
OCPAD – Occluded Checkerboard Pattern Detector

Peter Fuersattel§†, Sergiu Dotenco§, Simon Placht†, Michael Balda†, Andreas Maier§, Christian Riess§
§ Friedrich-Alexander University of Erlangen-Nuremberg

† Metrilus GmbH
first.last@fau.de, first.last@metrilus.de

Abstract

Many camera calibration techniques require the detec-
tion of a pattern with known geometry, e.g., a checkerboard.
Typically, the pattern must be fully contained in the field of
view. This brings several limitations, one of which is that
lens distortion can not reliably be estimated in outer image
regions.

This paper presents the occluded checkerboard pattern
detector (OCPAD) to find checkerboards, even in a) low-
resolution images, b) images with high lens distortion and
if c) the pattern is partly occluded or not completely within
the field of view. We exploit that checkerboards can eas-
ily be represented by a graph. We use graph matching to
find the largest partial checkerboard in the image. Our de-
tector complements a state-of-the-art calibration algorithm.
Quantitatively, detection rates are considerably improved
over the state-of-the-art. Additionally, estimation of lens
distortion is greatly improved at outer image regions. Here,
the reprojection error is improved by up to 50%.

1. Introduction
Many established camera calibration techniques rely on

point correspondences between 3D objects in the scene and
2D points on the image to estimate the projective transfor-
mation and a set of lens model parameters. Commonly,
high contrast patterns of known dimensions, like checker-
boards, are used to automatically compute these correspon-
dences. Calibration has been practiced for a long time.
However, it is still far from being straightforward and user-
friendly, since many methods impose constraints on the in-
put data. Examples include different poses of the calibration
pattern [18], or well-spread point correspondences through-
out the whole image to find accurate lens model parameters.
An important factor during camera calibration is the detec-
tion of the pattern. Capturing patterns throughout the whole
field of view can be very complicated or even impossible,
particularly under strong lens distortion. For less experi-
enced users this task may become even more challenging

and time-consuming. Thus, with a flexible, robust detection
algorithm, calibration can be greatly simplified.

In this work, we present OCPAD, the Occluded Checker-
board Pattern Detector. OCPAD detects checkerboards that
are partially occluded or not fully contained in the field of
view. From an algorithmic perspective, these cases can be
treated identically. By designing the method such that it can
flexibly deal with missing and non-detected corners both
design goals can be achieved at the same time.

We represent checkerboards as graphs, and use graph
matching to find the largest common subgraph between the
detected graph and a checkerboard model graph. As a re-
sult, it becomes straightforward to use calibration informa-
tion in traditionally difficult image parts, like the image bor-
der and even the image corners. The method excells when
estimating lens distortion at image regions that are far from
the center pixels.

To demonstrate our approach, we use OCPAD in place
of the graph matching component of the ROCHADE. The
full method ”inherits“ from ROCHADE its robustness, par-
ticularly for low image resolution and strong lens distortion,
but clearly improves on the pattern detection rate. OCPAD
obtains more accurate results with fewer images and weaker
constraints on the pattern position.

The proposed method is evaluated and compared to sev-
eral other algorithms. Results show that OCPAD outper-
forms the best compared partial checkerboard detector by
more than 29% with respect to detection rate. Furthermore,
we investigate the impact of this improvement for camera
calibration. Here, OCPAD reduces the reprojection error by
up to 50% in outer image regions.

In Sec. 2 we present related work, Sec. 3 summarizes the
ROCHADE calibration. The proposed OCPAD algorithm is
described in Sec. 4. We evaluate its performance in Sec. 5,
and conclude with a brief discussion in Sec. 6.

2. Related Work
Several of the large number of calibration frameworks

contain semi-automatic or fully-automatic checkerboard de-
tection algorithms, e.g. [2, 16]. A popular implementation

(a) Input image (b) Thresholded edge image (c) Centerline image

(d) Saddle Points (e) Candidate component (f) Result

Figure 1: Intermediate steps of ROCHADE. (a) input image with completely visible checkerboard. From the masked edge
strength image (b) the centerline image is computed (c). A graph representation is built from saddle points (d) and a connected
component (e). This graph must match a reference graph of the board (f).

is contained in OpenCV. It includes a checkerboard detec-
tor that isolates checkerboard corners by applying differ-
ent thresholding and morphological operations. The inner
corners of the board are found by merging detected quads.
Rufli et al. [15] increased the robustness of OpenCV’s ap-
proach with respect to lens distortion. Both algorithms
share the same corner refinement method. Placht et al. [14]
proposed a more accurate corner refinement. Bennet and
Lasenby [1] reliably detect checkerboard crossings. How-
ever, their method does not recover the complete checker-
board information which is required for camera calibration.
Fiala and Shu [8] and Forman et al. [9] use self-identifying
markers to increase calibration accuracy and to simplify
the estimation of the pattern pose. However, markers may
easily fail for low-resolution cameras, (e.g., Time-of-Flight
sensors often provide less than 200 × 200 pixels). Two ap-
proaches aim at finding checkerboard-like structures by ap-
plying the Hough transform [6, 10] to detect the parallel
checkerboard lines. This method works well with low res-
olution images, but not under strong lens distortion (which
has to be addressed with additional preprocessing).

Several other toolboxes come with a checkerboard detec-
tor that is able to find partially occluded patterns. We com-
pare our work to two of these algorithms that are widely
used: the Omnidirectional Camera Calibration Toolbox
(OCAMCALIB) [16] and the Parallel Tracking and Map-
ping toolbox (PTAM) [12]. Note that PTAM is a camera

tracking system and not primarily made for camera calibra-
tion. Nonetheless, PTAM includes calibration functionality
with accurate and robust checkerboard detection.

3. ROCHADE

The ROCHADE detection pipeline consists of two steps:
initial checkerboard detection and refinement of the inner
checkerboard corners. Both steps are briefly presented be-
low. Please refer to the original paper [14] for additional
details.

3.1. Checkerboard Detection and Graph Extraction

Figure 1 illustrates the steps of this operation. The in-
put image may optionally be downsampled to reduce com-
putational complexity (Fig. 1a). Next, the image gradient
is computed by using the Scharr kernel [17]. Threshold-
ing on the gradient magnitude image may create multiple
connected components, which serve as checkerboard candi-
dates (Fig. 1b). Isolated pixels and small branches are re-
moved by several filtering steps. Then, a thinned centerline
image [13] (Fig. 1c) and saddle points (Fig. 1d) are com-
puted. The latter two are used to construct a graph.

The detector searches for a connected component with
the same number of nodes as the checkerboard (Fig. 1f),
and with edges that also match the pattern (Fig. 1f). Thus,
ROCHADE can only detect fully visible checkerboards.

3.2. Subpixel Corner Refinement

The location of the checkerboard corners is refined with
subpixel accuracy. The refinement method consists of a
smoothing operation and a polynomial fit for each corner
coordinate. In detail, if the region around a checkerboard
corner is interpreted as a surface, then the corner is located
exactly at the saddle point. This saddle point is computed
by fitting a polynomial to a lowpass-filtered window around
the initial corner coordinate. This window size has to be
chosen such that the windows only contain a single corner
candidate [14].

4. Occluded Checkerboard Detector (OCPAD)
We present a new checkerboard detection algorithm,

OCPAD, which exploits the graph representation of
checkerboards to find full and partially occluded checker-
boards. By including robust subgraph matching into the
candidate graph verification it is possible to achieve error-
tolerance with respect to missing checkerboard corners.
This tolerance leads to multiple improvements: a more sim-
ple image capturing process, as the user has to care less
about the visibility of the pattern. Additionally, higher de-
tection rates can be expected, and furthermore, the lens
model is estimated more accurately.

We assume that a graph representation of the input image
has already been computed. In our implementation, OC-
PAD plugs behind the graph construction of ROCHADE,
or Fig. 1 (e), respectively. Our algorithm takes this graph
as input and robustly matches it to a checkerboard model
graph to obtain the largest possible checkerboard. We illus-
trate important steps of the algorithm in Fig. 2. Here, the
input image (Fig. 2 (a)) is partially occluded. We omit il-
lustrations of the graph construction from ROCHADE and
immediately show in Fig. 2 (b) the connected component
which is used for graph construction. Fig. 2 (c) shows the
graph representation of this structure. OCPAD consists of
several consistency checks, and an outlier-tolerant match-
ing strategy. We show one intermediate processing stage
(described in greater detail in algorithm step 3 below) in
Fig. 2 (d). The matching result is shown in Fig. 2 (e).

Since we directly start with the graph representation, all
filtering and consistency checks are also performed on the
graph structure instead of the intensities of the pixels. The
processing steps of the proposed method are:

1. Reject graphs with very few nodes. If only very few
feature points are available, estimation of the checker-
board pose becomes unreliable, which may lead to in-
accurate calibration results [18]. Hence, we require
that the candidate graph must consist of at least 50%
of the nodes of the model graph.

2. Spatial consistency of the graph. The two criteria eval-

uated here are: a minimum inter-node distance and
whether the standard deviation of the length of the
edges is smaller than the average length of the edges
in image domain. Particularly if multiple graph struc-
tures are found, this effectively removes background
(i.e., bad graph candidates) before the relatively costly
subgraph matching algorithm is employed. The thresh-
old for the inter-node distance is set to the same value
as the window size in Sec. 3.2, since it effectively rep-
resents the lower bound for the minimum distance be-
tween corners.

3. Quad graph filter. In this step all single checkerboard
quads which are contained in the candidate graph are
detected. We remove all nodes that are not a corner of
a quad. This filter removes isolated lines and triangles
which may be present in the candidate graph.

4. Select the largest connected component. By the previ-
ous graph editing steps, the candidate graph may have
become disconnected. There may exist many ambigu-
ous ways to map multiple disconnected components
onto the same checkerboard model graph. To avoid
this ambiguity, we only consider the largest remain-
ing connected component of the candidate graph. Al-
though matching this subgraph to the model graph may
also lead to non-unique solutions, this is not an issue:
for intrinsic camera calibration correspondences be-
tween detected corners and three-dimensional corner
coordinates are required. However, this mapping does
not have to be unique. It is only required the mapping
reflects the structure between the detected board and
the true checkerboard correctly.

5. Find the largest common subgraph. We use the algo-
rithm by Cordella et al. [5] for finding the largest com-
mon subgraph of the candidate graph and the checker-
board model. However, this algorithm is only able
to deal with partial matches, or non-matchable extra
nodes. To achieve error tolerance during the graph
matching, we start with searching for an exact match
for a small subgraph of the candidate graph. We
then iteratively increase the subgraph in size, until the
largest possible subgraph match is found. Additional
details on the current implementation of the matching
algorithm are presented in Section 4.1.

The matched graph can then be used in the full calibra-
tion algorithm. We pass the matching result to the subpixel
corner refinement of the pipeline, described in Sec. 3.2.

4.1. Error-Tolerant Sub-Graph Matching

Goal of the matching is to obtain the largest common
subgraph of a checkerboard model graph and the detected

(a) Input image

. . . Preprocessing . . .

(b) Candidate connected component

(c) Graph of the candidate component (d) Two components after quad filtering (e) Result

Figure 2: Intermediate steps of the proposed method. Figure (a) shows the input image. The candidate component (b) and
the resulting detected graph shown in Figure (c). This graph might get separated by the quad filter as shown in (d). In the
next step the largest component is matched to the original pattern graph. The result is shown in Figure (e). Green and red
dots represent the checkerboard corners and indicate whether the corner refinement succeeded or not.

(a) Iteration 1 (b) Iteration 2 (c) Iteration 3

Figure 3: Subgraph matching strategy. Illustration for the
binary search for a detected graph Gd of order N = N0 =
15. In each iteration the algorithm tries to match the en-
circled vertices. The anchor vertex is encircled solidly.
In the first iteration G0 = Gd can not be matched due
to the wrongly detected diagonal edge. Next a subgraph
G1 of size N1 = bN0 + 2−1Ne = 8 is evaluated. This
succeeds, subsequently the subgraph size is increased to
N2 = bN1 + 2−2Ne = 12 vertices for creating G2.
G2 can be matched to Gm, therefore G3 is created with
N3 = bN2 + 2−3Ne = 14 vertices. Finally, G3 can not be
matched to Gm as the diagonal edge is introduced.

graph. This matching algorithm has to fulfill the follow-
ing requirements: a) it has to find an as-large-as-possible
non-injective, non-surjective mapping between the detected
graph and the model and, b) it has to tolerate errors in the
graph structure, e.g., missing or additional edges or vertices.

In the current implementation, we use the popular VF2
algorithm [5] for subgraph matching. Note that the VF2
algorithm is limited to finding exact matches of a subgraph,
instead of finding the largest common subgraph.

An example for this can be found in Fig. 3 (a). The
checkerboard model is shown in gray. The detected graph is
shown in black. Due to the diagonal edge, which does not
exist in the model (shown in gray), the original VF2 algo-
rithm is unable to find a valid mapping between the graphs.

To obtain the required tolerance to missing or extra ver-
tices, we cascade two subgraph search strategies: we first
perform a binary search over the nodes of the subgraph, and
then complement the graph using region growing. Efficient
matching of planar graphs with a certain error tolerance has
been considered earlier in the literature [7]. However, we
consider in our application the performance of the match-
ing algorithm as not overly critical since only small graphs
are matched.

Our search strategy requires the choice of an anchor ver-
tex where the search begins. Ideally this vertex is located in
a densely populated region of the graph. This allows to find
a large part of the checkerboard with a binary search over
the number of nodes. We examined multiple ways to find
the anchor vertex, for example the vertex which is closest to
the center of mass of the detected graph (in image domain)
or the vertex where the sum of all shortest distance to all
other vertices is minimal. In practice we found that a differ-
ent approach based on the quad density works best. We ob-
tain this density for every vertex by counting the number of

Algorithm 1: Binary search for error-tolerant matching
Data: Model graph Gm, Detected graph Gd

Result: Mapping M between Gm and Gd

i← 0; N ← |Gc|; Ni ← N
a← findAnchor(Gd)
D ← computeDistancesToAnchor(Gd, a)
while true do

Gi ← getSubgraph(Gd, D,Ni)
Mi ← V F2 match(Gi, Gm)
i← i+ 1
if validMapping(Mi) then

Ni ← round(Nn−1 + 2−iN)
M ←Mi

else
Ni ← round(Nn−1 − 2−iN)

if Ni >= Ni − 1 then
break

adjacent vertices which are part of a quad cycle via breadth-
first search down to a depth of 3. The vertex with the highest
density is then selected as anchor. This approach reduces
the influence of non-checkerboard vertices effectively.

An outline of the binary search approach is given in Al-
gorithm 1. In the following we describe the algorithm as
we analyze the example shown in Fig. 3. First, all vertices
are ordered via breadth-first search with respect to their dis-
tance to the anchor vertex (solidly encircled). The model
graph Gm is shown in gray. We perform a binary search
over the N = N0 = 15 vertices of the detected graph Gd,
which is drawn black. For the binary search, let Ni be the
number of vertices that are selected in iteration i. The first
iteration’s graph G0 equals Gd. Due to the diagonal edge
Gd can not be matched to Gm, thus the tested number of
nodes in the next iteration is set toN1 = bN0−2−1Ne = 8.
G1 can be matched toGm, as shown in Fig. 3 (a). As a con-
sequence, the binary search continues to search for a larger
number of nodes N2 = bN1 + 2−2e = 12 (Fig. 3 (b)). The
subgraph G2 can be matched to Gm, therefore the number
of nodes is increased toN3 = bN2+2−3e = 14. Due to the
diagonal edgeG3 can not be matched as shown in Fig. 3 (c).
This process is repeated until Ni converges.

Note that due to potential extra nodes or merged nodes
in the image graph, the binary search may fail before the
full number of nodes is found. In this case, we continue to
add single vertices in a breadth-first manner with respect to
the anchor point, and iteratively match the obtained graph
to the model. That way, the matched graph can grow around
the erroneously detected nodes.

Typically, this approach requires only a few iterations, as
the detected graph is in most cases not strongly fragmented.
The theoretical maximum number of iterations is propor-

tional to the number of vertices in the detected graph. How-
ever, due to the strong connectivity of checkerboard graphs,
large parts of the board can be matched in the binary search
phase which drastically reduces the amount of required iter-
ations. Timing results on the benchmark datasets are shown
in Sec. 5.4.

5. Evaluation
We first show qualitative results for several images to

demonstrate the performance of OCPAD in Sec. 5.1. Then,
we evaluate the overall detection rate and compare it to three
state-of-the-art algorithms in Sec. 5.2. In Sec. 5.3, we eval-
uate the impact of OCPAD on the accuracy of the resulting
calibration. Finally, we provide and compare measured run-
times in Sec. 5.4.

Five data sets are used in this evaluation. The first three
sets belong to the publicly available ROCHADE evaluation
data, containing low resolution images with strong lens dis-
tortion (Mesa SR4000), medium resolution images with lit-
tle distortion (IDS uEye) and high resolution images with
strong fisheye distortion (GoPro Hero 3). The fourth and
fifth data sets have been recorded with a wide angle camera
at a resolution of 1280 × 720 pixels. The fourth data set
contains only fully visible boards. The fifth data set con-
tains fully and partially visible boards positioned close to
the image border.

We use the publicly available implementations of the
OCamCalib toolbox [16] and the PTAM algorithm [12],
and our own implementation of ROCHADE [14]. Note that
PTAM is a camera tracking system for augmented reality
applications and not primarily designed for camera calibra-
tion. Nonetheless, PTAM comes with calibration function-
ality which requires robust calibration pattern detection. We
provide a publicly available implementation of OCPAD1.

5.1. Qualitative Examples

Representative results are shown in Fig. 4. In Fig. 4a,
two checkerboard x-junctions are merged erroneously dur-
ing preprocessing. This results in a wrong number of ver-
tices and edges, such that ROCHADE fails. This vertex is
not removed by the quad filter as it belongs to multiple com-
plete quads, even though it creates triangle structures. With
OCPAD, the majority (42 of 54 corners) of the pattern are
detected accurately and can be used for calibration.

Two additional examples are shown in Fig. 4b and
Fig. 4c. In both images ROCHADE fails as the intermedi-
ate candidate graph is connected to the background. OCam-
Calib finds only 26 of the 54 corners shown in Fig. 4c, due
to foreshortening and the low resolution. OCPAD detects
both cases, due to its robustness towards low resolution and
error-tolerant subgraph matching.

1http://www.metrilus.de/software/downloads

(a) Wrongly merged vertices (b) Connected outlier vertices (c) Connected outlier vertices

(d) Partially occluded, distorted pattern (e) Occluded pattern

Figure 4: Qualitative Results. (a) No complete detection possible as the saddle points have been merged wrongly. However,
42 of the 54 correctly detected corners can be used for calibration. (b-c) In these examples the underlying method fails as
the candidate graph is connected to the background. In (c) OCPAD finds the complete pattern, while OCamCalib finds only
26 corners. In figures (d) and (e) examples for partially occluded and distorted patterns are shown. In (d) OCPAD is able
to detect more corners as OCamCalib (25 vs. 18). In (e) the central part of the pattern is occluded. Both detectors find 66
corners. Figures are viewed best in color.

Figures 4d and 4e show two additional examples. In both
images the patterns are either partly occluded or outside of
the field of view. In Fig. 4d the pattern is also heavily dis-
torted by the camera’s lens. In Fig. 4d OCPAD detects 25
of the 26 visible corners while OCamCalib finds only 18
corners. In the occluded example, shown in Fig. 4e, both
detectors find all possible corners.

5.2. Detection Rates

Obtained detection rates are listed in Table 1. For partial
detectors, different tolerance thresholds for missed corners
are evaluated. We considered a detection successful if either
100%, 90% or 75% of all corners have been found.

In the less challenging IDS uEye and GoPro data sets,
ROCHADE, OCamCalib and OCPAD find full checker-
boards in almost all images. However, in the more challeng-
ing Mesa SR4000 data set, OCPAD outperforms all other
partial detectors by more than 10%. Furthermore, the pre-
sented method is the only method that is able to find all
patterns at a tolerance threshold of 75%. ROCHADE is the
second best method with this data set if 100% of the cor-
ners shall be detected, which indicates that its preprocessing
is part of the reason for the good performance. However,
OCPAD outperforms ROCHADE due to the more robust
checkerboard matching.

In the full board data set at 100% required corners, OC-
PAD detects 100% of the corners in the full board data in
seven more checkerboards than the best baseline method
OCamCalib. Nonetheless, OCamCalib benefits from the
high image resolution. In the full and partial set at 100%,
OCamCalib slightly outperforms OCPAD, but only by two
images. OCPAD consistently outperforms the other meth-
ods if only 90% or 75% of the corners are required for de-
tection. The only exception are full and partial boards at
75%, where OCamCalib and OCPAD perform comparably.

Figure 5 visualizes the detection rates for the two most
challenging data sets, the MESA SR4000 set and the full
and partial board set. In Fig. 5a, when allowing the detector
to miss 12 corners, the proposed method is able to find the
checkerboards on every image of the MESA set. OCam-
Calib is able to detect 191 patterns, if detections are consid-
ered to be valid with only 50% of the whole pattern found.
The detection algorithm included in PTAM cannot find any
complete patterns in the image set. No parameter set could
be found which allows to improve the detection rate of this
method. The reason for the poor performance might be the
low resolution of the data set. Figure 5b shows the results
for the full and partial boards data set. This plot supports the
results given in Tab. 1, as OCamCalib and OCPAD perform
comparably well. Due to the higher resolution the detector

Mesa SR4000 IDS uEye GoPro Hero 3 Full Boards Full + Partial Boards
tm Total images 206 206 100 162 162

10
0%

ROCHADE 195 205 96 153 44
OCamCalib 131 206 100 155 46
PTAM 0 165 31 3 3
OCPAD 200 205 100 162 44

90
%

OCamCalib 180 206 100 162 95
PTAM 4 192 57 118 73
OCPAD 203 206 100 162 104

75
%

OCamCalib 182 206 100 162 127
PTAM 4 192 60 119 84
OCPAD 206 206 100 162 128

Table 1: Detection rate results computed on the image sets of ROCHADE and new data. Different thresholds tm for minimum
required corners are evaluated. OCPAD excells particularly on the challenging Mesa and Full+Partial datasets.

0 10 20 30 40 50
0

50

100

150

200

Accumulated Detection Rate

Allowed missed Corners

D
e

te
c
te

d
 I

m
a

g
e

s

OCPAD

OCamCalib

PTAM

(a) MESA SR4000 data set (176x144 pixels), 206 total

0 10 20 30 40 50
0

20

40

60

80

100

120

140

160

Accumulated Detection Rate

Allowed missed Corners

D
e

te
c
te

d
 I

m
a

g
e

s

OCPAD

OCamCalib

PTAM

(b) Full and partial boards (1280x720 pixels), 162 total

Figure 5: Detection rates by missed corners. On the x-axes
are the missed corners. On the y-axes are the images where
at least 54− x corners were detected.

included in PTAM finds larger parts of the checkerboards.

5.3. Calibration Accuracy

In this section we show that including partial checker-
boards which cover the outer image regions leads to more
accurate calibrations. This is particularly the case towards
the image border where lens distortion typically becomes
more severe. Furthermore, we present results which imply
that this claim holds independent of the lens model. We also
demonstrate that the accuracy achieved with a combination
of fully and partially visible boards cannot be obtained if
only full boards are used.

In this experiment, the full boards set and the full and
partial boards set are used. For assessing the suitability
of the calibration images we randomly sample 50 images
of each data set and estimate the intrinsic parameters with
Zhang’s method [18]. This step is repeated 25 times in or-
der to minimize the impact of the selection of images, which
results in 25 sets of calibration parameters for image set.

We first used Brown’s lens model [3], which is com-
monly used for camera calibration. For this model we use
three radial and two tangential distortion terms, similarly as
in OpenCV or other calibration toolboxes [2]. Kannala and
Brandt [11] presented a generic lens model d(θ). Unlike
Brown’s lens model, it does not use the distance to the prin-
cipal point, but instead the angle θ between the incoming
light ray and the principal axis,

d(θ) = k1θ + k2θ
2 + k3θ

3 + . . . (1)

Experiments by Chtchetinine have shown that even-order
terms up to the power of 6 are well-suited for camera cali-
bration [4]. Note that this model does not include tangential
distortion.

For measuring the reprojection error, cameras are cali-
brated on the two benchmark data sets. Using this calibra-

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5

3

3.5

Distance from Principal Point (px)

M
e
a
n
 S

q
u
a
re

d
 R

e
p
ro

je
c
ti
o
n
 E

rr
o
r

(p
x
)

General − Full & Partial

General − Full

Brown’s − Full & Partial

Brown’s − Full

Figure 6: Evaluation of the calibration accuracy for two lens
models.

tion, the radially-dependent reprojection error is calculated
on a third (validation) set. This set contains checkerboard
images which are evenly distributed throughout the whole
image plane. The patterns in the third are detected with
OCPAD. We report the reprojection error for a point and
its distance to the principal point. The resulting errors are
binned into 50 equidistant sections and averaged to improve
clarity of the plots.

Figure 6 shows that Brown’s model is not suitable for
capturing the characteristics of the camera lens, due to the
fact that the reprojection error increases with the distance to
the principal point. It can also be seen that including par-
tially visible checkerboards at the image border leads to a
considerably lower overall reprojection error. However, the
overall reprojection error can clearly be reduced by using
the general lens model. This leads to the insight that the
general model better fits this lens.

For the general lens model and Brown’s lens model, the
radially dependent reprojection error is considerably lower
if partially visible patterns at the image border are included.
Generally, OCPAD achieves the lowest reprojection errors
using the general lens model. Note that due to the fact
that parts of the patterns are occluded, less point correspon-
dences can be obtained. Yet, having correspondences in
highly distorted areas outweighs this disadvantage.

5.4. Detection Runtime

Average runtime measurements of evaluated algorithms
for all five datasets are listed in Table 2. In OCPAD, the
majority of the processing time is used for graph matching.
Variations in image dimensions barely affect the algorithm.
Instead, OCPAD’s runtime depends on how challenging the
matching of the detected graphs is. This property can be
observed best with the GoPro data set. The baseline meth-
ods require multiple seconds, but OCPAD finds the patterns
in less than 500 ms. OCamCalib is extremely fast on the

Image set OCamCalib PTAM OCPAD
Mesa SR4000 69 ms 437 ms 367 ms
IDS uEye 604 ms 3891 ms 379 ms
GoPro Hero 3 12431 ms 7310 ms 477 ms
Full Boards 374 ms 4605 ms 361 ms
Full + Partial Boards 412 ms 3760 ms 439 ms

Table 2: Average runtime for different image sets.

Mesa SR4000 data set. However, its detection performance
is not competitive (see Tab. 1). On the full and partial data
set, OCPAD is somewhat slower than OCamCalib, due to
additional iterations during graph matching.

6. Conclusion and Outlook

We present a new checkerboard detector, OCPAD, that
considerably improves detection rates in challenging cases
higher over state-of-the-art methods. For less challenging
cases, the performance does not degrade compared to the
other methods. Particularly, OCPAD is able to find partially
occluded patterns. OCPAD allows the user to compute more
accurate calibrations from a lower number of images.

In our implementation, we use subgraph matching for
finding the largest possible calibration pattern. The method
is robust to various types of graph detection errors. We
present extensive experiments which evaluate the detection
rate and the resulting accuracy of the camera calibration.
The results show that the proposed algorithm clearly outper-
forms the baseline algorithms when applied on challenging
data sets. If partially visible checkerboards are used, the ac-
curacy of intrinsic camera calibrations can be considerably
increased by up to 50% in outer image regions.

The current graph matching algorithm which does not
yet exploit all properties of planar graphs that occur in two-
dimensional calibration patterns. We will investigate this in
future work.

Acknowledgements

This work was partly supported by the German Federal
Ministry of Education and Research as part of the Spitzen-
cluster Medical Valley program 13GW0029A. This work
was partly supported by the Research Training Group 1773
“Heterogeneous Image Systems”, funded by the German
Research Foundation (DFG). The authors gratefully ac-
knowledge funding of the Erlangen Graduate School in Ad-
vanced Optical Technologies (SAOT) by the German Na-
tional Science Foundation (DFG) in the framework of the
excellence initiative.

References
[1] S. Bennett and J. Lasenby. ChESS - quick and robust de-

tection of chess-board features. Computer Vision and Image
Understanding, 118:197–210, 2014. 2

[2] J. Y. Bouguet. Camera calibration toolbox for Matlab, 2008.
1, 7

[3] D. C. Brown. Decentering distortion of lenses. Photometric
Engineering, 32(3):444–462, 1966. 7

[4] A. Chtchetinine. Radial distortion in low-cost lenses: nu-
merical study. Optical Engineering, 47(2):023001–023001,
2008. 7

[5] L. Cordella, P. Foggia, C. Sansone, and M. Vento. A (sub)
graph isomorphism algorithm for matching large graphs.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 26(10):1367–1372, 2004. 3, 4

[6] A. de la Escalera and J. M. Armingol. Automatic chessboard
detection for intrinsic and extrinsic camera parameter cali-
bration. Sensors, 10(3):2027–2044, 2010. 2

[7] D. Eppstein. Subgraph isomorphism in planar graphs and
related problems. In ACM-SIAM Symposium on Discrete Al-
gorithms, pages 632–640, 1995. 4

[8] M. Fiala and C. Shu. Self-identifying patterns for plane-
based camera calibration. Machine Vision and Applications,
19(4):209–216, 2008. 2

[9] C. Forman, M. Aksoy, J. Hornegger, and R. Bammer. Self-
encoded marker for optical prospective head motion correc-
tion in MRI. Medical Image Analysis, 15(5):708–719, 2011.
2

[10] M. Hansard, R. Horaud, M. Amat, and G. Evangelidis. Auto-
matic detection of calibration grids in time-of-flight images.
Computer Vision and Image Understanding, 121:108–118,
2014. 2

[11] J. Kannala and S. Brandt. A generic camera model and cal-
ibration method for conventional, wide-angle, and fish-eye
lenses. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 28(8):1335–1340, 2006. 7

[12] G. Klein and D. Murray. Parallel tracking and mapping for
small AR workspaces. In Mixed and Augmented Reality,
6th IEEE and ACM International Symposium on, pages 225–
234, 2007. 2, 5

[13] C. W. Niblack, P. B. Gibbons, and D. W. Capson. Gen-
erating skeletons and centerlines from the distance trans-
form. CVGIP: Graphical Models and Image Processing,
54(5):420–437, 1992. 2

[14] S. Placht, P. Fürsattel, E. Mengue, H. Hofmann, C. Schaller,
M. Balda, and E. Angelopoulou. ROCHADE: Robust
checkerboard advanced detection for camera calibration. In
Computer Vision, European Conference on, volume 8692 of
LNCS, pages 766–779. 2014. 2, 3, 5

[15] M. Rufli, D. Scaramuzza, and R. Siegwart. Automatic de-
tection of checkerboards on blurred and distorted images.
In Intelligent Robots and Systems, IEEE/RSJ International
Conference on, pages 3121–3126. IEEE, 2008. 2

[16] D. Scaramuzza, A. Martinelli, and R. Siegwart. A toolbox
for easily calibrating omnidirectional cameras. In Intelligent
Robots and Systems, 2006 IEEE/RSJ International Confer-
ence on, pages 5695–5701, 2006. 1, 2, 5

[17] H. Scharr. Optimal filters for extended optical flow. In
B. Jähne, R. Mester, E. Barth, and H. Scharr, editors, Com-
plex Motion, volume 3417 of LNCS, pages 14–29. Springer
Berlin Heidelberg, 2007. 2

[18] Z. Zhang. A flexible new technique for camera calibration.
Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 22(11):1330–1334, 2000. 1, 3, 7

