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Abstract. One approach to detect spliced images is to compare the
lighting environment of suspicious objects or persons in the scene. The
original method, proposed by Johnson and Farid, requires an investi-
gator to mark occluding contours of multiple objects, from which the
distribution of the incident light intensity is estimated. Unfortunately,
this method imposes relatively strict constraints on the user and on the
scene under investigation.

In this work, we propose a color-normalization approach to relax one
important constraint. With our modification, a user is able to select
the contours from multiple different materials (instead of having to use
a single material). The proposed method will automatically compensate
the differences in the reflected intensities. We demonstrate the robustness
of the method with a carefully designed ground-truth dataset, consisting
of 10 subjects, each of them under 3 controlled lighting environments.
With the proposed method, lighting direction as a forensic cue becomes
applicable to a much wider range of natural images.

1 Introduction

The goal of blind image forensics is to verify the authenticity and origin of an im-
age without the support from an embedded security scheme. With the increasing
availability of digital imagery and image processing software, researchers devel-
oped a family of forensic algorithms that either a) detect traces of manipulation
in an image or b) verify characteristic scene or imaging properties to determine
its authenticity. For an overview of existing methods, please refer to [10, 3].

Several forensic algorithms aim to exploit the physics of geometry in the
scene. For instance, to verify the consistency of a scene containing people, John-
son and Farid [7] proposed to exploit the position of specular highlights in the
eyes. Zhang et al. [12] investigated the shadows of objects on planar surfaces for
detecting spliced images. Also based on geometry, Conotter et al. [1] proposed an
algorithm for verifying ballistic motion in video captures. For a more complete
overview on physics-based approaches, please refer, e. g., to [3].

One potentially powerful approach, based on illumination geometry, has been
proposed by Johnson and Farid [6]. A user has to annotate the contour of persons



of interest (or objects, respectively1). Based on the intensity distribution along
the contours, the brightness distribution of the incident light can be estimated as
a function of the angle of incidence. This distribution is computed in the image
plane, i. e. in two dimensions. It acts as a descriptor for the lighting environment
of a person. Thus, if a spliced image contains persons from two different source
images, it is likely that their illumination environments also differ. In [8], this
approach is extended to three dimensions. However, in three dimensions, this
method requires known 3D geometry of the persons under investigation. This
leads to another estimation step (for fitting a 3D model), adding complexity and
potential sources of error. Recently, Fan et al. [2] proposed an alternative to this
approach by replacing the estimation of a 3D surface model with a shade-from-
shading algorithm.

For humans, assessing lighting environments is a difficult task [9]. Computers
can quantify the perceived deviation, or even detect differences that are imper-
ceptible for humans. Additionally, concealing illumination differences in spliced
images might force a forger to manually repaint parts of the image, which raises
the effort to create a plausible forgery.

In spite these encouraging prospects, these algorithms are not straightforward
to apply in practice. The lighting environment can only be estimated from solid,
purely diffuse materials. The surface normals of the regions under investigation
must exhibit a large variety of directions. Additionally, all marked regions must
consist of the same material.

In this paper, we propose a straightforward approach to relax the last con-
straint, i. e., to be able to estimate lighting environments on mixed materials.
We focus on the 2D algorithm by Johnson and Farid [6] to avoid the additional
requirement of 3D object geometry. We restate the baseline algorithm in Sec. 2.
In Sec. 3, we present the proposed algorithm, which we call Intrinsic Contour
Estimation. In Sec. 4, we first present our evaluation dataset, and then provide
the results of our algorithm. We conclude our work in Sec. 5.

2 Forensic Exploitation of Lighting Environments

We restate the algorithm by Johnson and Farid (for additional details and a full
derivation of the equations, please refer to the original work [6]).

Assume that an image contain two persons of interest. A user marks the
contours of these persons, satisfying several constraints. The 2D contour in the
image must correspond to a (true) 3D contour in the scene. Then, surface normals
on this contour approximately lie in the image plane. Contours can be piecewise
defined, and must everywhere be exposed to the environment light (i. e., regions
of locally cast shadows are not admissible). For estimating the direction of the
surface normals along these contours, it suffices to fit a 2D polynomial to the
contour. The intensity of each point along the contour is extrapolated from the
surrounding pixels (for details, confer [6]).

1 Without loss of generality, we assume in this paper that persons are in the focus of
interest.



The lighting environment is modelled as a weighted sum of spherical har-
monics. In 2D, using spherical harmonics of up to order 2, only five coefficients
need to be estimated. Let
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denote the five spherical harmonics basis functions Y0,0 through Y2,2 that are
required to model a lighting environment in 2D, depending on a normal vector
in the image plane ν = (x y)T. If the reflectance of an object material is purely
diffuse (Lambertian), an intensity along an object boundary corresponds simply
to a linear combination of the basis functions. Thus, for a contour of n points,
the basis functions can be evaluated in a matrix M ∈ Rn×5. The unknown
weighting factors h ∈ R5 must then satisfy

Mh = b , (2)

where b ∈ Rn contains the (grayscale) intensities along the contour. Instead of
solving Eqn. 2 directly for h , an energy function E(h) is defined to incorporate
a regularization term C ∈ R5×5, C = diag(1 2 2 3 3):

E(h) = ‖Mh − b‖2 + λ1‖Ch‖2 , (3)

where the strength of the influence of C is determined by a parameter λ1.
Minimizing Eqn. 3 for h yields

h = (M TM + λ1C
TC )−1M Tb . (4)

Equations 2 and 4 transfer the intensity distribution along the object bound-
ary to a basis of spherical harmonics. In Eqn. 2, differences in contour brightness
are assumed to result from differences in the incident illumination. If contours
of highly contrasting surface materials, e. g. a black T-shirt and light skin, are
both used in Eqn. 2, the computation is severely biased. An example for such a
situation is shown in Fig. 1.

3 Reflectance Normalization as a Preprocessing Step

We investigated methods to normalize material brightnesses prior to the estima-
tion of the lighting environment. The separation of object texture and shading is
commonly referred to as intrinsic image decomposition. For our task, the shad-
ing component is the ideal input for Eqn. 2. We experimented with the recent
algorithms by Gehler et al. [5] and Shen and Yeo [11]. Although these methods
showed encouraging performances on laboratory images, we failed to transfer this
performance to real-world images. In particular for large brightness differences,
we were not able to obtain satisfying shading components.



Fig. 1. Illustration of mixed-material contours: the brightness contrast between the
black T-shirt and bright skin prevents cross-material estimation of the lighting envi-
ronment.

Fig. 2. Idea of intrinsic contour decomposition: contours of different materials (marked
in red and blue) can be jointly used by adjusting the reflectance contributions. Left:
input image. Middle: uncorrected intensity distribution estimates light to be coming
from the right. Right: corrected intensity distributions estimates light to be coming
from top.

However, this particular forensic application offers additional constraints
compared to what is typically assumed in intrinsic image decomposition: we
only need to operate along user-annotated object contours. Thus, the surface
normals along our pixels of interest are known. We exploit this fact in a novel
algorithm, which we call intrinsic contour estimation. Figure 2 illustrates the
basic idea. On the left, one of our evaluation subjects is shown. We marked the
contour across the black T-shirt, as well as the bright skin. On the right, we
plotted the contours of skin regions in green, and shirt regions in red as a func-
tion of the normal direction of the contour point. We can reasonably demand
that contour points that are pointing in the same direction should exhibit the
same brightness. Thus, we search a neutralization factor r that best equalize the
intensities of both clusters for points that face in the same normal direction. In
Fig. 2 (right), this means that multiplication by r should lead to equality of the
intensities in the matching blue circles.



The details of the algorithm are outlined below. Assuming purely diffuse
(Lambertian) reflectance, let

p =

∫
λ∈Ω

ρ(λ)e(λ)c(λ)dλ (5)

denote the captured color in a pixel p, where Ω denotes the visible spectrum
of light waves λ, ρ(λ) the object color (albedo), e(λ) the intensity of the light
source, and c(λ) a three-component vector of color matching functions of the
camera (which ultimately yield the red, green and blue color channels). Assuming
that c(λ) are linear functions, a change in the material ρ(λ) affects the observed
colors in p multiplicatively. Thus, to neutralize the distorting effect of different
surface materials, we are seeking a multiplicative correction term rj for each
surface material.

Given a contour of k materials, we extend the existing algorithm with a
brightness normalizing factor. The colors of the contour pixels are clustered into
multiple materials, either automatically using, e. g., the k-means algorithm [4,
page 315] or manually by the operator while the contours are marked.

For two intensities pu(ν), pv(ν) from different clusters u, v with the same
normal direction ν, we seek r , such that the condition

(pu(ν) − pv(ν)) · r = 0 (6)

is satisfied. For increased numerical robustness, we relax the constraint of iden-
tical normals to just similar normals. To account for the angular difference, we
compute for each pair of points a weighting factor w,

w(ν1,ν2) =

{
exp

(
δ2

σ2

)
if δ ≤ 2σ

0 otherwise
. (7)

Here, pu(ν1) and pv(ν2) denote points from clusters u, v with similar normals
ν1 and ν2, and δ = arccos(νT

1 ν2). In our implementation, we empirically set σ
to 18.75◦. The threshold for w = 0 is derived from a Gaussian filter2. Hence, the
generalized constraint for r using m pairs of data points on k clusters is

Wr = 0 , (8)

where W ∈ Rm×k. Let the j-th pair of points p(ν1) and q(ν2) be from clusters
i1, i2. Then,

Wj,i1 = w(ν1,ν2)p(ν1) , (9)

Wj,i2 = w(ν1,ν2)q(ν2) . (10)

All other entries of W are set to 0. To avoid the trivial solution r = 0 , we set
r1 = 1, which yields the final solution

W ′r ′ = −l , (11)

2 Integrating the tails of a Gaussian with standard deviation σ outside a range of 2σ
yields about 5% of the overall area under the curve
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Fig. 3. Experimental setup. Ambient light is provided by the brown background lamp.
Direct illumination (red) on the subjects (yellow) comes from 0◦, 45◦ and 90◦, measured
1.5m above the floor.

where W = (l W ′) and r = ( 1
r ′ ). Equation 11 is solved via singular value

decomposition (SVD).

4 Evaluation

To demonstrate the feasibility of the proposed approach, we captured a bench-
mark dataset where the direction of the dominant illuminant is known3. This
enables us in the quantitative evaluation to compare the angles of the maximum
incident light.

4.1 Data

Figure 3 shows our experimental setup. We captured 30 images consisting of
ten subjects under three lighting conditions. In a closed room without windows,
one light source was set up for scattered background illumination. Further light
sources were fixated at angles of roughly 0◦, 45◦ and 90◦ to the person in the
scene. These lights act as “dominant” light sources, with a distance of only about
1.5m from the person. Note that such a close light violates the assumption of the
original method [6] of an infinitely distant light source. Indeed, when validating
the performance of our re-implementation of the algorithm by Johnson and Farid,
we noticed a worse performance than reported in [6], which may partly be due
to the violation of this constraint. However, we consider a light source at finite
distance to be a reasonable compromise between the theoretical requirements of
the algorithm and a practical setup, e.g., for indoor applications.

4.2 Experiments

In our evaluation, we compared three methods. First, denoted as “Original”,
we used the method by Johnson and Farid [6] (cf. Sec. 2). Second, denoted as

3 The dataset is publicly available at http://www5.cs.fau.de/



Single-colored contour

Median Mean Within 22.5◦

Original 10.7 13.6 25/30 (83%)
Gehler 9.1 12.5 26/30 (86%)
ICE 10.9 14.1 24/30 (80%)

Multi-colored contour

Median Mean Within 22.5◦

Original 40.2 56.5 10/30 (33%)
Gehler 33.0 50.7 13/30 (43%)
ICE 12.6 13.0 26/30 (86%)

Table 1. Median and mean angular error on the lighting environment database, and
the number images for which the estimation error of the dominant light direction was
less than 22◦ degrees. In the left columns, the best single-colored contour per image is
used, in the right columns, mixed-color contours are used.

“Gehler”, we used the input images to compute intrinsic images with the method
by Gehler et al. [5], which, in theory, should isolate the shading component.
We then applied the method by Johnson and Farid on the shading component.
Finally, denoted as “ICE” (intrinsic contour estimation), we evaluated the pro-
posed algorithm. Table 1 shows the results of this evaluation. In the first three
rows, we report results when selecting only the best, single-material contour of
our database subjects. Per method, the median and mean angular error of the
estimated dominant light direction are shown. We also (somewhat arbitrarily)
set a binary threshold of 22.5◦ (one eighth of a circle), and counted for how
many test cases the dominant light direction was estimated within 22.5◦ degrees
of the ground truth.

For single-colored contours, all methods achieve similar performance, with a
median angular deviation between 9.1◦ (Gehler) and 10.9◦ (ICE). Note that, in
theory, Gehler’s intrinsic image decomposition should not change a single-colored
contour at all. Yet, it affects to some degree the estimated shading image, which
leads to a slightly better result for this method.

The situation is quite different in case that we select multi-colored contours.
While (expectedly) the method by Johnson and Farid can not deal with this
situation, it turns out that also the Gehler’s intrinsic image decomposition is
not really able to produce a shading image that yields good results. Only the
proposed intrinsic contour estimation (ICE) is able to maintain the performance
of the single-colored contour case.

5 Conclusion

Johnson and Farid proposed a pioneering method for exploiting inconsistencies
in the lighting direction for forensic applications. Unfortunately, the original
method imposes a number of relatively strict constraints to the user. Particularly,
in order for the method to be applicable, it is necessary that the objects under
examination exhibit a wide angular range of a same-material occluding contour.
In practice, such a contour oftentimes does not exist.

In this work, we propose a slight extension to the original method, which
relaxes the requirement on the contour material. We use a ground-truth dataset



containing people, where illuminants were located at 0◦, 45◦ and 90◦ in the scene.
On this ground-truth data, we demonstrate that the proposed intrinsic contour
estimation method can reliably compensate multi-material contours.
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