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Abstract

We present a system for forecasting occlusions of the sun and the expected Global Horizontal Irradiance (GHI) for
solar power plants. Our system uses non-rigid registration for detecting cloud motion and a Kalman filter to establish
continuous forecasts for up to 10 minutes. The optimal parameters of the system are determined through the use of the
binary classification metrics Precision, Recall and F2 Score while evaluating the forecasting of occlusions. The Kalman
filter and the use of a dense motion field instead of a global cloud speed prove to be key elements of the forecasting
pipeline: by incorporating information from previous forecasts into the current one, a Kalman Filtering facilitates
forecasting times below 3 minutes and the dense motion field enhances the accuracy of our forecasts. Our evaluation of
the proposed approach on 15 days of real world data collected in Kitzingen, Bavaria, Germany, produced a mean RMSE
for forecasting GHI of (164± 9)W m−2.
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1. Introduction

An important factor for the wider adoption of photo-
voltaics (PV) as a renewable energy source on a larger
scale, is stable power production. This is a challenging task
since sun-occlusion effects by clouds can cause significant
variability in the power output of solar power plants. Un-
accounted changes in the future production of the power
plant may either lead to an overproduction of power, or
it may require the compensation of underproduction by
additional power sources at short notice. Both of these
events decrease the cost effectiveness of the power plant
and should, therefore, be avoided. One way to improve
the profitability and reliability of solar power plants is by
forecasting the future power production, and therefore al-
lowing for an earlier adjustment to the present conditions.
We propose a new methodology for estimating upcoming
sun occlusions for forecasts of up to 10 minutes (depend-
ing on the current cloud speeds) by analyzing sky-images
acquired from the ground.

Our forecasts are quasi-continuous and describe the
probability of the sun being occluded in a step size as
small as 2 seconds. From such forecasts, one can calculate
the periods of time in the future when the sun is going to
be occluded. The main contributions of this work are:

• The generation of continuous forecasts for time in-
tervals of up to 10 minutes, depending on the cur-
rent cloud motion speed, instead of individual time-
instance forecasting.

• The application of non-rigid registration to the task
of estimating the cloud speed. Instead of a global

cloud speed, we determine the cloud speed individu-
ally for different distances to the sun, thus the pro-
posed method gains flexibility to account for defor-
mations of the clouds.

• The use of a Kalman filter (Kalman, 1960) to im-
prove the accuracy of the forecast by incorporating
knowledge from previous forecasts. The result is a
continuous forecast also for forecasting times below 3
minutes.

• The quantitative evaluation of occlusion periods on
real world data using Precision, Recall and F2 Score
as metrics, as well as the evaluation of our method
using the Root Mean Square Error of predicted irra-
diance and the forecast skill. Our proposed method
outperforms the persistence baseline even for short
forecasting times.

The remainder of this paper is structured as follows.
In section 2 we present the current state of the art for
forecasting PV power production. Section 3 contains a
detailed description of our method and in section 4 the
conducted experiments and their evaluation are presented.

2. State of the Art

The approach used for predicting the solar irradiance de-
pends on the desired time scale of the forecast. For longer
forecast times, in the range of 6 hours to several days, nu-
merical weather models can establish predictions for the
expected irradiance for whole regions of interest (Lorenz
et al., 2009). For predictions over a couple of hours, the
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cloud velocity can be extracted from satellite images. By
extrapolating the trajectories of clouds in these images,
the effects of occlusions can be predicted (Kidd et al.,
2009). For an even higher temporal resolution, reaching
down to several minutes, sky images recorded from the
ground (Chow et al., 2011), or time-series models that rely
on the knowledge of historical data (Reikard, 2009) can be
employed. Our method only uses ground-based sky im-
ages. We will, therefore, concentrate on the comparison
to similar methods in this brief overview of previous work.
For more detailed information on the other types of meth-
ods, one may refer to the recent review by Inman et al.
(2013).

Chow et al. (2011) were the first to establish intra-hour
forecasts for solar irradiance using a ground-based cam-
era. For recording the image data a commercially avail-
able Total Sky Imager from Yankee Environmental Sys-
tems was used. Cloud Segmentation was done by employ-
ing a threshold on the ratio of the red/blue channels of
the images and by also comparing the sky images to a
clear-sky model. Actual predictions are done by calculat-
ing the cloud speed using the cross-correlation of cloud
patches, and then moving the cloud mask according to the
determined cloud speed. The whole approach was eval-
uated on a four day dataset. However, the method and
the used equipment have some drawbacks. The resolution
of the acquired images is low, and the default automatic
white-balancing can lead to problems in cloud segmenta-
tion. Furthermore, images are recorded in the JPEG for-
mat, which induces losses in image quality during com-
pression. The method for assessing the cloud speed is not
robust against non-rigid deformations of the clouds, and
the quantitative part of the evaluation is restricted to how
well the forecasted cloud map corresponds to the actual
one. No irradiance data is used in the quantitative part of
the evaluation.

An improvement in the cloud motion registration was
proposed by Marquez and Coimbra (2013), who use parti-
cle image velocimetry (PIV), a technique commonly used
in the experimental study of fluid dynamics. The cloud
segmentation was also further improved by using an adap-
tive thresholding method, and by partitioning the sky im-
age into several regions with different thresholds. For
evaluation, Marquez and Coimbra used the Root-Mean-
Squared error (RMSE) between the forecasted Direct Nor-
mal Irradiance (DNI) and the measured one.

Two publications built up on this work: Chu et al.
(2013) further improved the forecasts by training an ar-
tificial neural network (ANN), while Quesada-Ruiz et al.
(2014) replace the PIV approach by a sector based mo-
tion detection method. The ANN required as input the
expected cloudiness calculated by the method of Marquez
and Coimbra and the last few measured irradiance values.
The result of the ANN was a 5 or 10 minutes irradiance
forecast. The latter work by Quesada-Ruiz et al. (2014)
divided the sky into sectors, and determined the direction
of cloud motion by analyzing the changes of cloudiness

Figure 1: Example sky image.

in these sectors. Using the RMSE between predicted and
measured DNI as a measure, the evaluation of both works
showed an improvement over the previous work by Mar-
quez and Coimbra.

Besides using ground-based images, there also exist ap-
proaches that only rely on a network of irradiance sensors.
Lonij et al. (2013) for instance, established intra-hour fore-
casts using a network of 80 rooftop PV systems spread over
a large area. For large but isolated solar power plants the
cloud motion vectors could also be calculated using refer-
ence cells, as was shown by Bosch and Kleissl (2013). Both
of these approaches, however, require additional hardware
that has to be installed in a large region around the power
plant. In comparison, the Sky Imager only requires a single
camera that is usually located at the center of the power
plant.

Further work has also been done on the segmentation
and classification of clouds. Kazantzidis and Tzoumanikas
(2012) augmented the cloud segmentation based on the
red/blue ratio by also incorporating the green channel.
Furthermore, they used texture features and a k-Nearest-
Neighbor classifier to classify the type of cloud seen in an
image. However, the classification is done for the entire
image, so that sky conditions where more than one type
of cloud is present lead to an ambiguous result.

3. Forecasting Pipeline

We will first give an overview of the overall system ar-
chitecture. The key components of our approach are then
presented in greater detail in the remainder of this section.

3.1. Overview

The whole pipeline for establishing forecasts is presented
in Fig. 2. Our starting point is the acquisition of the sky
images (cf. Fig. 1). The clouds are then segmented and the
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Figure 2: Pipeline of the algorithm for establishing a forecast.

cloud speed (in pixels per second) is determined. These
two steps can be performed in parallel. For segmenting
the clouds, we compare a threshold of the red/blue ratio
as used by Chow et al. (2011) and an approach based on
a trained classifier that takes into account the structure of
the clouds. In contrast to previous publications on the de-
termination of cloud speed, we use a method that can cope
with non-rigid deformations of the clouds between succes-
sive frames, namely the non-rigid registration method by
Thirion (1998). Afterwards, the results of the segmenta-
tion and the cloud motion field are combined to establish
a preliminary forecast. Using a Kalman Filter this pre-
liminary forecast is combined with previous forecasts to
calculate the final forecast. The output of our forecast-
ing algorithm is the expected occlusion probability of the
sun for the next 10 minutes which can be used to predict
the global horizontal irradiance (GHI). Such a forecast is
issued every 5 seconds. In the subsequent sections, we
describe each step of the pipeline in greater detail.

3.2. Data acquisition & preprocessing

The sky images are acquired with a five megapixel
C-mount camera equipped with a fish eye lens. The
camera-lens combination provides a large field of view of
182◦. The size of the images is 2592×1944 pixels. The pro-
jected image occupies a circular region with a diameter of
1944 pixels (cf. Fig. 1). Images with a fixed exposure time
of 136 µs and preset white balance setting are acquired ev-
ery 5 seconds. The parameters for white balancing are set
manually and are kept constant over the whole evaluation
period. This is necessary since the cloud segmentation (cf.
section 3.4) relies on the ratio of different color channels.
The camera is installed next to several pyranometers which
record the global horizontal irradiance (GHI) in 5-second
intervals.

The mapping function of the fisheye lens is assumed to
be an equidistant projection (i. e., angular distances are
maintained by the projection). Given this mapping func-
tion and the focal length of the lens, the images can easily
be rectified. Furthermore the orientation of the camera
is corrected, so that the center point of the image corre-
sponds to the zenith in the sky and the bottom edge of
the image faces south.

3.3. Cloud-speed estimation

Thirions “demons” algorithm (Thirion, 1998) is an im-
age registration approach that is commonly used in medi-
cal imaging. In this work we use it to determine the locally
dominant movement direction and speed of the clouds over

Figure 3: Example displacement vectors calculated with the
”demons” algorithm (only every 20th displacement vector is shown).
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Figure 4: Example distribution of displacements vectors between two
successive sky images. The mode of the distribution (black cross) is
assumed to correspond to the global cloud displacement.
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the visible sky. Please note that cloud speed in this con-
text means the speed of the clouds in pixels per minute.
Since the height of the clouds is unknown, a conversion
to the actual velocity in meters per second ist not possi-
ble. Thirion’s algorithm maps two consecutive cloud im-
ages in a non-rigid manner: it estimates not only a single
global translation or rotation, but instead a deformation
vector field which incorporates small turbulences and lo-
cally varying motion.

The algorithm itself is based on the brightness constancy
assumption

It(p) = It+∆t(p + d) (1)

that states that image intensities of moving objects remain
constant. The recorded intensity values can only change
location p. The deformation field d = (dx, dy)T that maps
two consecutive images (It, It+1) onto each other, is de-
termined in an iterative way by minimizing equation (1)
for all pixels in the image (cf. Appendix A).

The result of the registration method is a deformation
field that assigns a displacement vector to each pixel. To
extract the principal direction of the cloud motion, some
post-processing of this vector field is necessary. Since all
clear sky pixels have a displacement of zero, taking the
average of the displacement field is not sufficient. Instead,
we search for the mode of the distribution of displacement
vectors (i. e., the displacement value with the highest num-
ber of occurrences) after removing all displacements close
to zero. A typical distribution of displacement vectors is
shown in Fig. 4 with the detected mode marked by a black
cross.

To reduce the effect of fluctuations in the measured prin-
cipal direction, a secondary Kalman filter (cf. Appendix
B) with an identity matrix as a state transition matrix
is used inside the pipeline step that determines the cloud
speed. By tracking the principal direction over time we
obtain a more accurate estimate. Both the principal di-
rection and the pixel by pixel displacement field is used in
our forecast.

In contrast to previously used methods like block-wise
cross-correlation, the non-rigid registration also captures
deformations of the clouds. The differences between using
a global motion vector and the displacement field are illus-
trated in Fig. 5. For an image pair the global motion was
determined using the cross-correlation method from Chow
et al. (2011), and the deformation field was determined
using the demons algorithm. The resulting motion vector
and deformation field were used to translate or warp one
of the input images to match the second image. Shown in
Fig. 5 are the absolute differences between the transformed
and the target image. Brighter pixels indicate larger reg-
istration errors. As can be seen, the demons algorithm
captures the deformations of the clouds more precisely.

3.4. Cloud segmentation

We investigate two approaches for the identification of
cloud pixels. The basic method exploits the high contrast

between cloud and sky pixels when looking at the ratio of
their red and blue channels (Chow et al., 2011). In general,
cloud pixels should have a value close to one, while sky
pixels should exhibit lower values. The decision between
cloud and sky pixels is done by comparing the red/blue
ratio to a threshold Θrb. For a ratio larger than Θrb a
pixel is identified as a cloud pixel, and for values smaller
than the threshold Θrb as a sky pixel. While computa-
tionally very efficient, this method becomes unreliable for
thick clouds that do not let any direct sunlight through.
These clouds are only illuminated by light reflected from
the Earth’s surface and have a low red/blue ratio that is
very similar to sky pixels. This leads to an underdetection
of cloud pixels and consequently to an overestimation of
free sky.

The second method augments the color information with
additional texture features. However, cloud texture is sub-
ject to high variability, which makes it hard to explicitly
describe. To address this issue, we employ a recently pro-
posed representation-learning algorithm (Bernecker et al.,
2013). Using large amounts of image patches showing ei-
ther clouds, sky or a mixture of both, texture filters, which
specifically describe cloud texture, can be learned using a
Restricted Boltzmann Machine, a form of artificial neural
network. To detect clouds, the sky image is convolved with
these learned filters, and for each pixel the filter responses
and the red/blue ratio are stacked into a vector. This
feature vector is then classified using a Random Forest
classifier, i. e., each pixel is individually classified as cloud
or sky pixel. The training of the classifier in this approach
consists of two stages. First, the filters corresponding to
cloud texture are learned from 160 000 image patches that
are randomly extracted from sky images. In the second
stage the Random Forest is trained. This is done using
350 000 manually labeled pixels from several sky images.
A cross-validation scheme is used to determine the opti-
mal parameters of the classifier. Another 150 000 sample
pixels, again labeled by hand, are then used to evaluate
the approach.

Compared to the work by Kazantzidis and Tzoumanikas
(2012), this method classifies clouds on a pixel-by-pixel
basis, and not the whole image at once. Furthermore,
only the presence of a cloud is classified, but not its type.
An extension to classify different types of clouds is, how-
ever, possible when sky images with labeled cloud types
are available.

Our experiments, however, have shown that although
the recognition rate of clouds is better with the learning-
based method, the required computation time is too high
to be incorporated into our pipeline. Therefore, we ended
up using the simple thresholding-based method in our eval-
uation.

3.5. Cloud forecasting

Our forecasting algorithm takes the segmented clouds
and the cloud speed determined from the two previous
steps as an input. The resulting forecast is the estimated
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Figure 5: Absolute differences between two registered images. The color indicates the value of the difference. The proposed approach using
Thirions demons registration method better accounts for local cloud deformations.

probability of occlusion at the position of the sun during
the next 10 minutes.

For establishing a forecast, we use only the part of the
sky with clouds moving towards the position of the sun.
More specifically, we use a circular sector of the sky (cf.
Fig. 6a), whose tip is at the position of the sun. The open-
ing angle γmax of the circular sector is one of the param-
eters of our forecast that are determined in a sensitivity
analysis (cf. section 4.3). The height and azimuth of the
sun are easily calculated using the geographical position
of the camera and the time of day. They can be converted
to image coordinates using the known mapping function
of the lens. The central angle is oriented opposite to the
principal direction of cloud movement that was obtained
by finding the mode of the motion vectors, so that within
the cropped area, clouds are moving towards the sun. The
radius of the circle depends on the estimated cloud speed,
so that clouds that might intersect the sun in the next 10
minutes are within the segment.

Using a polar transformation, the circular sector is
transformed to a rectangular image, where the x-axis cor-
responds to the distance to the sun in pixels, and the y-axis
to the angle γ in the cone (cf. Fig. 6b). The cloud chart
(cf. Fig. 6c) is determined by applying the same coordi-
nate transformation on the segmented image. Note that
during the polar transform the area close to the sun is
sampled more densely than the area farther away.

We then calculate the weighted sum of each column in
the cloud chart that provides the occlusion probability for
the next few minutes (cf. Fig. 6d). As a weighting function
we use a Gaussian with a high standard deviation (chosen
so that the value of the Gauss function at the top and
bottom of the cloud chart (cf. Fig. 6c) is half of the value
at the center of the column). We have chosen this weight-
ing since the probability of occluding the sun is higher for

clouds on the center line of the cloud chart. Finally, the
conversion from the distance to the sun to the estimated
time until the sun is reached is done for each column sepa-
rately by averaging over the corresponding motion vectors
where a cloud was identified in the cloud chart. This re-
sults in the basic forecast. Since not for all distances an
arrival time can be calculated (e. g. for columns only con-
taining clear sky pixels with zero displacement vectors)
this preliminary forecast can be sparse.

Due to saturated pixels close to the sun, the sparsity
of the preliminary forecast, as well as inaccuracies intro-
duced in the previous steps (e. g. cloud segmentation), the
forecast obtained from one cloud chart is not yet a reliable
predictor of sun occlusion. Hence, we use a second Kalman
filter to exploit information from past measurements and
get more accurate and continuous forecasts.

The state vector x ∈ [0, 1]N of the Kalman Filter con-
tains an occlusion probability for each of the N forecasting
time steps. In the prediction step of the filter, the previous
forecast is advanced by the timespan between the acqui-
sition of two consecutive images. This is done by using a
state transition matrix Φ of the form

Φ =


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0

 , (2)

that shifts the entries of the state vector x. During a
prediction step from one point in time to the next, the last
entry will become the second last, and so on. The new last
entry is initialized with zero occlusion probability.

In the update step, the predicted state vector is modi-
fied using a measurement z ∈ [0, 1]N . The measurement
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(a) An example rectified sky image, with the position of the sun
(red cross), and the part of the image that is used to establish the
forecast (green central angle) marked. The dashed red line and the
angle γ correspond to the axes in (b) and (c).
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(b) Polar transform of the green circular sector.
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(c) Cloud chart, i. e., segmented clouds in the polar transform.
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(d) 10 minute forecast extracted from the cloud chart.

Figure 6: An overview over the forecasting method. From the input sky image (a) the circular region moving towards the sun is extracted
and the polar transform of the sky image (b) and the segmented image (c) is calculated. The forecast (d) is calculated by taking a weighted
sum along the γ-axis in (c).

vector consists of the preliminary forecast computed from
the cloud chart. Since the preliminary forecast may be
sparse, not all entries of z need to be set. When this is
the case, the values of the state vector x are kept constant
during the update step for missing measurement values.
Furthermore, the covariance matrix for the measurements
assigns higher measurement-error values to shorter fore-
casting times. More specifically, we use an error function
that decreases exponentially with increasing forecasting
time, i. e., distance to the sun.

The final forecast then becomes the current state of the
Kalman filter after the update step. The advantages of
the Kalman filter are that sparse forecasts can be com-
bined to get a continuous one and that it is possible to
extrapolate forecasts for short forecasting times. A direct
forecast is often not possible for these short times because
of saturated pixels close to the sun. In this case, previous
forecasts are advanced to these shorter forecasting times
using the state transition matrix in equation (2). Fur-
thermore, the Kalman filter has the additional effect of
smoothing the overall forecast. In Fig. 7 an example is
shown on how the Kalman filter has combined several of
the sparse preliminary forecasts to establish a continuous
one.

Note that one of the preconditions for using a Kalman
filter is that the underlying system model is linear. In our
case this is satisfied, because the state transition models
the evolution of time, which is linear. The possibly non-
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Figure 7: An example on how the Kalman filter has combined several
sparse preliminary forecasts to an optimal continuous one.

linear motion of the clouds is incorporated in the compu-
tation of the measurement vectors, when the distance of
clouds to the sun is converted to arrival times. Another
precondition when using a Kalman filter to estimate values
from several noisy measurements over time, is that there
are no fast changes of the estimated values that are not de-
scribed by the transition matrix. In our application, fast
changes of the occlusion probability, e. g., when multiple
individual clouds are passing over the sun, are captured in
the entries of a state or measurement vector. Over time,
the Kalman filter we use only has to track gradual changes
of the state vector and we, therefore, elude this problem.

For predicting occlusions or the expected global hori-
zontal irradiance, the occlusion probability is compared to
a threshold Θoccl to get a binary forecast of occlusions.
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4. Evaluation

The experimental evaluation is divided into two parts.
First, we perform a sensitivity analysis to determine the
optimal parameters for our forecasting method. This in-
cludes determining the cloud segmentation threshold Θrb,
the opening angle of the circular region γmax and the oc-
clusion threshold Θoccl. As performance metrics we used
Precision, Recall and F2 Score. In the second part of the
experiments we evaluate the key aspect of our method, the
use of a dense motion field, using the Root Mean Square
Error (RMSE) of the predicted GHI and the forecast skill
(see section 4.2).

4.1. Dataset

The dataset used for the evaluation consists of continu-
ous data collected over 15 days in June 2013, March 2014
and April 2014. The meteorological conditions present in
the dataset contain completely overcast days, sunny days
and days with a frequently changing grade of cloudiness.
During the part of the evaluation in June 2013 convective
clouds were prevalent. From March 2014 only sunny days
are used, and the weather in April 2014 was dominated by
the passing of cold fronts. From the days used in the eval-
uation, only on April 17 the weather was dominated by
an anticyclone that was situated over Germany between
the passing of two cold fronts. Images and irradiance data
was collected using the setup described in section 3.2. The
camera and pyranometers were installed near Kitzingen, in
Bavaria, Germany. The acquisition of the pyranometer ir-
radiance data is synchronized with the image capture, i. e.
data is recorded in 5 second intervals. To show the vari-
ability of the irradiance on these days, the pyranometer
data for each day is shown in Appendix C. For our evalu-
ation, night time data was discarded. All experiments are
performed on the entire set of 15 days.

For quantitative evaluation we need to process the irra-
diance data to obtain timespans when the sun is occluded.
Besides the measured pyranometer data we use an irradi-
ance model that employs the position of the sensor and
the time of day. The irradiance I is based on the model in
Wong and Chow (2001) and is given by

I = Isc ·
(
1 + 0.033 · cos(Γ)

)
· 0.7ma · sinαs , (3)

where Isc = 1367 W m−2 is the solar constant, Γ =
2π
(
N−1
365

)
is the day-angle of day N of the current year,

and αs is the solar altitude. The air mass ma is given by

ma =
(

sin(αs) + 0.15(αs + 3.885)−1.253
)−1

. (4)

The model is slightly simplified in comparison to Wong
and Chow (2001) (higher order terms of Γ are neglected).
However, it still matches the daily course of the irradiance
properly.

To determine occlusions, we calculate the clear sky in-
dex, i. e. the fraction of the measured irradiance and the
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Figure 8: Determining occluded (red) and unoccluded (blue) time-
spans from the forecasts using a preset occlusion threshold (- - -).

Prediction
occluded free sky

S
ta

te occluded hits misses
free sky false alarms correct negatives

Table 1: Basic states used in computing Precision and Recall.

irradiance under clear sky conditions. The sun is assumed
to be occluded when this ratio falls below a threshold of
0.65. We use this information as the ground truth data for
the occlusion state in our evaluation.

4.2. Evaluation metrics

For evaluating the effects of the parameters in our
method we use evaluation metrics that focus on the pre-
diction of the state of the visibility of the sun. Precision,
Recall and F2 Score are used for measuring the accuracy
of the prediction of this state. After determining the opti-
mal parameters using these metrics, we also compare the
effects of using a global cloud speed or the dense displace-
ment field to establish the forecast. This is done using the
Root Mean Squared Error (RMSE) between forecasted and
measured GHI and the forecast skill as metrics.

4.2.1. Occlusions: Precision and Recall

The occluded timespans for the current forecast can be
calculated by thresholding the forecast. The used thresh-
old Θoccl may either be a fixed value for all forecasting
times, or a function of the forecasting time Θoccl(tfc). The
latter can be used to take into account that for larger fore-
casting times, a larger part of the sky is used to establish
the forecast. Hence, a larger threshold is needed. In Fig. 8,
we show an example for determining the occluded times-
pans from a forecast using a linear thresholding function.

Precision and Recall are metrics used in pattern recog-
nition to evaluate classification tasks. They are applicable
to our evaluation, since the prediction of the state of visi-
bility of the sun can also be seen as a binary classification
problem. Four combinations of predicted and actual state
are possible (cf. Table 1), which are defined as the hits,
correct negatives, misses and false alarms. For a large
number of samples, Precision and Recall are defined as

PR =
hits

hits + false alarms
(5)

RE =
hits

hits + misses
. (6)
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Precision describes how well predictions of occlusion
matched real occlusions, while Recall describes how likely
it is that real occlusions are actually predicted. In our
application, Precision and Recall values can be calculated
for each forecasting time individually, leading to Precision
and Recall over forecasting time plots as shown in Fig. 9.

Although both Precision and Recall are easy to interpret
in our case, in order to make decisions about the parameter
choices it is preferable to use a single metric that combines
both values. A common way of doing this is by using the
Fβ Score

Fβ = (1 + β2) · PR ·RE
β2 · PR+RE

, (7)

which for β = 1 is the harmonic mean of Precision and
Recall. We want to put more emphasis on the recall values
and therefore choose to use the F2 Score in our evaluation.

4.2.2. Root Mean Square Error (RMSE)

We calculate the RMSE between the predicted and mea-
sured irradiance. For calculating the predicted values we
use the irradiance model shown in equation (3). We first
determine the occluded timespans as described in the pre-
vious section. We then assume that the irradiance de-
creases to 35% of the current clear sky value I during an
occlusion of the sun. The magenitude of this irradiance
drop-off was determined by fitting the irradiance model to
occluded time spans manually. The predicted irradiance
is therefore calculated by multiplying the irradiance model
by a factor of 0.35 or 1.0, depending on the state of occlu-
sion. The RMSE can then be calculated for all forecasting
times tfc individually by

RMSEtfc =

√
1

T

∑
t

(
Ipyr(t)− Itfc(t)

)2
(8)

where Ipyr(t) is the measured irradiance and Itfc(t) is the
predicted irradiance for forecasting time tfc, both at time
t. The sum is over all T samples used in the evaluation.

4.2.3. Forecast skill

The forecast skill is used to compare our forecasts to
a baseline method, namely persistence forecasting. The
latter assumes that the current state of occlusion is not
going to change for the forecasting time in question. We
calculate the persistence forecast by first calculating the
occlusion state from the pyranometer data (cf. section 4.1)
and then shifting it by the forecasting time. Like for the
other forecasts, the theoretical irradiance (for a clear sky)
is then multiplied by the shifted occlusion state like in the
previous subsection.

In order to compare the two forecast methods, we calcu-
late the RMSE for our forecast (RMSEtfc) and the persis-
tence forecasting method (RMSEp). Following Quesada-
Ruiz et al. (2014), the forecast skill s(tfc) is then calculated
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Figure 9: Precision and Recall for different values of the cloud seg-
mentation parameter Θrb. The curves are calculated on the entire
evaluation dataset.

as

s(tfc) = 1− RMSEtfc
RMSEp

(9)

for each forecasting time tfc. Skill values greater than zero
imply that the proposed forecast outperforms the persis-
tence method.

4.3. Sensitivity analysis

We first perform a sensitivity analysis to determine the
optimal values of the parameters of our method.

4.3.1. Cloud segmentation threshold Θrb

The first parameter we evaluate is the threshold Θrb for
cloud segmentation. As described in section 3.4, clouds are
detected by thresholding the red/blue ratio of the pixels.
Since white clouds are expected to have a value close to
1.0, we limit the range of the threshold parameter Θrb to
values between 0.95 and 1.0. The resulting Precision and
Recall plots for three values of Θrb ∈ {0.95, 0.975, 1.0} in
this range are shown in Fig. 9.

All of the Precision plots are approximately constant
over different forecasting times tfc. A higher cloud thresh-
old, however, results in a higher Precision value. The Re-
call plots show a different trend. The Recall values de-
crease with increasing forecasting times. The best Recall
values are achieved by a threshold of Θrb = 0.975. For
the highest value of Θrb = 1.0, however, the recall values
have degraded which indicates that not all clouds were
segmented correctly.

Since the overall best results according to the F2 score
are achieved with a value of Θrb = 0.975, we use this
setting for all subsequent experiments.
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Figure 10: Precision and Recall for different values of the opening
angle of the cone γmax. The curves are calculated using the entire
evaluation dataset.

4.3.2. Cone opening angle γmax

The second parameter we evaluate is the opening angle
γmax of the circular region used in the forecast. We have
chosen to evaluate two values of γmax ∈ {30◦, 60◦}. As can
be seen from the Precision and Recall curves in Fig. 10,
the larger opening angle leads to better results for larger
forecasting times. We therefore choose γmax = 60◦ for the
remaining evaluation.

4.3.3. Occlusion threshold Θoccl

The occlusion threshold Θoccl is used for calculating
the occluded timespans from the forecasts as illustrated
in Fig. 8. The impact of this threshold is shown in Fig. 11,
where Precision, Recall and F2 score curves for constant
and linearly increasing thresholds are shown. As expected,
a lower threshold value leads to a better detection of occlu-
sions, while also increasing the number of false detections
(i. e., higher recall and lower precision values). According
to the F2 score, the best results are achieved using a fixed
threshold value of Θoccl = 0.25.

4.4. Irradiance RMSE and forecast skill

After determining the parameters of our method, we use
the RMSE between the automatic forecast and the mea-
sured GHI and the forecast skill for the final evaluation.
For this evaluation step the following parameters are used:
Θrb = 0.975, γmax = 60◦ and a fixed occlusion threshold
Θoccl = 0.25.

The main goal of this evaluation is to show the differ-
ence between using a global cloud speed and the dense
motion vector field used by our method. For this experi-
ment, the global cloud speed was assumed to be the mode
of the distribution of motion vectors (cf. section 3.3). The

resulting RMSE and forecast skill values for the entire eval-
uation period are shown in Fig. 12. The RMSE using the
dense motion field is lower than the RMSE for a global
cloud motion for almost all forecasting times. This is also
reflected in the forecast skill, where the skill value of our
method exceeds the skill of the forecast using a global mo-
tion vector.

Using our proposed method that relies on non-rigid reg-
istration to determine a dense motion field, and a Kalman
filter to track forecasts over time, we are able to estab-
lish forecasts of the GHI that outperform the persistence
method even for short forecasting times of tfc = 60 s. The
RMSE our method achieves lies between 155 W m−2 and
200 W m−2 on the whole evaluation period.

These results indicate that the local deformations of
clouds affect the reliability of irradiance forecasts. By
considering local variations, the proposed method is more
flexible in accounting for these deformations.

5. Conclusions

We have presented a novel method for forecasting oc-
clusions of the sun, and thereby the GHI for solar power
plants. Our method establishes continuous forecasts for
occlusions up to a maximum forecasting time of 10 min-
utes. This distinguishes our work from previous forecast-
ing systems, which only provided forecasts for a small num-
ber of fixed forecasting times.

A key element of our forecasting pipeline is the use of
a Kalman filter, which improves the quality of forecasts
by incorporating information from previous forecasts. The
use of the Kalman filter also makes short term forecasts for
forecasting times below 3 min possible. A direct forecast
is difficult to calculate for these times because the region
around the sun is usually overexposed or occluded by a
shadow-band.

We further improved our forecasts by using a dense vec-
torfield of cloud displacement vectors that was calculated
using a non-rigid registration algorithm. Instead of us-
ing only sparsely distributed motion vectors and a global
cloud speed, this enables us to establish more accurate ir-
radiance forecasts by determining the cloud speed for each
distance to the sun individually.

For evaluating the proposed method we complemented
the existing metrics of irradiance RMSE and forecasting
skill by a sensitivity analysis based on Precision, Recall
and the F2 Score. The latter are metrics commonly used
in pattern recognition for evaluating binary classification
tasks and were used to find an optimal set of parameters
for our method. We achieve a RMSE value for predicting
the GHI on our dataset consisting of 15 days of challenging
weather conditions between 155 W m−2 and 200 W m−2,
depending on the forecasting time. The forecast skill im-
plies an improvement over the persistence baseline method
for forecasting times longer than 60 s on the dataset used
in our evaluation.
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Figure 11: Precision, Recall and F2 Score showing the influence of the occlusion threshold Θoccl for constant and linearly increasing thresholds.
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Figure 12: RMSE and forecast skill determined on the whole eval-
uation period showing the difference between using a global cloud
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Appendix A. Demons non-rigid registration

The Demons Thirion (1998) algorithm is a widely-used
methodology for performing non-rigid registration with a
regularization based on diffusion.

For deriving the update equations of the Demons al-
gorithm, we start by substituting It+∆t(p + d) by its first
order Taylor expansion around d = (0, 0)T in equation (1)

It(p)− It+∆t(p) = ∇It(p) · d (A.1)

with ∇I =
(
∂I
∂x ,

∂I
∂y

)T
and d = (dx, dy)T. For registration

purposes, the projection of the deformation field onto the
image gradient is used

d =
(It(p)− It+∆t(p))∇It(p)

||∇It(p)||2 . (A.2)

As this equation becomes unstable for small values of
||∇It(p)||, it is further normalized for the Demons algo-
rithm

d =
(It(p)− It+∆t(p))∇It(p)

||∇It(p)||2 + (It(p)− It+∆t(p))2
. (A.3)

In the Demons algorithm the deformation field is calcu-
lated iteratively using

dn+1(p) = dn(p)+
(It(p)− It+∆t(p + dn))∇It(p)

||∇It(p)||2 + (It(p)− It+∆t(p + dn))2
.

(A.4)
In principle, this equation could be solved for each pixel
individually. However, this might lead to inconsistencies
in the resulting deformation field. This is alleviated by
blurring the deformation field dn with a Gaussian Kernel
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after each iteration. As Thirion (1998) has shown, this
corresponds to a regularization of the deformation field
based on diffusion.

Since the Taylor expansion in equation (A.1) is only
valid for small values of the deformation field, a multi-
resolution approach has to be used when dealing with large
deformations. In this approach, a pyramid of images with
decreasing resolution is formed. Starting from the coars-
est level (i. e. the smallest image), the deformation field
is calculated. It is then resampled to match the size of
the next higher level and used as the initialization for the
calculations at that level. We use such a multi-resolution
pyramid that starts with an image that is subsampled by
a factor of 8.

Appendix B. Kalman filter

The Kalman filter is designed to produce optimal esti-
mates of the state of a linear dynamic system, given inac-
curate measurements. We will give a short introduction to
its concepts. For a detailed discussion of the topic one may
refer to the classic book of Maybeck (1979). The connec-
tion between measurements and the state is established
by a measurement model. The dynamic system itself is
described by a system model.

The system model describes the behavior of the state
xt of the dynamic system over time. The Kalman filter
assumes a linear model

xt = Φt−1xt−1 + ηt−1 (B.1)

where Φt−1 is the transition matrix and ηt−1 the addi-
tive system noise. The transition matrix may be time-
dependent to model more complex systems, but in our ap-
plication it is assumed to be constant. The measurement
model is also described by a linear equation

zt = Htxt + νt (B.2)

where the measurement matrix Ht connects the measure-
ment zt to the state xt of the system, and νt is an additive
noise accounting for the uncertainty of the measurements.
Again, the measurement matrix may be time-dependent,
but is assumed constant in our application.

Given the two matrices which model the system’s be-
havior, an optimal estimate of the state is calculated by
alternating between a prediction and an update step. Dur-
ing the prediction step, the system model is used to predict
the state x′t and its covariance P ′t at time t

x′t = Φxt−1 (B.3)

P ′t = ΦPt−1ΦT +Qt−1 (B.4)

where Qt−1 is the covariance of the process noise ηt (as-
sumed to be white, Gaussian noise). When the next mea-
surement zt is taken, the update step is performed, which
combines the measurement with the predicted value. In

this step, the measured value is weighted by the Kalman
gain

Kt =
P ′tH

T

HP ′tH +Rt
(B.5)

where Rt is the covariance of the measurement noise νt
(which is again assumed to be white Gaussian noise). The
estimate of the state and its covariance is then calculated

xt = x′t +Kt(zt −Hx′t) (B.6)

Pt = (I −Kt)P
′
t (I −Kt)

T +KtRtK
T
t (B.7)

We use a simpler version of the Kalmann Filter, in which
the measurement matrix is the identity matrix H = I,
which slightly simplifies equations (B.2), (B.5) and (B.6).

Appendix C. Irradation Data

The GHI for the evaluation period are shown in
Fig. C.13 and Fig. C.14.
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Figure C.13: Irradation data from June 2013.
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Figure C.14: Irradiation data from March and April 2014.
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