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Abstract. Severely limited training data is one of the major and most
common challenges in the field of hyperspectral remote sensing image
classification. Supervised learning on limited training data requires either
a) designing a highly capable classifier that can handle such information
scarcity, or b) designing a highly informative and easily separable feature
set. In this paper, we adapt GMM supervectors to hyperspectral remote
sensing image features. We evaluate the proposed method on two datasets.
In our experiments, inclusion of GMM supervectors leads to a mean
classification improvement of about 4.6%.
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1 Introduction

Remote sensing plays an important role for various applications, including en-
vironmental monitoring, urban planning, ecosystem-oriented natural resources
management, urban change detection and agricultural region monitoring [27].
Most of these monitoring and detection applications require the construction of
a label map from the remotely sensed images. In these label maps, individual
pixels are marked as members of specific classes like for example water, asphalt,
or grass. The assignment of observations to labels is done via classification, which
explains the importance of classification for remote sensing applications.

The availability of very high resolution hyperspectral remote sensing images
(VHR-RSI) has drawn researchers’ attention over the past decade. It has been
shown that jointly exploiting spectral and spatial information improves classifi-
cation performance compared to using spectral features alone [19]. To this end,
extended multi-attribute profiles (EMAP) [8] are one of the most popular and
powerful feature descriptors for such spectral-spatial pixel representations. By
operating directly on connected components rather than pixels, EMAP allows
to employ arbitrary region descriptors (e.g. shape, color, texture, etc.) and to
support object-based image analysis. In addition, EMAP can be implemented effi-
ciently via various tree-based hyperspectral (HS) image representation techniques



like max- and min-tree [23] or alpha tree [24]. EMAPs unique characteristics
make it a popular tool in the hyperspectral remote sensing image analysis com-
munity [14,21,30].

A long-standing problem in hyperspectral remote sensing is image classifica-
tion based on only a limited number of labeled pixels, as the process of labeling
pixels for training data is a manual, time-consuming and expensive procedure.
Additionally, popular descriptors like EMAP typically provide high dimensional
features. These two factors together lead to a relatively small ratio of labeled
data compared to the overall feature dimensionality, and can potentially cause
a problem known as Hughes phenomenon [15]. Researchers have put consider-
able effort into developing different algorithms to address this problem. These
approaches can be categorized into two groups: 1) developing new classifiers
or reformulating existing ones in order to work well with the limited training
data [3, 6, 12,12,16,26,28], and 2) using dimensionality reduction. In particular,
supervised dimensionality reduction techniques like NWFE [18], DAFE [11], or
DBFE [20] has been shown to oftentimes outperform unsupervised reduction
techniques [4] like PCA. However, both approaches, i.e. designing classifiers capa-
ble of handling limited amount of training data and feature vector dimensionality
reduction are challenged in extreme cases when training data is severely limited.

Gaussian Mixture Model supervectors have been successfully used to handle
limited training data in several other applications, such as online signature
verification [31], writer identification [7], or speech analysis [1, 5, 17,25]. In this
paper, we adopt GMM supervectors with a universal background model (GMM-
UBM) to hyperspectral remote sensing image classification in the presence of
limited training data. We apply the GMM-UBM approach to feature extraction.
To deal with small size training sets, We concatenating all the means of the
GMM components to form the supervectors. We show that such supervectors are
highly effective in addressing the limited data problem.

Section 2 introduces the proposed workflow and tools used for feature extrac-
tion in the context of our framework for hyperspectral remote sensing images.
Section 3 describes the experimental setup, datasets, feature extraction mecha-
nism and classification algorithm and illustrates the results. Finally, our work
will be concluded in Section 4.

2 Methodology

We first introduce Gaussian supervectors, then present the proposed workflow to
limited data classification.

2.1 GMM Supervector

The computation of GMM supervectors consists of three main components,
namely universal background model computation, adaptation to the data and
normalization [22].



Universal Background Model The universal background model (UBM) es-
sentially is a GMM fitted to the labeled training data. In detail, let λ =
{wk, µk, Σk |k = 1, . . . ,K} denote the parameters of a GMM with K mix-
ture components, where wk, µk, Σk denote the k-th mixture weight, mean vector
and covariance matrix, respectively.

Given a feature vector x ∈ RD, its likelihood function is defined as

p(x |λ) =

K∑
k=1

wkgk(x) , (1)

where gk(x) is a function to evaluate the k-th Gaussian at position x, i.e.,

gk(x) = g(x ; µk,Σk) =
1√

(2π)D|Σk|
e−

1
2 (x−µk)

>Σ−1
k (x−µk) . (2)

The mixture weights are positive real numbers, i.e. wk ∈ R+, and satisfy the

constraint
∑K

k=1 wk = 1.
Finally, the posterior probability of a feature vector xj to be generated by

the Gaussian mixture k is

γk(xj) = p(k |xj) =
wkgk(xj)∑K
l=1 wlgl(xj)

. (3)

For estimating the GMM parameters, expectation maximization is used for
a maximum likelihood estimation [10]. The parameters λ are iteratively refined

to increase the log-likelihood log p(X |λ) =
∑M

m=1 log p(xm |λ) of the model for
the set of training samples X = {x1, . . . ,xM}.

In the original formulation of Gaussian supervectors, all parameters, i.e.,
weights wk, means µk and covariances Σk are used. However, in our case of
severely limited training data, we found that supervectors consisting only of the
means are much more robust. Thus, we will eventually only use these means for
supervector formation.

GMM Adaptation and Mixing A key idea of the Gaussian supervectors is
to adapt the GMM components to the distribution of the test set. Since we will
only use the means, we only describe the adaptation of the GMM mean vectors.

Thus, let Xf = {x1, . . . ,xT } denote the D-dimensional feature representa-

tions of the T pixels in the test set. Let furthermore nk =
∑T

t=1 γk(xt). Then,
the first order statistic for adaptation of the UBM to the test data is

E1
k =

1

nk

T∑
t=1

γk(xt)xt , (4)

(5)

where E1
k ∈ RD. The adapted mean vectors µ̂k can then be computed as

µ̂k = αkE
1
k + (1− αk)µk , (6)



Fig. 1. Proposed workflow.

where

αk =
nk

nk + r
, (7)

and r denotes a fixed relevance factor that controls the strength of the adaptation.
Finally, the supervector s is formed by concatenating the adapted GMM

parameters. As stated above, we use only the adapted mean components, leading
to

s =
(
µ̂>1 , . . . , µ̂

>
K

)>
. (8)

Normalization The purpose of normalization is to transform the s in Eqn. 8
into a common range. Several groups used for this task a feature mapping inspired
by the symmetrized Kullback-Leibler divergence [7,29] . This mapping is referred
to as KL-normalization and is computed for the mean vectors as

µ̃k =
√
wkσ

− 1
2

k � µ̂k , (9)

where σk represents the GMM’s k-th component standard deviation, µ̃k denotes
the normalized adapted mean vector, and � denotes the Hadamard product. In
the case of mean adaptation, the normalized supervector s̃m is represented as

s̃m =
(
µ̃>1 , . . . , µ̃

>
K

)>
. (10)

2.2 Proposed Workflow

A high-level overview of the proposed method is shown in Fig. 1. For hyperspectral
remote sensing image classification, we use a standard dimensionality-reduction
workflow. Here, spectral bands are first reduced via principle component analysis
(PCA). Then, extended multi-attribute profile (EMAP) [8] is computed as the
feature vector. From the computed EMAP, c samples per class are randomly



selected as the training feature set. These training features are again subject to
dimensionality reduction, denoted by EMAP-reduced.

The key contribution of the method is injected right before classification: we
propose to compute Gaussian mixture model supervectors from the EMAP/EMAP-
reduced training features, denoted by EMAP-SV/EMAP-reduced-SV, and use in
the classifier the supervectors as the features of the hyperspectral image. A GMM
from such limited training data is necessarily only a coarse approximation of the
underlying distribution. Nevertheless, we show that it is just good enough to
support the classifier in better determining the class boundaries. The parametriza-
tion of the standard pipeline follows dataset-dependent recommendations from
the literature, and is reported in Sec. 3.2.

3 Experiments

We first introduce the datasets that were used for the evaluation in Sec. 3.1.
Feature extraction and classification are presented in Sec. 3.2 and Sec. 3.3,
respectively. Quantitative and qualitative results are presented in Sec. 3.4 and
Sec. 3.5, respectively.

3.1 Data Sets

In order to evaluate our method, we use two popular datasets that were acquired
by two different sensors. First, Pavia Centre dataset has been acquired by the
ROSIS sensor in 115 spectral bands during a flight campaign over Pavia, northern
Italy. 13 of these bands are removed due to noise. Therefore, 102 bands are used in
this work. The scene image is 1096×715 pixels with geometrical resolution of 1.3 m.
For the computation of EMAP, we use the first three principle components of
this dataset, containing 99.12% of the total spectral variance. Second, the Salinas
dataset was acquired by AVIRIS sensor in 224 spectral bands over Salinas Valley,
California. 20 of the water absorption bands were discarded and therefore 204
bands are used in this work. The scene image is 512×217 pixels with high spatial
resolution of 3.7 meter pixels. We use the first three principle components of this
dataset, containing 99.14% of the total spectral variance, for the computation of
EMAP.

3.2 Feature Extraction

The host feature vector used in this work is the extended multi-attribute profile
(EMAP) with four attributes and four thresholds, λ, per each attribute. For the
Pavia Centre dataset we use the same threshold values as in [8]. For the Salinas
dataset, we use the same threshold values as in [21]. The attributes and their
corresponding threshold values for the Pavia Center are

– Area of the connected components: λa = [100, 500, 1000, 5000];
– Length of the bounding box diagonal fit over the of the connected components:
λd = [10, 25, 50, 100];



– Standard deviation of the gray values of the connected components: λs =
[20, 30, 40, 50];

– Moment of inertia [13]: λi = [0.2, 0.3, 0.4, 0.5];

The attributes and their corresponding threshold values for the Salinas dataset
are

– Area of the connected components: λa = [100, 500, 1000, 5000];
– Length of the bounding box diagonal fit over the of the connected components:
λd = [10, 25, 50, 100];

– Standard deviation of the gray values of the connected components: λs =
[15, 20, 25, 30];

– Moment of inertia: λi = [0.1, 0.15, 0.2, 0.25].

For calculating the EMAPs, the Max-tree hierarchical image representation is
used. We use max-filtering [9] for filtering the Max-tree with each value in λ.

We implemented two variants of the second dimensionality reduction (DR)
to investigate its impact on our proposed approach. Specifically, we reduce
the EMAP dimensionality in one variant with principle component analysis
(PCA), and in another variant with non-parametric weighted feature extraction
(NWFE) [18]. PCA is a popular unsupervised DR method. NWFE is supervised
and very strong performance has been reported for this method [4]. For the
Pavia Centre dataset, 7 PCA dimensions and 6 NWFE dimensions were used
to preserve 99% of the variance of the input EMAP features. For the Salinas
dataset, 4 PCA dimensions and 7 NWFE dimensions were used to preserve 99%
of the variance of the input EMAP features.

The supervectors (SV) are computed over the aforementioned raw EMAP/
EMAP-reduced feature vectors. The number of GMM components is set to 3.
However, in preliminary experiments we found that the choice of this parameter
is not critical to this work. The relevance factor is set to r = 16 as it is commonly
used in the literature [17,22]. Kullback-Leibler divergence is used for normalization
of the supervectors. The supervectors are computed over EMAP results (denoted
as EMAP-SV) and EMAP-reduced results (denoted as EMAP-reduced-SV),
respectively.

3.3 Classification

We use the random forest classifier with 100 trees. The tree depth and the bagging
number is set to be square root of the number of input variables by default as
suggested in [2]. For training, we randomly select c pixels per class from the
image as the training set. All the remaining pixels are used for testing. In order
to simulate the severely limited training data case, we choose c to be 13 and 20 as
two different training set sizes. For each experiment, this procedure was repeated
25 times. The performance metrics are overall accuracy, average accuracy and
kappa, abbreviated as OA, AA, and Kappa:

– OA: The overall accuracy is the number of correctly classified instances
divided by the total number of data points (pixels).



– AA: The average accuracy is the average of class-based accuracies.

– Kappa: The kappa statistic is a measure of how closely the instances classified
by the classifier matched the ground truth. By measuring the expected
accuracy, it gives a statistic for the accuracy of a random classifier.

3.4 Quantitative Results

For quantitative evaluation, we compare a total of twelve combinations of the
proposed algorithm: we use PCA and NWFE as dimensionality reduction of the
EMAP features, and we apply these two variants on both datasets. We compare
the classification performance on raw EMAP, EMAP-PCA and EMAP-NWFE to
the supervectors computed over each of them. For each of these sets, we choose
two selections of training sets, namely 12 and 20 pixels per class. Table 1 and
Tab. 2 show the classification results of the aforementioned feature sets computed
over Pavia Centre dataset and Salinas dataset, respectively.

Both Tab. 1 and Tab. 2 show that the smaller the training size, the higher the
performance gain achieved by using GMM supervectors. For example, consider
the case of EMAP feature computed over Pavia Centre dataset in Tab. 1. In the
case of 20 pixels per class, using supervectors results in a Kappa improvement
of 0.0312. With a training data size of only 13 pixels per class, the Kappa
improvement is even 0.0598. Thus, the proposed method has a bigger impact in
applications with severely limited training data.

To study the effect of the second level dimensionality reduction algorithms
on our idea, we reduced the dimensionality of EMAP by means of PCA and
NWFE to a number that preserves 99% of the data variance. It turns out that
the performance boost achieved by the supervectors over raw EMAP variants
is consistent over variants of dimensionality reduction algorithms, i.e. PCA and
NWFE. All metrics show improvement for both EMAP-PCA supervector and
EMAP-NWFE supervector comparing to raw EMAP classification. This shows
the consistency of the method over different dimensionality reduction techniques.
We also note that the performance gained by NWFE is higher than for PCA.
Furthermore, the standard deviation of the proposed method is consistently low.
Thus, by using supervectors, robustness of the training set is increased with
respect to the class-wise structure. By extension, the classifier becomes more
robust and consistent on different training samples.

Finally, supervectors computed over EMAP variants using less training sam-
ples oftentimes lead to a comparable or sometimes even higher performance than
raw EMAP variants using more training samples without synthetic samples. For
example in Table 1, EMAP-PCA-SV on 13 training samples achieves a Kappa
of 0.9198. This is higher than the Kappa of 0.8974 that is achieved by EMAP-
PCA-raw on 20 training samples. Similarly, in Table 2, EMAP-NWFE-SV on
13 training samples obtain higher Kappa values than EMAP-NWFE-raw on 20
training samples.



Table 1. Classification performances of raw EMAP, EMAP-PCA and EMAP-NWFE
vs. their supervector (SV) correspondences, computed over Pavia Centre dataset. This
tables shows the results for two training data sizes namely 13 and 20 pixels per class.

Algorithm Feature AA% (± SD) OA% (± SD) Kappa (± SD)

13 Pix/Class

EMAP raw 77.87 (±2.97) 90.01 (±3.78) 0.8600 (±0.0495)

SV 88.73 (±1.30) 94.28 (±0.94) 0.9198 (±0.0129)

EMAP-PCA raw 73.51 (±3.00) 86.38 (±3.61) 0.8089 (±0.0493)

SV 82.07 (±1.96) 91.70 (±1.67) 0.8838 (±0.0225)

EMAP-NWFE raw 80.06 (±3.56) 91.37 (±2.67) 0.8787 (±0.0365)

SV 88.02 (±1.17) 95.39 (±0.42) 0.9349 (±0.0059)

20 Pix/Class

EMAP raw 81.80 (±2.07) 92.73 (±1.23) 0.8974 (±0.0171)

SV 90.43 (±1.22) 94.92 (±0.77) 0.9286 (±0.0106)

EMAP-PCA raw 79.07 (±1.69) 90.89 (±1.22) 0.8717 (±0.0169)

SV 83.12 (±2.07) 92.37 (±1.09) 0.8928 (±0.0151)

EMAP-NWFE raw 83.32 (±2.24) 93.28 (±1.30) 0.9053 (±0.0181)

SV 88.91 (±0.86) 95.67 (±0.55) 0.9389 (±0.0077)

3.5 Qualitative Results

Figure 2 shows example label maps corresponding to the classification results
for training size of 13 pixels per class for the Salinas dataset. In this Figure, (a)
shows the ground truth labeling, (b) shows the output of raw EMAP, (c) shows
the EMAP supervector results. Analogously, (d) shows the output of raw EMAP-
PCA, and (e) shows EMAP-PCA supervector, (f) shows the corresponding results
for raw EMAP-NWFE, and (g) shows the output of EMAP-NWFE supervector,
i.e., identical processing pipelines using NWFE dimensionality reduction, with
raw and supervector feature sets. Comparing (e) and (g) confirms the superiority
of EMAP-NWFE supervectors over the EMAP-PCA supervector. Comparing (b)
with (c), (d) with (e) and (f) with (g), specially in the large homogeneous areas,
clearly shows that using the supervectors avoids a number of misclassification
that are present in the raw EMAP, EMAP-PCA and EMAP-NWFE.

4 Conclusion

Limited training data is a common issue in hyperspectral remote sensing image
classification. This limitation severely challenges classifiers, particularly when
using high dimensional feature vectors. We propose to use GMM supervectors



Table 2. Classification performances of raw EMAP, EMAP-PCA and EMAP-NWFE
vs. their supervector (SV) correspondences, computed over Salinas dataset. This tables
shows the results for two training data sizes namely 13 and 20 pixels per class.

Algorithm Feature AA% (± SD) OA% (± SD) Kappa (± SD)

13 Pix/Class

EMAP raw 83.84 (±2.06) 76.30 (±2.74) 0.7380 (±0.0292)

SV 90.90 (±0.98) 85.37 (±1.34) 0.8378 (±0.0147)

EMAP-PCA raw 82.50 (±2.06) 74.96 (±3.63) 0.7230 (±0.0378)

SV 86.84 (±1.77) 78.30 (±2.90) 0.7606 (±0.0311)

EMAP-NWFE raw 88.68 (±1.20) 80.42 (±2.34) 0.7838 (±0.0247)

SV 91.43 (±1.00) 83.09 (±1.72) 0.8132 (±0.0186)

20 Pix/Class

EMAP raw 86.81 (±1.63) 79.74 (±2.56) 0.7756 (±0.0269)

SV 92.88 (±0.71) 88.09 (±1.29) 0.8680 (±0.0142)

EMAP-PCA raw 86.59 (±1.06) 78.70 (±2.33) 0.7643 (±0.0249)

SV 86.99 (±1.28) 79.40 (±1.88) 0.7725 (±0.0205)

EMAP-NWFE raw 90.56 (±1.26) 82.26 (±2.62) 0.8038 (±0.0280)

SV 91.91 (±0.81) 83.40 (±1.94) 0.8168 (±0.0208)

with a universal background model to address the limited data problem. In our
results on real data, we show the performance gain on the Pavia Centre and the
Salinas datasets. It turns out that supervectors consistently increase the overall
accuracy, average accuracy, and kappa coefficient. Furthermore, the performance
boost using supervectors is consistent over different dimensionality reduction
algorithms and different training data sizes. It can also be observed that using
supervectors decreased the standard deviations of the error metrics.

Quantitatively, the exact performance improvement depends on the details of
the processing chain and on the dataset. The mean improvement in our experi-
ments is almost 4.6%, with variations between one percent and almost ten percent.
These results are encouraging, as the approach itself is quite straightforward, and
can be smoothly integrated into any classification pipeline.
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