Performance analysis of the spatial distribution.
Methods evaluated on our laboratory dataset. The true illumi-
nant colors act as dominant illuminants to the methods.

spatial distribution. We isolated the spatial distribution aspect
of the two multi-illuminant methods, i.e. MIRF and [23]
by providing the ground truth illuminant colors as dominant
illuminants.

The results on our laboratory dataset are shown in Tab. V.
In the left two columns, it can be seen that the performance
of the method by Gijsenij et al. greatly improved, compared
to Tab. I. This implies that the selection of the correct
dominant illuminant color is one of the major challenges in
the method of Gijsenij et al. In the right columns, we show
the performance of our proposed method. The best performing
local estimator in both methods is the first order grey edge,
with a median error at MIRF of 1.7◦. This shows that the
spatial distribution of the illuminants is well approximated by
our proposed framework.

In another experiment, we investigated the impact of the
various improvements we have introduced to MIRF (see
Tab. VI). We focus on only one local illuminant estimator, grey
world (“GW”), since it was consistently among the best local
performers. If we remove the constraint of two illuminants and
allow an arbitrary number of illuminants, the error increases
significantly on our two datasets. Similarly, the robust error
norm (see Eq. 12) yields an important performance gain on
both our datasets. Removing the parameter q from Eq. 13
which counters uneven color balances only affects results on
the Gijsenij dataset. Finally, removing the saturation constraint
φd on the illuminants (see Sec. IV-D) results in a performance
drop on all datasets. We also evaluated the impact of using
superpixels [34] instead of a regular grid. The results were
identical for our laboratory dataset. In our real-world dataset
superpixels result in a lower mean error but a larger number
of outliers. This is mainly caused by the type of scenes in
our databases. Our laboratory images, unlike our real-world
ones, include mostly textureless objects. A color segmentation
method in textured scenes will generate small uniform patches,
which often handicap statistics-based methods. Due to the
small size of the images in the Gijsenij dataset, we were unable
to obtain meaningful segmentation results. Another factor we

Laboratory data Real-world data Gijsenij et al.
Mean Median Mean Median Mean Median

original MIRF 3.1◦ 2.8◦ 3.7◦ 3.4◦ 10.0◦ 10.1◦

any # of lights 4.6◦ 4.0◦ 4.2◦ 4.0◦ 10.0◦ 10.2◦

w/o Eq. 12 3.9◦ 3.7◦ 4.3◦ 4.0◦ 10.1◦ 10.1◦

q = 1 3.0◦ 2.8◦ 3.6◦ 3.3◦ 10.7◦ 10.3◦

w/o φd 3.6◦ 3.3◦ 4.6◦ 3.2◦ 11.2◦ 10.1◦

superpixels 3.1◦ 2.8◦ 3.5◦ 3.6◦ - -
w/o smoothing 3.2◦ 2.9◦ 3.8◦ 3.4◦ 10.0◦ 10.1◦

TABLE VI: Grey-world results for different configurations of
the proposed framework for each dataset.

Laboratory data Real-world data
Mean Median Mean Median

Ks =
√
N 3.1◦ 2.8◦ 3.7◦ 3.4◦

Ks = 50 2.9◦ 2.7◦ 3.8◦ 3.7◦

Ks = 100 3.0◦ 2.7◦ 3.6◦ 3.3◦

no clustering 4.6◦ 4.0◦ 4.2◦ 4.0◦

TABLE VII: Impact of clustering on MIRF. Grey-world is
used as the local illuminant estimator.

examined was the influence of the Gaussian smoothing of the
derived illumination map M (Step 10 of the MIRF Detailed
Algorithm). As can be seen inTab. VI (last row), this post-
processing step only affects few values by an improvement of
0.1◦.

We also examined the effect of the number of clusters K
on the accuracy of MIRF. We once again focus on only one of
the best-performing local illuminant estimator, i.e. grey world
(“GW”). We analysed the impact of clustering on our two
datasets. We considered four different values of Ks (recall
K = Ks + Kp and Ks acts as an upper bound of Kp):
Ks =

√
N which is the default value for all our MIRF

evaluations, Ks = 50, Ks = 100, and no clustering. This
last option allows every local estimate to be in the label set
without any additional constraints on the dominant illuminants.
As can be seen in Tab. VII, clustering helps not only with the
computational speed but also with accuracy since it diminishes
the effect of outlier local-estimates. The number of clusters
itself does not significantly influence the outcome of MIRF,
resulting in approximately 0.1◦ variation in performance.

One last aspect we analyzed was the data set dependence
of the optimal parameters learned through cross-validation.
We, therefore, tested MIRF on our laboratory dataset using
the average value of the parameters we obtained via cross-
validation on the real-world data and vice-versa. In both cases
we observed an approximately 0.1◦ improvement in accuracy.
When we used the parameters of the real-world data on
the laboratory dataset, the mean and median angular errors
dropped to 3.0◦ and 2.7◦, respectively. Similarly, the mean and
median errors dropped to 3.5◦ and 3.3◦ respectively, when we
used the laboratory-data parameters on the real-world dataset.
We believe that this improvement is caused by our using the
parameters of one fold in evaluating another fold, which can
sometimes result in over-training in some folds.

C. Combination of Statistics- and Physics-based Estimates

Table VIII demonstrates another benefit of our framework.
By defining the unary potentials as a weighted sum of
statistics-based and physics-based potentials, we are able to
combine cues from multiple methods in a natural way. To
determine appropriate values of the unifying parameters θp, q
and λp (see Sec. VI-B) we performed a full cross-validation
over them. It turns out, that such a combination can indeed
further improve the results (compare Tab. VIII (left) and
Tab. I), in particular for the white patch and first order grey
edge estimates. On the other hand, the MIRF performance
slightly dropped for the combination of IEbV with GE2. Thus,
there is no guarantee that a combination of the unary potentials
brings a performance gain.
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Laboratory data Real-world data
Combination variant Mean Median Mean Median
IEbV-GW 3.0◦ 2.8◦ 4.2◦ 4.3◦

IEbV-WP 2.7◦ 2.5◦ 4.0◦ 3.4◦

IEbV-GE1 2.6◦ 2.4◦ 4.5◦ 4.2◦

IEbV-GE2 2.8◦ 2.7◦ 4.7◦ 3.9◦

TABLE VIII: Combination of physics-based and statistics-
based methods on our laboratory dataset.

The two right columns of Table VIII show the performance
on our proposed real-world dataset. It is interesting to note that
the impact of the combined unary potentials on the overall
performance is quite different from the experiments on the
laboratory data. Here, the majority of the results are slightly
worse than those reported in Tab. II. This behavior, however,
is not consistent. For instance, the mean error of IEbV-WP
is only slightly smaller than the reported error in Tab. II. A
similar behavior is observed for the median error for IEbV-
GE2. From these results, we conclude that the framework
is general enough to allow the straightforward integration of
multiple cues. However, whether such a combination indeed
brings the desired performance gain has to be investigated on
a case-by-case basis.

D. Automatic White Balance

Example results for automatic white balancing using the
derived illuminant colors and distributions are shown in Fig. 4.
All images are contrast-enhanced for improved visualization.
In the top row, from left to right, the input scenes “toys”,
“lion”, “camera”, and “detergents” are presented. The second
row shows perfectly white balanced output using the computed
ground truth. At the bottom right corner of the remaining
images we display the average angular error between the per-
fectly white-balanced and the derived white-balanced image.
The third row shows white balancing results for a single global
grey-world estimator. The resulting images suffer from a color
cast, as both illuminant colors in the scene are corrected with
only one estimate. Using the same local estimator within the
framework by Gijsenij et al. [23] (fourth row) clearly improves
over the global estimator. However, the images look more
greyish and with faded colors as the local estimations were
not able to fully separate the effects of illumination from the
object color. Also the “lion” appears more reddish on the
right side. Finally, in the last row, the output of the proposed
MIRF method is shown. One can notice here the absence
of global color cast, due to the improved selection of the
dominant illuminant color. Nonetheless, some inaccuracies in
the estimation of the spatial distribution of the illuminants may
lead to local color casts (e.g., several bluish “blobs” overlay
considerable regions of the “camera” image). However, the
overall performance of MIRF is, in general, consistently
strong, as demonstrated in the “toys” and “detergents” images.

IX. CONCLUSIONS

We developed a new algorithm, “Multi-Illuminant Random
Field” (MIRF), for color constancy under non-uniform illumi-
nation. In scenes that are illuminated by multiple light sources,
one should estimate not only the illuminant colors but also

their spatial distribution. In our approach, these two tasks
are jointly solved within an energy minimization framework.
Our methodology is general enough to allow: a) the natural
combination of different illuminant estimators, like statistics-
and physics-based techniques; and b) the incorporation of
additional cues when available, like, for instance, estimates
for illuminant edges.

For quantitative evaluation, we created two highly accurate
ground truth datasets for scenes under two illuminants. One
database consists of 58 laboratory images and the other of
20 real-world pictures. In contrast to prior work, the spa-
tial distribution of the illuminant colors is computed from
multiple, spatially aligned input images. Performance eval-
uation on these images and on the real-world dataset by
Gijsenij et al. [23] are promising. MIRF outperforms single-
illuminant estimators. Furthermore, we showed that MIRF’s
joint estimation of the illuminant color and its spatial distri-
bution consistently outperforms the recently proposed method
by Gijsenij et al. [23], which solves these two steps separately.
In an experiment with ground-truth illuminant colors, we
also showed that the individual tasks of color estimation and
localization perform superiorly. A combination of statistics-
and physics-based estimates yields competitive results.

In this work, influenced by our own laboratory setup, we
mainly focused on two-dominant illuminant images. Deter-
mining the number of dominant illuminants in a scene is
an interesting problem that calls for further investigation. We
believe that an analysis of the distribution of local illuminant
estimates in chromaticity space should provide an insight in
this topic. We are planning to further explore this aspect
as part of our future work. Another extension to this work
that is worth investigating is the incorporation of top-down
semantic cues into the framework [42], [43]. Recognition of
common materials in the scene such as grass, stone, and
faces could further improve multi-illuminant estimation. An
important aspect of using a CRF in multi-illuminant setups
is the identification of image regions with a relatively abrupt
transition in illumination, so that the pairwise potential can be
accordingly adjusted. This, however, is a non-trivial task. We
are already investigating more sophisticated solutions than the
ones proposed in this paper.

APPENDIX

A. Equivalence with Grey World Algorithm

In this appendix we prove that using Eq. 9 as the unary
potential and for a large θp in Eq. 4 MIRF yields the same
estimate as the standard grey-world algorithm. If the weight of
the pairwise potential θp is sufficiently large, no label changes
will be allowed between neighboring patches. As a conse-
quence, all patches will have the same illuminant estimate,
which will essentially be determined by the unary potential.
MIRF will then select the illuminant which yields, summed
over all patches, the lowest energy. Let x the illuminant choice
for all patches (we drop the subscript on x since the estimate
is equal for all patches), MIRF’s energy function can then be
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Fig. 4: Examples of automatic white balance (WB). From top to bottom the rows present: original images, the corresponding
WB images using the ground truth, global grey world, Gijsenij et al. [23], and MIRF accordingly. Note that the images have
been converted to sRGB for better visualization. The captions of each image denote the mean angular error in the WB image.

written as

E(x|F) =
∑
i∈V

φ(x|Fi) =
∑
i
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f j
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)
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where we used ϕ (ii,x) = (1− iTi x). Replacing ii with Eq.5
we obtain
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where only the second term depends on x. Since we want to
compute argminxE (x|F), this is equal to maximizing the
second term of the equation

x∗ = argmax
x
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(26)
since the inner product is distributive over vector addition.
From this it follows that

x∗ ∝
∑
i

∑
j∈pi

f j , (27)

which is he grey-world solution for the entire image. In
conclusion, we have seen that by choosing Eq. 9 as the unary
potential, the standard grey-world method can be expressed as
an energy minimization problem. Hence, when θp is chosen
sufficiently large, minimizing Eq. 4 leads to the same result as
the grey-world algorithm. It should be noted, that this is only
true when the solution of the grey-world algorithm is in the
illuminant label set L. In practice this can easily obtained by
choosing the solution of the grey-world as one of the labels.

A similar derivation can be used to prove that using Eq. 11
as the unary potential and minimizing Eq. 4 yields the grey-
edge algorithm. Enforcing exactly one label leads to the same
answer as the single illuminant for p = 1 in Eq. 10.

B. Estimation of the Two-illuminant Ground Truth
This appendix provides additional details on the derivation

of Eq. 22. As in Sec. VII-B let fa,G and fb,G denote aligned
pixels from the green channel of two images, which are
exposed to illuminant ia and illuminant ib, respectively. We
seek to derive the influence of ia and ib in fab,G where both
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illuminants are additive, i.e., fab,G = fa,G + fb,G. Intuitively,
if a pixel is brighter in fa,G than in fb,G, then the influence of
ia is stronger in fab,G. This brightness difference is caused by:
a) the intensity of the illuminant and b) the different angles
between the light source vector and the surface normal (for
instance, in the laboratory dataset the lights are located at the
left and right sides of the scene). Thus, we want to compute
per pixel a weighting factor r, such that

iab = r · ia + (1− r) · ib , (28)

i.e., the illuminant color iab at a pixel is a weighted sum of
the colors of the two illuminants.

To obtain r, we first compute illumination-normalized ver-
sions of the original images f̂a,C = fa,C/ia,C and f̂b,C =
fb,C/ib,C , where C ∈ {R,G,B}, based on the von Kries
assumption. r is then obtained by computing the relative
contribution of f̂a,G to respect to the two-illuminant image,

r =
f̂a,G

f̂a,G + f̂b,G
. (29)

Assuming Lambertian reflectance and sharpened sensors,
f̂a,G = ρGeawa, where ea and wa denote scaling factors due
to the intensity and the geometry of the light source, respec-
tively, and ρG is the pixel’s albedo. Note that the illuminant
color is omitted, as it has been neutralized. Expanding Eq. 29,
the ratio of a pixel under both illuminant corresponds to the
ratio of their scaling factors ea and wa,

r =
ρGeawa

ρG(eawa + ebwb)
=

eawa
eawa + ebwb

, (30)

as albedo and neutral illuminant are identical in f̂a,G and f̂b,G.
This leads directly to the formulation in Eq. 22.

In practice, we clip the weight r if one of the illuminants
is tB times brighter than the other, i.e.,

r =


1 if f̂a,G/f̂b,G > tB
0 if f̂b,G/f̂a,G > tB

r̃f̂a,G/f̂b,G otherwise
, (31)

where r̃ normalizes the range of values between 0 and 1.
For our dataset, we empirically determined that tB = 40 is
a reasonable threshold.

In real-world images, the assumption of sharpened sen-
sors and Lambertian reflectance are typically violated. We
alleviate these issues with two “engineering decisions”. First
of all, we use only the green channel, as an approximation
to a sharp sensor. Pixels with a specular component are
indirectly handled via clipping. In these cases, the intensity
of the specularity often exceeds the clipping range, thus the
respective pixel is assigned to the specular illuminant (which
agrees with the neutral interface assumption [12]). Finally,
note that interreflections are in general not well modeled by
this approach. Despite these shortcomings, we manually in-
vestigated all scenes, and concluded that the cases that violate
our assumptions are rare or do not considerably influence the
result. Thus, the proposed approach is an economic, feasible
way to obtain pixelwise multi-illuminant ground truth on real-
world scenes.
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