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Abstract. Grating-based Talbot-Lau X-ray interferometry is a popular method for measuring absorption, phase shift
and small-angle scattering. The standard acquisition method for this modality is phase stepping, where the Talbot
pattern is reconstructed from multiple images acquired at different grating positions.

In this paper, we review the implicit assumptions in phase stepping reconstruction. We find the assumptions of
perfectly known grating positions and homoscedastic noise variance are violated in some scenarios. Additionally,
we investigate a recently reported estimation bias in the visibility and dark-field signal. In order to adapt the phase
stepping reconstruction to these findings, we propose three improvements to the reconstruction. These improvements
are a) to use prior knowledge to compute more accurate grating positions to reduce Moiré artifacts b) to utilize noise
variance information to reduce dark-field and phase noise in high visibility acquisitions and c) to perform correction
of an estimation bias in the interferometer visibility, leading to more quantitative dark-field imaging in acquisitions
with a low signal to noise ratio. We demonstrate the benefit of our methods on simulated data, as well as on images
acquired with a Talbot-Lau interferometer.
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1 Introduction

Conventional X-ray imaging measures only the attenuation of X-rays. Recently, several measure-

ment principles for phase sensitive X-ray imaging have been proposed. Most notable of these

methods are propagation-based systems,1 diffraction-enhanced systems,2 edge-illumination3 and

grating-based interferometers.4, 5 These systems represent different tradeoffs between phase sen-

sitivity, the ability to measure dark-field signals, setup complexity, and requirements on source

coherence.

The clinical relevance of phase and dark-field signals has been extensively investigated, e.g.,

in.6–12 For example, phase and dark-field signals offer improved soft-tissue contrast in breast

specimens compared to absorption X-ray alone.13, 14 Dark-field imaging has also shown potential
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for diagnosing lung diseases.15, 16 Among other phase sensitive systems, the grating-based Talbot-

Lau interferometer is able to measure phase and dark-field signals. Additionally, it can be operated

with a medical X-ray tube and detector. This makes this setup comparably well suited for use in a

medical environment.17, 18

Figure 1 shows a sketch of a Talbot-Lau interferometer. The interferometer consists of a set

of gratings, source grating G0, phase grating G1 and analyzer grating G2. At a design energy, the

grating G1 imprints a periodic phase shift of either π or π
2

on the X-ray beam. When the G1 grating

is illuminated with a coherent X-ray source, diffraction leads to the formation of an intensity self-

image (also called Talbot pattern) at the Talbot distances downstream of G1. Since conventional

X-ray sources typically do not fulfill the coherence requirements for the Talbot effect, the G0

grating is used to split the X-ray source into a set of slit sources that are coherent perpendicular to

the grating bars. When the G0 parameters are matched to those of the G1 grating, Talbot imaging

with conventional X-ray sources is possible.5, 19 The period of the G1 self image is typically too

small for direct detection with conventional X-ray detectors. To facilitate detection of the intensity

pattern, the G2 grating is placed in front of the X-ray detector. The G2 period is chosen to match

the period of the intensity pattern at the G2 position. The intensity at the detector then corresponds

to the scalar product between the intensity pattern and the function describing the G2 grating bars.

However, the intensity pattern can not be directly characterized from one measurement alone. It

has been proposed to detune the interferometer20 or use a specially designed G2 grating21 to create

a spatial intensity modulation on the detector whose period is in the magnitude of the detector’s

pixel size. While these method allow retrieving information about the Talbot pattern from a single

image, they suffer from a loss of resolution due to the spatial information modulation, as well as

a loss of visibility due to blurring in the detector’s converter layer. Due to these limitations, the
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Fig 1 Illustration of a Talbot-Lau interferometer. During phase stepping acquisition, the grating G2 is translated in
x-direction.

standard method of acquiring Talbot-Lau data is phase stepping, where multiple measurements are

used to compute the information of the intensity pattern. During phase stepping, the G2 grating

is translated by one G2 period perpendicular to the grating bars, while images are acquired at

equidistant positions.

Since phase stepping reconstruction is a key component of the Talbot-Lau imaging chain, any

improvement to this step directly impacts the resulting image quality. In this paper, we review the

implicit assumptions that are inherent in phase stepping reconstruction and assess their validity.

We find that two assumption can be violated: the assumptions of perfectly known phase stepping

positions and of equal noise variance in all measurements. We also investigate the origin of a

recently reported estimation bias in dark-field images.22 Based on this analysis, we propose three

improvements to the phase stepping reconstruction: an algorithm for estimating the true phase

stepping positions, a noise weighting to account for varying noise variances and a visibility bias

correction. Our proposed modifications are evaluated on real and simulated data.
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The paper is organized as follows: In the next section, we describe the standard phase stepping

reconstructing method. Afterwards, we review the assumptions in phase stepping reconstruction

as well as the estimation bias and discuss prior work. In Section 2, we present our proposed

improvements to the reconstruction, followed by experiments and discussion of each improvement

in Section 3. We finish our paper with conclusions in Section 4.

1.1 Phase Stepping Reconstruction

Typically, three types of information are obtained from the Talbot pattern: the mean intensity, the

visibility (i.e. the contrast) and the phase. Thus, phase stepping reconstruction requires a set of

N ≥ 3 measurements mi = [m1
i , · · · ,mN

i ] for each pixel i ∈ [1;M ]. The superscript j ∈ [1;N ]

denotes the corresponding phase stepping positions s = [s1, · · · , sN ], sj ∈ [0; 2π[. Under the

assumption of a sinusoidal Talbot pattern, a sine function with three parameters (offset, amplitude

and phase) can be used to describe the pattern. The offset o corresponds to the mean intensity, the

normalized amplitude (i.e. the amplitude divided by the offset), v, to the visibility, while the phase

is denoted as p. This leads to the measurement model

mj
i = oi + oi · vi · sin(pi + sj) + ηji (1)

for the i-th pixel. The term ηji corresponds to noise and deviations from the sinusoidal model.

Figure 2 shows idealized example of such a measurement, together with the fitted sine function.

To solve for oi, vi and pi, the model is linearized using the trigonometric identity

sin(pi + sj) = sin(pi) · cos(sj) + cos(pi) · sin(sj) . (2)
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Fig 2 Illustration of the phase stepping reconstruction. The noisy measurement data is shown in black, while the fitted
sine function is shown in blue.

By substituting ci = oi · vi · sin(pi) and di = oi · vi · cos(pi), Eq. 1 becomes

mj
i = oi + ci · cos(sj) + di · sin(sj) + ηji . (3)

Since the phase stepping positions s are assumed to be known from the acquisition process, oi, ci

and di can be retrieved by solving the linear least squares problem

arg min
oi,ci,di

∑
j

[mj
i − (oi + ci · cos(sj) + di · sin(sj))]2 . (4)

The least squares problem can be solved using standard methods. If the phase stepping positions s

lie equidistantly in the interval of [0; 2π[, the discrete Fourier transform can be used to directly

obtain a solution for Eq. 4. In this case, oi corresponds to the DC-component, and ci and di

correspond to the real and imaginary parts of the lowest frequency component. Afterwards, the

visibility vi and phase pi can be computed as

vi =

√
(ci)2 + (di)2

oi
(5)
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and

pi = tan−1
ci
di

. (6)

In Talbot-Lau imaging, inhomogeneities of the gratings and imperfect grating positioning re-

quire the acquisition of two images, a reference image without the object in the beam path and an

object image with the object. We subsequently denote the offset, visibility and phase correspond-

ing to the reference image pixels as ori , v
r
i and pri , and those belonging to the object image pixels as

ooi , v
o
i and poi . The object attenuation ai is then computed as the log-ratio of the mean intensities

ai = − log(
ooi
ori

) , (7)

the differential phase hi as

hi = poi − pri , (8)

and the dark-field signal fi as

fi = 1− voi
vri

. (9)

1.2 Assumptions used in Phase Stepping Reconstruction

The reconstruction of phase stepping data is based on a set of underlying assumptions on the

measured data. In this section we describe and review the validity of these assumptions.

1.2.1 Sinusoidal interference pattern

Phase stepping reconstruction seeks to reconstruct a sinusoidal signal. In contrast, an ideal mono-

chromatic Talbot-Lau system with a X-ray point source produces a triangular intensity pattern after
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the G2 grating. This triangular pattern can be interpreted as a superimposition of sinusoidal pat-

terns with different frequencies. However, the blurring of the Talbot pattern due to the size of the

actual X-ray source or due to the width of the G0 slits leads to an attenuation of the high-frequency

components of the triangular pattern, such that it can be approximated by a single sine function.

This sinusoidal approximation is valid for typically used G0 slit sizes.19

1.2.2 Data consistency during phase stepping

It is assumed that the object does to not change during the acquisition of the phase stepping curve.

Similar to conventional X-ray imaging, movement of the object in the order of magnitude compa-

rable to the pixel size during acquisition introduces motion artifacts. In Talbot-Lau interferometry,

movement may lead to inconsistency in the phase stepping curve and hence introduces artifacts.

This can be avoided by properly fixating the scanned sample, proper animal sedation or patient in-

struction. In addition, acquisition parameters, such as exposure time, tube voltage, and tube current

need to be kept constant during the acquisition process. This, however, is typically not a problem

when using modern X-ray tubes. However, high frequency oscillations of the gratings during the

acquisition of a phase step may reduce the visibility of the interferometer for this particular phase

step and lead to inconsistent phase stepping data.

1.2.3 Error-free phase stepping positions

Phase stepping reconstruction requires knowledge about the phase stepping position of each mea-

surement. The actual phase stepping is typically performed by translating the G2 grating using

a piezoelectric motor, such that the positions of the G2 grating can be obtained from the motor

programming. However, in practice, vibrations or motion affecting the setup during the phase
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Fig 3 Images of a human breast mastectomy specimen, acquired with a Talbot-Lau interferometer by tiling smaller
images. a) Dark-field. b) Differential phase. Some image tiles are affected by Moiré artifacts.

stepping acquisition may lead to uncontrolled translation of the G2 grating versus the G1 and thus

to a change in the actual phase stepping position. These vibrations are typically due to external

influences, e.g. building vibrations which transfer to the gratings. This makes estimating their

distribution and typical magnitude very difficult. A translation t of the G2 grating perpendicular to

the grating bars leads to shift of phase stepping position

∆s =
2πt

p2
, (10)

where p2 is the period of the G2 grating. Since the period is typically in the range of a few micro-

meters, stability of the setup at nanometer scale is required during the phase stepping acquisition.

This stability is particularly difficult to achieve without the use of a stabilized optical table and is an

issue that needs to be addressed in both experimental and (pre-)clinical systems. Figure 3 shows a

dark-field and a differential phase image acquired with a Talbot-Lau system that was mounted ver-
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tically to mimic a clinical mammography system. The sample is superimposed by Moiré patterns.

This is due to the fact that the phase step images typically exhibit Moiré patterns in Talbot-Lau

imaging. Deviations from of the actual phase stepping positions in either the reference or the ob-

ject phase stepping acquisition lead to an incorrect combination of the information contained in

the phase steps images and thus to the formation of Moiré artifacts in the reconstructed images.

1.2.4 Equal noise variance in each measurement

The phase stepping reconstruction does not make any assumptions about noise in the measured

data. The linear least squares method used for reconstruction is a Maximum-Likelihood estimator

under the assumption of a zero-mean Gaussian distribution of the noise term ηji , with equal variance

for each phase step. Using modern flat-panel X-ray detectors, two types of noise dominate ηji :

Poisson distributed quantum noise, and electronic noise, which is typically modeled as a zero-mean

Gaussian with a detector-dependent variance. While the distributions of the electronic noise match

the assumptions of the phase stepping reconstruction, the distributions of the quantum noise do

not. Since each measurement mj
i is located at a different position of the sinusoidal phase stepping

curve, the measurements on top of the curve result from more photons than the measurements on

the bottom of the curve. Since the variance of the Poisson distribution is equal to the number of

photons, the assumption of equal noise variance in each measurement is violated. The degree of

the deviation of the true noise statistics from the noise model used in reconstruction is dependent

on the visibility vi, where a higher visibility corresponds to a stronger deviation.

9



1.2.5 Unbiased estimates

Unbiasedness is an important property of a statistical estimator. It means that there is no difference

between the expected value of the estimator and the true value of the quantity that is being esti-

mated (i.e. there is no systematic difference between the true value and the estimator output). This

is a critical issue when performing quantitative imaging. Marschner et al.22 have recently shown

that the phase stepping reconstruction exhibits a bias for the visibility and dark-field information.

Specifically, this bias corresponds to an overestimation of the visibility. The magnitude of the bias

is inversely related to the visibility signal-to-noise ratio.

1.3 Prior Work

Few methods have been proposed to improve the standard approach for reconstruction of phase

stepping data. Modregger et al.23 proposed a deconvolution-based approach for information re-

trieval, which does not depend on the assumption of a sinusoidal phase stepping curve. The noise

properties of this algorithm were later investigated by Weber et al.24 Yang et al.25 developed a

phase stepping reconstruction method for non-ideal gratings which may exhibit a phase stepping

curve with twin peaks. The problem of estimating the position of misaligned phase steps was con-

sidered by Pelzer et al.26 and Seifert et al.27 They showed that an algorithm known in optics28 can

be used to retrieve the correct phase stepping positions, if the Talbot-Lau interferometer is detuned

by rotation of either G1 or G2, such that sufficient Moiré fringes appear in the reference phase,

and if a sufficient number of phase steps are available. However, detuning the interferometer re-

duces visibility. Marschner et al.29 proposed an method based on Expectation Maximization (EM)

that seeks to locally adjust the phase stepping positions such that the measurement model is most

consistent with the measurements. This approach relies on the assumption that the measurement
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data is consistent and that the deviations of the positions are not strong. The use of noise variance

information to account for quantum noise has been mentioned in literature, e.g. in,30 but there

exists - to our knowledge - no full derivation or systematic evaluation of this approach. Also, these

approaches do not model the detector read out noise. Two approaches has been proposed to retrieve

information from less than three phase steps. Marschner et al.22 proposed a method for retrieving

dark-field information from only two phase steps. While this method does not exhibit a bias for

the visibility and dark-field information, it relies on the assumption of zero phase shift, as phase

information can not be recovered using this method. Pelliccia et al.31 proposed a reconstruction

method based on Taylor expansion for three phase steps. Their method can be extended to allow

reconstruction of phase information from two phase steps, under the assumption of a negligible

dark-field signal.

2 Methods

We propose a set of improvements for the phase stepping reconstruction method. Our modifica-

tions seek to solve problems which arise from violations of common in phase stepping reconstruc-

tion. Our contribution consists of three improvements:

• A method for estimation the true phase stepping positions. This approach is based on two

steps: a optional preprocessing step which identifies and discards inconsistent phase stepping

data, followed by an optimization-based estimation of the true phase stepping positions that

seeks to maximize the spatial homogeneity in the reconstructed image.

• A modification of the least squares reconstruction to take varying noise variances due to both

quantum and detector read out noise into account.
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• The application of a bias correction to the estimated visibility to correct systematic estima-

tion errors in the visibility and dark-field images.

Each method and the changes to the standard phase stepping reconstruction are independent from

each other. The methods are described in the following sections.

2.1 Phase Stepping Position Correction

Several algorithms to recover unknown phase stepping positions are known in the field of optics.

However, these algorithms typically use assumptions about the reconstructed signal which can not

always be fulfilled in Talbot-Lau imaging: low attenuation, uniform distribution of the phases p,

uniform distribution of the stepping positions s, consistent measurement data, and/or a certain

number of phase steps. For example, the method used by Pelzer et al.26 and Seifert et al.27 assumes

uniformly distributed phases and low attenuation, while the method by Marschner et al.29 assumes

consistent measurement data and requires at least four phase steps.

Our goal is to develop an alignment algorithm which is not based on these assumptions. The

proposed algorithm is based on two steps: First: discarding heavily misaligned or inconsistent

phase steps. Second: local realignment of the remaining phase steps by minimizing the variations

in the reconstructed offsets and visibilities.

2.1.1 Discarding inconsistent phase steps

In a first optional preprocessing step, we seek to discard heavily misaligned phase steps, which are

inconsistent with the majority of the other phase steps. This step is beneficial if the error in phase

stepping position is large, as the subsequent realignment only works locally. To detect misaligned

phase steps, we calculate a consistency criterion for each phase step image. We first perform the
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standard phase stepping reconstruction as described in Section 1.1 using the assumed positions of

the G2 grating. Afterwards, we calculate the squared consistency error eji for each measurement

pixel mj
i ,

eji = [mj
i − (oi + ci · cos(sj) + di · sin(sj))]2 . (11)

This error corresponds to the squared fitting error of Eq. 4. The error is averaged over the whole

image, i.e.,

ej =
1

M

∑
i

eji . (12)

Assuming no model error and accurate phase stepping positions, the only source of the error in ej

is noise. Due to the averaging over all image pixels, the amount of noise should be approximately

equal for each phase step. However, deviations from the correct phase stepping positions lead to

an increased error. Thus, we seek to identify inconsistent phase steps, by noting that their error

is much larger than the average error of all phase steps. To this end, we use Median Absolute

Deviation32 to estimate the standard deviation σ̂e of the errors of the phase steps

σ̂e = 1.4826 ·median(|e−median(e)|) , (13)

where e = [e1, · · · , ej] is the vector of fitting errors for each phase stepping image. Compared to

the standard method of estimating the standard deviation, the Median Absolute Deviation is more

robust in the presence of outliers. We then discard all phase steps whose corresponding error ej

exceeds a predetermined threshold τ · σ̂e + median(e). The parameter τ should be chosen large

enough, such that only those phase steps are discarded that can not be corrected by the subsequent

realignment procedure.

13



2.1.2 Estimation of the phase stepping positions

After discarding inconsistent phase stepping data, we seek to compute the true phase stepping

positions, using the assumed stepping positions as a starting point. This estimation is based on

prior knowledge about the relationships of the offset, visibility and phase information. Recall that

in phase stepping reconstruction we solve the least squares problem

arg min
oi,ci,di

∑
j

[mj
i − (oi + ci · cos(sj) + di · sin(sj))]2 . (14)

Since Eq. 14 is a linear least squares problem, its solution is given by

oi =
∑
j

wjo ·mj
i ,

ci =
∑
j

wjc ·mj
i ,

di =
∑
j

wjd ·mj
i ,

(15)

where wo = [w1
o, · · · , wNo ], wc = [w1

c , · · · , wNc ] and wd = [w1
d, · · · , wNd ] are a set of weights

which can be obtained from inversion of the measurement matrix containing the phase stepping

positions s. Since oi has to correspond to the offset of the sine function, while ci and di must not

contain the offset, we have ∑
j

wjo = 1 ,

∑
j

wjc = 0 ,

∑
j

wjd = 0 .

(16)
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In the case where the phase stepping positions are misaligned, the weights are incorrectly deter-

mined. Consider the example of a misaligned phase step at position k: this results in the weights

wko , wkc and wkd being either too large or too small compared to the other weights, i.e. too much or

too little of the phase step image mk gets added to the images o, c and d. As a consequence, o, c

and d are either over- or underestimated. However, due to the constraints in Eq. 16, only the phase

modulation o · v · sin(p + sk) of the Talbot pattern, but not its offset, contribute to the estimation

error.

The phase modulation in Talbot-Lau imaging typically shows Moiré fringes. Since the es-

timation error is then propagated through the formulas for computing the attenuation, differential

phase and dark-field images, the resulting image artifacts resemble the Moiré structure of the phase

modulation, transformed by the reconstruction function.

Our approach for estimating the phase stepping positions is based on the assumption that the

phase modulation of the Talbot-Lau interferometer is not correlated with the offset and visibility

images o and v which we seek to reconstruct. This assumption is justified, as the phase modulation

is dominated by the reference phase, which depends mostly on the gratings positions. If the phase

stepping positions are incorrect, the phase modulation is transferred into the reconstructed images.

Under that assumption of non-correlated signals, this increases the variance in o and v. Thus,

in order to find the correct phase stepping positions, we must try to minimize with respect to the

phase stepping positions some measure of variance in the offset and the visibility images.

A degenerate solution for the phase stepping positions may lead to a drop in visibility, and

thus also in a drop in its variation. We normalize visibility and offset to avoid this issue. Let

v(s∗) and o(s∗) be the visibility and offset images reconstructed with phase stepping positions s∗

using the standard method described in Section 1.1. We define the normalized visibility v′(s∗) and
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normalized offsets o′(s∗) as

v′(s∗) =
v(s∗)

1
M

∑
i vi(s

∗)
(17)

and

o′(s∗) =
o(s∗)

1
M

∑
i oi(s

∗)
. (18)

We then seek to minimize the following optimization problem to obtain the new set of phase

stepping positions s′

s′ = arg min
s∗

‖∇[g ∗ v′(s∗)]‖1 + ‖∇[g ∗ o′(s∗)]‖1 . (19)

Here, ‖∇.‖1 denotes the L1-Norm of the image gradient, i.e. the Total Variation of the image,

while g corresponds to a Gaussian filter with standard deviation σg which we convolve with the

reconstructed images to remove noise. Optimization of this function is challenging. The com-

putation of v(s∗) and o(s∗) itself requires solving a least squares problem. The corresponding

measurement model is based on the phase stepping positions after transformation by a trigonomet-

ric function (see Eq. 3). As these trigonometric functions, as well as the normalization function for

offset and visibility, are non-convex, the optimization problem in Eq. 19 is also non convex. Thus,

convergence to a global optimum can not be guaranteed. However, in practice, the non-convexity

is not an issue for determining accurate stepping positions when heavily misaligned phase steps

are removed using the proposed preprocessing method.

For optimization, we utilize the Broyden-Fletcher-Goldfarb-Shanno (BFGS) method33 and use

the assumed phase stepping position as an initial solution. Analytic computation of the gradients is

difficult for more than three phase steps due to the matrix inversion required for solving the inner
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least squares problem. Thus, we compute the gradients using finite differences. After determining

the updated phase stepping positions s′, the normal phase stepping reconstruction can be carried

out using the new set of stepping positions.

2.2 Noise Variance Weighting

In this step, we seek to incorporate noise variance information into the phase stepping reconstruc-

tion. The standard method for phase stepping reconstruction is solving the least squares problem

arg min
oi,ci,di

∑
j

[mj
i − (oi + ci · cos(sj) + di · sin(sj))]2 . (20)

As discussed in Section 1.2, this step yields a Maximum-Likelihood estimate for equal noise vari-

ance in each measurement mj
i . However, in reality, quantum noise is Poisson distributed. If an

energy-integrating detector is used, electronic noise also contributes to the noise in the measure-

ment. As electronic noise is often modeled as a zero-mean Gaussian, the noise in mj
i is in fact the

sum of Poisson and Gaussian noise. As this effect is not modeled in the reconstruction process,

the reconstructed data may show more noise than necessary. We seek to modify the measurement

model to account for the noise statistics to alleviate this problem. We approximate the sum of the

two noise distributions by a Gaussian distribution, i.e. we approximate the Poisson distribution

using only its variance. The assumed variance of the measurement, (σ̂ji )
2, is thus the variance of

the electronic noise, (σe)
2, plus the variance of the quantum noise. The electronic noise variance

can be obtained by calibration. The variance of the quantum noise can be approximated by a Pois-

son distribution with an expected value of the measurement value mj
i . Note that for an energy

integrating detector, when electronic noise is assumed, it may be necessary to apply a correction

factor to mj
i which relates the arbitrary units recorded by the detector to the detected number of
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photons in order to obtain proper scaling between quantum and electronic noise. The estimated

noise variance (σ̂ji )
2 depends on both pixel- and phase stepping position and is computed as

(σ̂ji )
2 = mj

i + (σe)
2 . (21)

The expected noise variance can then be included in the objective function, yielding

arg min
oi,ci,di

∑
j

1

(σ̂ji )
2
· [mj

i − (oi + ci · cos(sj) + di · sin(sj))]2 . (22)

The resulting optimization problem is now a weighted least squares problem, but can still be solved

by matrix inversion. At least four phase steps are required to obtain a different result compared

to the standard method, since more measurements than unknowns are required to allow for data

weighting. The measurement matrix of the weighted least squares problem now depends on the

pixel position i, i.e., one matrix inversion is required for each pixel, instead of only one inversion

for all pixels. After solving the least squares problems, the remaining steps of the phase stepping

reconstruction can be performed identically to the standard approach.

2.3 Visibility Bias Correction

In this step, we seek to correct systematic overestimation of visibility information. In phase step-

ping reconstruction, the visibility is computed as

vi =

√
(ci)2 + (di)2

oi
. (23)
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This corresponds to the magnitude of ci and di, divided by the offset oi. Marschner et al.22 observed

that this estimation step exhibits a bias when approaching a low signal to noise ratio, i.e., the visi-

bility is systematically overestimated. However, they proposed no correction method which can be

applied within the standard phase stepping reconstruction. The fact that magnitude computations

of noisy data of the form
√

(x2) exhibit an overestimation bias is well known in MR imaging.34

For the case of
√

(x2), where x is a complex number, the expected value of the estimator is not

|x|, but rather
√
x2 + σ2

x, where σ2
x is the noise variance in the real and imaginary part of x. In the

case of Talbot-Lau imaging, this leads to the situation where vi is overestimated by the bias bi

bi =

√
(ci)2 + (di)2 + (σcdi )2 −

√
(ci)2 + (di)2

oi
. (24)

Here, (σcdi )2 corresponds to the noise variances of ci and di. Under a quantum noise model, We-

ber et al.35 have shown that (σcdi )2 is two times the true offset that generated the measurement data

(if we consider electronic noise, plus two times the variance of the electronic noise), divided by

the number of phase steps N . The true offset can be approximated by the reconstructed offset oi.

We can thus calculate the approximate noise variance (σ̂cdi )2 as

(σ̂cdi )2 =
2 · (oi + (σe)

2)

N
. (25)

Gudbjartsson and Patz34 proposed the corrected magnitude estimator
√
x2 − σ2

x to correct for the

estimation bias. We apply this estimator to the visibility and calculate the bias-corrected visibility
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v′i as

v′i =


√

(ci)2+(di)2−(σ̂cd
i )2

oi
, if (ci)

2 + (di)
2 − (σ̂cdi )2 > 0

0 otherwise

. (26)

Subsequent computation of the dark-field image is performed as with the standard algorithm.

3 Experiments & Discussion

In this section, we describe the experiments used to evaluate the proposed improvements to the

phase stepping reconstruction. Experiments are performed on both simulated and real data. We

evaluate each proposed modification independently from the other ones.

3.1 Acquisition of Talbot-Lau X-ray Images

Real data was acquired with a three-grating Talbot-Lau interferometer. The grating size was

24.14 mm × 13.27 mm, the periods were 24.39 µm (G0), 3.37 µm and 2.4 µm for G1 and G2,

with a G1-G2 distance of 159 mm. The design energy of the system was 25 keV, while the X-ray

tube was operated at a peak voltage of 40 kVp at 60 mA current. The number of phase steps was

between 5 and 21. Additional details of the setup can be found in.36 The images show cancerous

human mastectomy samples. The data was acquired within a study that has been approved by

the ethics committee of the University Hospital Erlangen in the medical faculty of the Friedrich-

Alexander-University Erlangen-Nuremberg. Written informed consent has been obtained from the

patients. Due to the large size of the objects, the final images were stitched from 20 to 90 tiles.

The setup was arranged vertically to imitate a typical mammography system. Due to the lack of

vibration dampening, phase drift artifacts and Moiré artifacts affected the image quality in some
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Fig 4 Simulated images used for evaluation of the phase stepping alignment. a) Attenuation. b) Dark-field. c)
Differential phase. d) Reference phase.

data sets. To reduce low-frequency phase drift artifacts, we applied a correction algorithm37 before

stitching the image tiles.

3.2 Phase Stepping Position Correction

We pursued two types of experiments for the proposed phase stepping position estimation: a) a quan-

titative evaluation on simulated data with controlled variations of the true phase stepping positions,

where we had access to ground truth information, b) an evaluation on data acquired with a Talbot-

Lau interferometer. We assess the image quality of the acquired data both quantitative by measur-

ing the image variation in a homogenous area, as well as qualitatively by visual inspection. In each

experiment, we compare the standard phase stepping reconstruction with the reconstruction using

the phase stepping positions provided by our method. We selected the parameters of our method

based on a pilot experiment. The parameters were thresholding parameter τ = 10 and Gaussian

standard deviation σg = 1.

3.2.1 Evaluation using simulated data

We created attenuation and phase-shift projection images of the XCAT phantom38 using the CON-

RAD framework.39 The images had a size of 512 × 512 pixels. The phase-shift projection was
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differentiated and scaled to mimic a typical differential phase image obtained with a Talbot-Lau

interferometer. Since no complete analytical model of the dark-field signal is known, the attenu-

ation and differential phase image were used to define visibility loss due to beam hardening and

unresolved edges. The reference phase was defined by a radial function around the image center.

The corresponding images are shown in Fig. 4. The reference photon count and visibility were

homogeneous over the whole image. The reference photon count was 1000 photons per phase step

and the visibility was 30%. Seven phase steps, uniformly distributed in the interval [0; 2π[, were

generated with quantum noise for both reference and object images.

The true distribution of the phase stepping error is difficult to obtain, due to its origin from

random vibrations. We therefore conducted two experiments to investigate the performance of

our algorithm for error distributions of different types and widths. For each experiment, we re-

constructed the attenuation, dark-field and differential phase images with the standard method and

with the proposed phase stepping position correction. Afterwards, we calculated the root mean

squared error (RMSE) between the reconstructed images and the ground truth images. Each ex-

periment was repeated 200 times to obtain both mean and standard deviation for the RMSE. In the

first experiment, we added zero mean Gaussian noise to the phase stepping positions of both refer-

ence and object image. The standard deviation of the noise was varied between 0.0 and 1.0 with an

interval of 0.2. For the second experiment, we added zero mean Gaussian noise with a standard de-

viation of 0.1 to all phase stepping positions. Additionally, we defined an outlier probability. The

outlier probability defines the probability for assigning a random position in the interval [0; 2π[ to

a phase step. In the second experiment we vary this outlier probability between 0 and 0.2 with an

interval of 0.05.

The results of the experiments are shown in Fig. 5. The results for varying the standard devi-
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ation are shown in the top row, while the results for varying the outlier probability are shown in

the bottom row. When no noise is added to the phase stepping positions, the RMSE is dominated

by quantum noise. For the standard method, slight deviation of the phase stepping position lead

to strong increase in the RMSE of dark-field and differential phase images. On absolute scale,

the effect on the attenuation image was weaker than on dark-field and phase. In all experiments,

the mean RMSE of attenuation, phase and dark-field produced by our method is below the mean

RMSE of the standard method when the phase stepping positions contain noise. The improvement

provided by of our method grows with increasing noise on the stepping positions. In the case where

no noise was added to the stepping positions, our algorithm leads to a marginal increase in error

for the attenuation image, but not for the differential phase and dark-field images. The additional

runtime for adjusting the phase stepping positions was 3.8± 0.5 seconds per image on a standard

laptop (DELL M4800, Intel Core i7-4910MQ CPU, 32 GB RAM, MATLAB 2014b).

3.2.2 Evaluation using real data

We selected eleven of the breast data sets that were captured with our Talbot-Lau interferometer.

We used the breast data instead of a dedicated phantom to asses the performance of the proposed

algorithm within a realistic imaging protocol both quantitatively (outside of the specimen) as well

as qualitatively (inside of the specimen). All data sets showed Moiré artifacts in either the atten-

uation, dark-field or phase image. For all images from the standard reconstruction, we manually

annotated a homogeneous area outside of the breast specimen which contained Moiré artifacts. The

only objects in the annotated areas are two PMMA slabs that are used to fix the breast specimen.

Hence, we would expect constant absorption and dark-field, as well as zero differential phase shift

in these regions. In practice, image noise, stitching artifacts at tile edges and variations due long
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Fig 5 Quantitative evaluation of the phase stepping position estimation on simulated data. Each plot shows mean
and standard deviation of the root mean squared error (RMSE) to the ground truth averaged over the whole image.
In the experiment in the top row, Gaussian noise of varying magnitude was added to the phase stepping positions.
In the experiment shown in the bottom row, we varied the probability of observing an outlier phase step. An outlier
phase step is assigned a random position drawn from an uniform distribution. Additionally, Gaussian noise of standard
deviation 0.1 was added to all stepping positions. Compared to the standard method, the proposed algorithm reduces
artifacts from misaligned phase steps.
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term drifts of the phase and Moiré artifact can be visible. Removing or reducing the Moiré artifacts

can be expected to increase the homogeneity in the annotated region. To quantify the homogeneity,

we computed the standard deviation of attenuation, dark-field and differential phase in this area.

The area was chosen such that it contained at least 10.000 pixels to ensure reliable estimation of

the standard deviation. Afterwards, we divided the standard deviation of the proposed method by

the standard deviation of the standard method. Due to this normalization, a number lower than 1

corresponds to improved homogeneity in the marked region. The results are shown in Fig. 6. The

proposed method achieved a better homogeneity for all images, except for the attenuation image

of data set 3 and the images of data set 4, where the homogeneity is slightly decreased.

Afterwards, we visually inspected all images. First, we investigated whether the proposed al-

gorithm introduced new artifacts the images or leads to an increase of existing Moiré artifacts.

This was not the case for any of the images. The proposed algorithm managed to remove most

Moiré artifacts. In some cases of severe Moiré, the Moiré was only reduced but not removed.

Fig. 7 shows such a severe case. The amount of Moiré removal was not always reflected in the

reduction in standard deviation. We hypothesize that this is due to the fact that Moiré artifacts cor-

respond to slight low-frequency variations which are difficult to quantify, while the image standard

deviation is dominated by image noise. As our method can discard phase steps in cases of severe

misalignment, it may have slightly increased the image noise when reducing Moiré artifacts.

To further investigate this finding, we computed the Noise Power Spectrum (NPS) for a ho-

mogenous 200× 200 pixel region of data set 4, where our method had a higher standard deviation

than the standard method. We applied radial averaging to obtain the radial Noise Power Spectrum

and divided the NPS of the proposed method by the NPS of the standard method to obtain a relative

measure. The results are shown in Fig. 8. For low frequencies, the radial NPS of our method is an
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Fig 6 Quantitative evaluation of the phase stepping position realignment on data acquired with a Talbot-Lau inter-
ferometer. The bars show the standard deviation in a homogenous image region, reconstructed with the estimated
phase stepping positions, divided by the standard deviation in the same region, reconstructed with the standard phase
stepping reconstruction. The proposed method leads to a lower standard deviation for all data sets, but number three
and four.

order of magnitude lower than the NPS of the standard method. For higher frequencies, the NPS

of the proposed method is indeed slightly higher, contributing to the higher standard deviation.

3.2.3 Discussion

The experimental results on both simulated, as well as on acquired data, show that the proposed

method is effective in reducing Moiré artifacts arising from misaligned phase steps. Due to the

presence of noise, other artifacts, and the varying amount of Moiré, it is difficult to provide quan-

titative comparisons on real data. This is reflected by the varying degree of reduction in standard

deviation in the homogenous ROI across data sets. However, the frequency dependent analysis

using the Noise Power Spectrum, where our method reduced low frequency components, is con-

sistent with the visual impression of the resulting images. While our method was able to almost

completely remove Moiré artifacts in acquired data, some residual artifacts remained in case of

severe Moiré. We attribute this to the fact that the optimization problem used to align the phase

steps is non-convex and thus may not yield a globally optimal solution when phase steps are heav-
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Fig 7 A sample image showing severe Moirè artifacts (data set 3). Top row: standard method. Bottom row: proposed
algorithm. (a,d) Attenuation. (b,e) Dark-field (c,f) Differential phase. The windowing in the attenuation image has
been selected to reveal slight Moirès in the bottom of the image. The images reconstructed with the proposed phase
stepping realignment method shows almost no Moirè artifacts.

ily misaligned. We used the same algorithmic parameters for synthetic and real data. Tuning these

parameters to the amount of noise and position misalignment may improve results but is out of

the scope of this work. For future work, it may also be interesting to replace the phase stepping

removal step of our method with a method that seeks to pre-align heavily misaligned phase steps

via exhaustive search.

In the experiment with simulated data, we measured a slight reduction in image quality of the

attenuation image when the phase steps are perfectly aligned with their true positions. This finding

could not be confirmed with the acquired data, where visual image quality always improved. We
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Fig 8 Detailed results of the phase stepping alignment for the data set where the proposed method increased the
standard deviation in the homogenous region. a) radial Noise Power Spectrum (NPS) of the proposed method, divided
by NPS of the standard reconstruction. The low frequency NPS is decreased by an order of magnitude. The high
frequency NPS is slightly increased. b) differential phase reconstructed with standard method. Parts of a Moiré
pattern are visible. c) same image reconstructed with proposed stepping realignment. The Moiré pattern has been
removed, while the increase in high frequency noise is hardly visible.

hypothesize that this is because data acquired with a real Talbot-Lau interferometer always has

slight deviations in the phase stepping positions. We conclude that the proposed method improves

image quality by reducing Moiré in cases where absolute stability of the interferometer can not be

guaranteed.

3.3 Noise Variance Weighting

Evaluation of the noise variance weighting was carried out using Monte Carlo simulation. We

generated phase stepping data affected by quantum noise. Afterwards, we reconstructed offset,

visibility and phase using the standard method and using the proposed noise weighting. Then, we

computed the root mean squared error (RMSE) of the reconstructed values to the ground truth data.

Afterwards, we divided the RMSE obtained with noise weighting by the RMSE of the standard

approach to obtain a relative measure for noise. We evaluated 100.000 noise realizations for each

data point, such that the standard deviation of the relative RMSE became negligible. Our baseline
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Fig 9 Reconstruction results for noise variance weighting evaluation on simulated data. The plots show the root mean
squared error (RMSE) to ground truth obtained with the proposed weighting, divided by the RMSE obtained with
the standard method. Error bars were negligible and omitted for clarity. We vary the number of phase steps, the
visibility and the mean photon count per phase step while we keep the other parameters constant. The benefit of
the proposed noise weighting increases with a higher visibility. For a low number of photons, the proposed method
slightly increases the offset error. This is because our Gaussian approximation of the Poisson noise distribution is only
valid for a sufficiently high number of photons.

scenario is a phase stepping curve with an offset corresponding to 1000 photons, a visibility of

0.5, a random phase and seven phase steps. First, we vary the number of phase steps between 3

and 11. In a second experiment, we vary the visibility between 0.1 and 0.7 with an interval of 0.1.

In a third experiment, we vary the offset between 200 and 1000 photon counts in an interval of

100 counts. Figure 9 shows the results of the experiments. The results show that the benefit of

the noise weighting is independent of the number of phase steps, as long as the number of phase

steps exceeds three. In contrast to visibility and phase, the offset information does not benefit from

noise weighting. The benefit for these two images shows a strong non-linear dependency on the

visibility. A relatively high visibility of at least 60% is required for a noise reduction exceeding

5% in visibility and phase. For low photon counts below about 200, the actual error with noise

weighting increases for the offset information. We attribute this to the fact that we approximate a

Poisson distribution with a Gaussian distribution, which may lead to errors at low photons counts.

To verify our simulation results, we computed the relative standard deviation in a homogeneous
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region of a sample data set in a similar fashion as for the experiment assessing the phase stepping

position correction. Here, we obtained a reduction in standard deviation of 0.0% for attenuation,

0.6% for the dark-field image and 0.4% for the differential phase. These numbers are in line with

our simulation results, which predicted 0.0% for the offset, 0.5% for visibility and 0.5% for the

phase at the low mean free-field visibility of 23% of this data set.

3.3.1 Discussion

The experiments have shown that noise variance weighting in phase stepping reconstruction re-

duces phase and visibility noise if the visibility is high and if a sufficient number of photons con-

tribute to the measurements. It has recently been demonstrated40 that visibilities exceeding 50%

can be achieved using conventional X-ray sources. In this context, the noise variance weighting is

an improvement that is straightforward to implement, can improve image quality, and only slightly

increases computational demand. For data with a very low number of photons, we obtained a slight

increase in error for the offset information. This can be avoided by switching between weighted

and unweighted reconstruction of offset data based on the recorded intensity. For future work, it

may be worthwhile to investigate the use of other data likelihood functions known from iterative

absorption CT reconstruction.

3.4 Visibility Bias Correction

We used Monte Carlo simulation to assess the proposed visibility bias correction. To this end,

we again generated phase stepping data affected by quantum noise. Afterwards, we reconstructed

offset, visibility and phase using the standard method and using the proposed visibility bias cor-

rection. We generate 100.000 noise realizations and compared the resulting mean and standard
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deviation of the reconstructed visibility to the ground truth visibility. Our baseline scenario is low-

SNR acquisition with an offset corresponding to 100 photons, a visibility of 0.2, a random phase

and three phase steps. In the first experiment we vary the visibility, while in the second experiment

we vary the photon counts.

The results of the experiments are shown in Fig. 10. The results show that the standard method

overestimates the visibility, where the degree of the overestimation increases with decreasing vis-

ibility and photon number. The proposed method shows no substantial overestimation for the

baseline scenario, but only a slight overestimation when visibility or photon count are decreased

even further. Visibilities reconstructed with bias correction have standard deviations that are 5-20%

higher than the deviations obtained without the correction. The increase in standard deviations is

proportional to the reduction in estimation bias.

We also applied the visibility correction to two data sets acquired with a Talbot-Lau interfer-

ometer. The first data set is one of the breast data sets. Here, it can be observed that the correction

leads to an increased dark-field signal at strongly absorbing metal inserts used to fixate the spec-

imen (see Fig. 10c)). This can be attributed to the correction of an overestimation of the object

visibility at this point, which leads to an increased dark-field signal. We also acquired dark-field

images of a foam wedge (length: 11.9 cm, width: 2.8 cm, thickness: increasing from 0 cm to

6.1 cm, shown in Fig. 10d). Images were acquired with a low dose protocol (0.25 mAs) and a high

dose protocol (15 mAs). Four phase steps were acquired for both protocols. The foam wedge was

placed on a PMMA plate such that the thickness linearly increases from the left to the right. The

resulting dark-field images are averaged over the width of the wedge to yield a plot of the dark-field

signal over the wedge thickness. We plot the results obtained for the high dose and the low dose

protocol, both with the standard and the proposed reconstruction in Fig. 10e). The dark-field value
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Fig 10 Evaluation of the visibility bias correction. a), b) Results of visibility reconstruction from simulated phase
stepping data using Monte Carlo simulation. The baseline scenario is a low-SNR acquisition with three phase steps,
100 photons per phase step and a visibility of 0.2. In the left figure we vary the visibility. In the right figure, we vary the
average number of photons per phase step. The standard method overestimates the visibility when the photons counts
or the visibility are low. The proposed method reduces the estimation bias and is closer to the ground truth, at the cost
of a slightly increased standard deviation. c) Dark-field image of metal insert embedded in a human breast specimen
reconstructed without (top) and with (bottom) visibility bias correction. d) Photograph of foam wedge. e) Plot of the
reconstructed dark-field signal of the foam wedge. Sample thickness increases linearly along the x-axis. The y-axis
shows the reconstructed dark-field signal for a low-dose and a high-dose scan using standard reconstruction and the
proposed bias correction.

of the low-dose image, reconstructed with the standard method is underestimated with increasing

dark-field (or decreasing object visibility, respectively). The proposed method reduces this bias,

which can be seen from the overlapping curves of the proposed correction on the low dose scan

and the uncorrected high-dose scan. This behavior is also in accordance with the simulations.
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3.4.1 Discussion

The experiments confirm the findings by Marschner et al.22 of an estimation bias in the visibility.

Our proposed bias correction method effectively reduced the estimation bias and even yields an

unbiased estimate up to a very low signal to noise ratio. The use of the bias correction might be

particularly useful for lung imaging, which has emerged as a possible application for dark-field

imaging.15, 16 A drawback of the bias correction is an increase in the standard deviation of the

reconstructed visibility, i.e. in image noise. This is due to the fact that the offset (which itself is

affected by noise) is used to correct for the bias. However, increased noise can be tackled by spatial

denoising of either the reconstructed visibilities, or the offsets used for the correction. This is not

possible for the estimation bias, since it is a systematic error. For future work it may be worthwhile

to study other methods for magnitude bias reduction that have been developed by the MR imaging

community.

4 Conclusions

Phase stepping reconstruction is a key step in Talbot-Lau imaging. In this paper, we reviewed

the underlying assumptions that are used in phase stepping reconstruction. We find that some

of these assumptions, namely known phase stepping positions, equal noise variance in all phase

steps and no systematic estimation error, may be violated under certain conditions. We proposed

an optimization-based method to estimate phase stepping positions affected by interferometer mis-

alignment. Our evaluation on real and simulated data has shown that our method can reduce or even

remove Moiré artifacts which arise from misaligned phase stepping positions. We furthermore pro-

posed a weighting function to account for differences in noise variance of the phase stepping data.

Our evaluation has shown that the proposed changes may lead to a meaningful noise reduction for
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high-visibility acquisitions when the number of photons per phase step is sufficiently high. We

verified previous observations that phase stepping reconstruction overestimates the visibility when

the visibility signal-to-noise ratio is low. A correction strategy for reducing this estimation bias has

been proposed and evaluated on simulated data. It has been shown that the proposed strategy can

compensate the overestimation up to a lower bound on visibility and photon counts, at the expense

of slightly increased noise. Since the methods are independent from each other, they can readily

be integrated into an existing framework for phase stepping reconstruction. We expect that these

methods will improve image quality in Talbot-Lau imaging.
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List of Figures

1 Illustration of a Talbot-Lau interferometer. During phase stepping acquisition, the

grating G2 is translated in x-direction.

2 Illustration of the phase stepping reconstruction. The noisy measurement data is

shown in black, while the fitted sine function is shown in blue.
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3 Images of a human breast mastectomy specimen, acquired with a Talbot-Lau in-

terferometer by tiling smaller images. a) Dark-field. b) Differential phase. Some

image tiles are affected by Moiré artifacts.

4 Simulated images used for evaluation of the phase stepping alignment. a) Attenu-

ation. b) Dark-field. c) Differential phase. d) Reference phase.

5 Quantitative evaluation of the phase stepping position estimation on simulated

data. Each plot shows mean and standard deviation of the root mean squared er-

ror (RMSE) to the ground truth averaged over the whole image. In the experiment

in the top row, Gaussian noise of varying magnitude was added to the phase step-

ping positions. In the experiment shown in the bottom row, we varied the probabil-

ity of observing an outlier phase step. An outlier phase step is assigned a random

position drawn from an uniform distribution. Additionally, Gaussian noise of stan-

dard deviation 0.1 was added to all stepping positions. Compared to the standard

method, the proposed algorithm reduces artifacts from misaligned phase steps.

6 Quantitative evaluation of the phase stepping position realignment on data acquired

with a Talbot-Lau interferometer. The bars show the standard deviation in a ho-

mogenous image region, reconstructed with the estimated phase stepping positions,

divided by the standard deviation in the same region, reconstructed with the stan-

dard phase stepping reconstruction. The proposed method leads to a lower standard

deviation for all data sets, but number three and four.
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7 A sample image showing severe Moirè artifacts (data set 3). Top row: standard

method. Bottom row: proposed algorithm. (a,d) Attenuation. (b,e) Dark-field (c,f)

Differential phase. The windowing in the attenuation image has been selected to

reveal slight Moirès in the bottom of the image. The images reconstructed with the

proposed phase stepping realignment method shows almost no Moirè artifacts.

8 Detailed results of the phase stepping alignment for the data set where the proposed

method increased the standard deviation in the homogenous region. a) radial Noise

Power Spectrum (NPS) of the proposed method, divided by NPS of the standard

reconstruction. The low frequency NPS is decreased by an order of magnitude. The

high frequency NPS is slightly increased. b) differential phase reconstructed with

standard method. Parts of a Moiré pattern are visible. c) same image reconstructed

with proposed stepping realignment. The Moiré pattern has been removed, while

the increase in high frequency noise is hardly visible.

9 Reconstruction results for noise variance weighting evaluation on simulated data.

The plots show the root mean squared error (RMSE) to ground truth obtained with

the proposed weighting, divided by the RMSE obtained with the standard method.

Error bars were negligible and omitted for clarity. We vary the number of phase

steps, the visibility and the mean photon count per phase step while we keep the

other parameters constant. The benefit of the proposed noise weighting increases

with a higher visibility. For a low number of photons, the proposed method slightly

increases the offset error. This is because our Gaussian approximation of the Pois-

son noise distribution is only valid for a sufficiently high number of photons.
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10 Evaluation of the visibility bias correction. a), b) Results of visibility reconstruc-

tion from simulated phase stepping data using Monte Carlo simulation. The base-

line scenario is a low-SNR acquisition with three phase steps, 100 photons per

phase step and a visibility of 0.2. In the left figure we vary the visibility. In the

right figure, we vary the average number of photons per phase step. The standard

method overestimates the visibility when the photons counts or the visibility are

low. The proposed method reduces the estimation bias and is closer to the ground

truth, at the cost of a slightly increased standard deviation. c) Dark-field image of

metal insert embedded in a human breast specimen reconstructed without (top) and

with (bottom) visibility bias correction. d) Photograph of foam wedge. e) Plot of

the reconstructed dark-field signal of the foam wedge. Sample thickness increases

linearly along the x-axis. The y-axis shows the reconstructed dark-field signal for

a low-dose and a high-dose scan using standard reconstruction and the proposed

bias correction.
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