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Purpose: Grating-based Talbot-Lau interferometers are a popular choice for phase-

contrast X-ray acquisitions. Here, an air reference scan has to be acquired prior to an

object scan. This particularly complicates acquisition of large objects: large objects

are tiled into multiple scans due to the small field of view of current gratings. How-

ever, phase reference drifts occurring between these scans may require to repeatedly

move the object in and out of the X-ray beam to update the reference information.

Methods: We developed an image processing technique that completely removes

the need for phase reference scans in tiled acquisitions. We estimate the reference

from object scans using a tailored iterated robust regression, using a novel efficient

optimizer.

Results: Our evaluation indicates that the estimated reference is not only close to

the acquired reference, but even improves the final image quality. We hypothesize

that this is because we mitigate errors that are introduced when actually acquiring

the reference phase.

Conclusion: Phase contrast imaging of larger objects may benefit from computa-

tional estimation of phase reference data due to reduced scanning complexity and

improved image quality.

∗ ∗sebastian.kaeppler@fau.de; http://www5.cs.fau.de/˜kaeppler
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FIG. 1. Sketch of a Talbot-Lau interferometer scanning a large object. The interferometer consists

of an X-ray source, three gratings and an X-ray detector. Due to the limited field of view, objects

larger than few centimeters must be captured in multiple acquisitions. One such acquisition is

indicated by a cyan frame. The interferometer has to be recalibrated between multiple acquisitions,

requiring to move the object temporarily away from the field of view. In this work, we propose a

computational method to avoid recalibration.

I. INTRODUCTION

X-ray phase-contrast (XPC) measures the phase-shift of an object at X-ray energies [1].

Recently, XPC research gained considerable momentum after presentation of the Talbot in-

terferometer [2, 3] and shortly thereafter the Talbot-Lau interferometer [4]. It provides three

images showing X-ray absorption, differential phase, and darkfield. The clinical potential

of these signals has been extensively investigated in subsequent works, using the phase as a

stand-alone signal (e.g., in [5–7]), phase in combination with absorption [8], or the darkfield

signal (e.g., [9–12]). Specifically phase contrast and dark-field X-ray imaging of breast spec-

imens has demonstrated improved soft-tissue visualization compared to absorption X-ray

alone [13, 14] and considerable effort is being made to translate phase contrast X-ray in

clinical practice [15–17]. One issue for translation is low fringe visibility with broad spec-

trum medical X-ray tubes and high photon energies. This has been addressed by optimized

setups [16, 18] and by using a phase grating with a duty cycle different than 0.5 [19].

While specialized setups with a small-field of view are already used in clinical trials [20],

several technological challenges still need to be tackled to allow widespread use of Talbot-
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Lau imaging in mammography and general radiography. Due to the G0 grating, X-ray flux

is reduced by a factor of about two (the exact number depends on the G0 duty cycle). This

is an inherent limitation of the Talbot-Lau system and needs to be compensated for by using

high power X-ray tubes. Furthermore, the G2 grating used to sample the Talbot pattern

also reduces flux. Since the G2 is positioned downstream of the object, any G2 absorption

reduces dose efficiency. Assuming a perfect grating with a duty cycle of 0.5, dose efficiency

is also reduced by a factor of two. However, some of this loss may be compensated by

the G2 grating acting as an anti-scatter grid [21]. Despite the above mentioned advances

in system design, reasonable visibilities can only be expected for X-ray spectra up to 100-

120 kVp [18, 22] due to limitations in grating manufacturing. Another limitation is the

need for phase stepping which complicates the image acquisition. This can be alleviated

by using electromagnetic phase stepping [23], by sacrificing image resolution with Moirè

imaging [24] or a specially designed G2 grating [21], or by a slit-scanning approach that

sacrifices flux [25]. Unlike in absorption imaging, phase information can only be retrieved

reliably up to a visibility dependent noise level [26], which may restrict the applicability of

phase contrast imaging for low-dose or CT applications. Moreover, obtaining quantitative

CT measurements from polychromatic setups has to our knowledge only been shown for

very clean laboratory data [27]. Despite these open problems, a slit-scanning interferometer

was recently used to demonstrate high-energy large field-of-view (35cm2) dark-field lung

imaging of living piglets [22]. While the scanning time of 40 seconds is still relatively high,

the reported effective dose of less than 1 mSv is within clinical requirements.

Still, another serious challenge for the diagnostic applicability of Talbot-Lau interferom-

eters lies in current manufacturing technology. The interferometer consists of three gratings

G0, G1, G2 with micrometer periods. It is currently not possible to build these gratings with

a diameter larger than a few centimeters. While 1-D tiling of gratings has been reported

recently [28], first Talbot-Lau system will have to rely on creating a composite image [29].

The composite image can be generated by either naively stitching image tiles, or in the case

of mammography by a smart slit-scanning mechanism [22, 25]. Figure 1 shows an example

sketch of a large object acquisition using multiple tiles.

In a single-image acquisition, setup disturbances are corrected by an additional so-called

reference scan without an object in the beam path. The reference captures various influences

like grating inhomogeneities and slight misalignments from calibration, mechanical motion



4

or temperature. A practical issue of obtaining a composite image lies in the fact that the

calibration of the interferometer phase is not stable across multiple acquisitions, because

effects from mechanical motion and temperature change over time. Thus, the reference has

to be updated every few exposures. Updating the reference is highly impractical: the object

or the X-ray device has to be repeatedly moved such that reference scans without the object

in the beam path can be acquired. This is a laborious process, that is furthermore prone

to introduce additional image artifacts from object motion and new drift artifacts from to

mechanical motion of the interferometer, thus defeating its purpose.

The drift problem is even amplified when moving away from a laboratory system towards

clinical systems. Laboratory systems are typically mounted on vibration-dampening optical

tables. When we modified our tiling-based setup to more closely mimic a clinical mammog-

raphy system by mounting it vertically on a metal frame, we noticed that the phase drift

increased. Observations of phase reference drift were first reported for micro CT imaging [7]

and also recently for a slit-scanning interferometer mounted in a clinical mammography

system [25]. During reference acquisition, radiation shielding must also ensure that X-rays

scattered by the interferometer gratings do not reach the patient. These factors make the

acquisition of reference scans highly undesirable in a clinical context.

In a previous work [30] we demonstrated that tiling-based phase contrast imaging using

only one reference scan is possible. However, compared to using multiple reference images,

this method suffers from ringing artifacts at strong object edges.

In this paper, we propose a method for estimating the reference phase directly from the

data of the object scans, without acquiring any reference images. This makes it possible

to perform composite phase contrast scans in one sweep. To our knowledge, this is the

first method that allows to completely omit the reference scan. It expedites the acquisition,

intrinsically prevents re-alignment problems from interleaved reference scans and simplifies

the overall scanning protocol. Using images of breast mastectomy specimens, we demon-

strate that the proposed method even improves the image quality, because it adapts to slight

grating misalignments, which the acquired references can not do.

The paper is organized as follows: we present the mathematical model and the compu-

tational algorithm in Sec. II, with an overview in Sec. II A, and the individual components

in the following subsections. Our experimental results are presented in Sec. III and Sec. IV.

We end with a short discussion in Sec. V and conclusion in Sec. VI.



5

II. METHODS

When performing Talbot-Lau interferometry for phase contrast imaging, two differential

phase images are required: the differential reference phase R, recorded without any object in

the beam path, and the differential object phase O with the scanned object in the beam path.

In practice, R and O are computational images, i. e., the phase information is reconstructed

from a set of so-called phase step images. For clarity, we subsequently do not denote this

intermediate reconstruction step. Thus, given R and O, the normalized differential phase

contrast image P is computed as the difference of the two scans:

P = O−R . (1)

In an ideal interferometer, the reference phase would be constant over the whole image and

would only depend on the alignment of the G1 and G2 gratings perpendicular to the grating

bars. In a real interferometer, several effects contribute to the reference phase. Grating

inhomogeneities, by e.g. slightly varying grating height or period, or support structures on

the gratings typically cause local variations of the reference phase. These variations are

easily captured by the reference scan, as they only depend on the coarse alignment of the

gratings on a scale of the pixel size. Stronger variations in the low-frequency reference phase

are mostly due to the alignment and temperature of the gratings. Due to phase wrapping

around 2π, these phase variations typically show up as Moirè effects in the measured phase

images. Two example phase reference images, captured 50 minutes apart, are shown in

Fig. II.

The sensitivity of the reference phase with respect to alignment can be shown by consid-

ering the case of an in-plane movement m of the G2 grating perpendicular to the grating

bars. Assuming perfect gratings, the change of the reference phase is given by 2πm
p

, with

p being the period of the G2 grating. Since p is typically in the range of a few microme-

ters, extreme stability of the interferometer is required to keep the reference phase stable.

Besides changes of the reference phase that are constant over the image, setups with low

stability oftentimes exhibit also phase ramps. An example phase ramp is shown in Fig. IIc.

These effects were first reported by Tapfer et al. [7] for a micro CT system. The authors

linked the drifts to thermal expansion of the gratings and their holding mechanisms, as well

as to changes in grating alignment. However, to our knowledge, there exist no study that
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a) b) c)
Illustration of the reference phase drift. (a) Reference phase of first measurement. (b) Reference

phase of second measurement, acquired approximately 50 minutes after the first measurement.

(c) Difference between the unwrapped reference images. In this example, a constant and a linear

drift in x-direction are dominant.

directly links changes in grating temperature or position to the corresponding change in

reference phase. Until now, the drift problem has been mitigated by frequently reacquiring

the reference images. This approach becomes unpractical in a clinical scenario, where ab-

solute stability of the interferometer can not be guaranteed and where reacquisition of the

reference phase may not always be possible.

A. Method Overview

In a multi-exposure acquisition (tiling-based or slit scanning), a set O = {O1, . . . ,ON}

of N object images Oi, 1 ≤ i ≤ N is obtained. We show that for sufficiently large N , virtual

reference images r(O, i) can be computed as a function of the object scans, which allows

to omit acquisition of all reference images. Consequently, multi-exposure differential phase

images P′i can be computed as:

P′i = Oi − r(O, i) . (2)

The estimation of the virtual reference is composed of three processing steps, illustrated

in Fig. 2. A phase unwrapping algorithm is applied to the measured object scan to remove

phase discontinuities. Then, the virtual reference scans r(O, i) are estimated. This process

is based upon a model of the reference phase that distinguishes a low-frequency and a high

frequency part of the signal. We first estimate the low-frequency part, then in a second step
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FIG. 2. Flowchart of the estimation of the virtual reference phase. After estimation of a first

solution, the result is refined by iteratively excluding pixels with strong object signals.

the high-frequency part. The resulting reference can be iteratively refined by omitting pixels

that show strong object signals from the estimation.

B. Phase Unwrapping

Prior to any other processing, phase unwrapping is applied to all object scans. Due

to the measurement principle inherent to interferometric imaging, phase measurements are

only known up to a multiple of 2π. Phase shifts outside of the range [−π; π] are phase

wrapped, i. e. the measured phase shift does not correspond to the real phase shift. One

source of phase wraps in differential phase contrast images are strong phase gradients e.g.

at object/air borders. However, the most dominant cause of phase wraps is the Moirè

patterns arising from slight grating misalignment. Phase wraps typically result in strong

discontinuities in the measured image and thus hamper the separation of object and reference

information. The problem of removing phase wraps, also called phase unwrapping, has been

studied extensively in the field of synthetic aperture radio (SAR). Ideally, phase unwrapping

algorithms estimate the true phase, up to a global (per image) constant. Exact computation

of the true phase is an integer programming problem that is computationally hard. Thus,

we utilize the seminal method of Constantini [31], which reformulates the integer program

as an efficiently solvable minimum-cost network flow. In pilot experiments, this method

effectively removed all Moirè-induced phase wraps. The phase unwrapping method is applied

to all object images Oi. The images after unwrapping are referred to as Ou
i . An example

unwrapping result is shown in Fig. 3.
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a) b)

FIG. 3. Illustration of the phase unwrapping process for one tile of an image of a human breast

mastectomy specimen: (a) Object scan Oi. (b) The same image after unwrapping, Ou
i .

C. Model of the reference phase

The unwrapped reference phase consists of a strong low-frequency component and a

somewhat weaker high-frequency component. We separate a virtual reference image r(O, i)

into its high frequency component Rhf
i and its low frequency component Rlf

i ,

r(O, i) = Rlf
i + Rhf

i . (3)

This separation into individual parts allows to tailor the estimation to the different root

causes that dominate each part. In previous studies, the low frequency component has

been attributed to a drifting grating alignment that is caused by mechanical and thermal

effects [7]. This is in line with our observation that the low frequency phase signal arises from

phase unwrapping of the Moirè pattern, which indeed depends on the grating alignment.

Conversely, the residual high frequency component exhibits a grating-like structure, which

we mainly attribute to imperfections of the interferometer gratings. This is also in line with

the additional observation that the low-frequency part slowly varies from scan to scan, while

the high-frequency part remains relatively constant.

We estimate r(O, i) from the unwrapped images in three steps, namely first Rlf
i , then

Rhf
i , and finally we iteratively refine both estimates. These steps are described in the next

Sections below.
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FIG. 4. Estimation of the low frequency phase for one tile of an image of a human breast mas-

tectomy specimen: (a) Phase unwrapped object scan Ou
i . (b) Estimated low frequency reference

phase Rlf
i . (c) Intermediate estimate of differential phase Phf

i .

D. Estimation of the low-frequency reference phase

The estimation of the low-frequency reference phase is based on robust regression. We

assume that correlations in the low-frequency part of the object tile images can be attributed

to the reference phase. This holds as long as the object information is different (and hence,

uncorrelated) across multiple images, which typically is the case in a composite acquisition.

Due to drifts, the low-frequency reference may slightly vary between images. Thus, we seek a

low-frequency signal which is correlated over all images, but that may still change smoothly

between consecutive images.

For each individual image, we model the shape of the low frequency phase as a 2-D

polynomial image of degree d. Let pi denote the polynomial coefficients for image i, then

Rlf
i can be rewritten as

Rlf
i = M · pi . (4)

Here, M denotes the mapping matrix of size S × d′, where S is the number of image pixels

and d′ is the number of polynomial coefficients.

If the coefficients pi are estimated from each image individually, as stated in Eqn. 4,

strong object signals particularly at object boundaries can bias the fit. As indicated above,

low-frequency drifts, e.g., due to thermal effects, can be expected to change the reference

phase only gradually. This is modeled by an additional constraint on the variation between
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a) b) c)

FIG. 5. Estimation of the high frequency phase for one tile of an image of a human breast

mastectomy specimen: (a) Intermediate estimate of differential phase Phf
i . (b) Estimated high

frequency reference phase Rhf
i . (c) Final diffential phase image P′i. The grid-like reference signal

is separated from the features of the specimen.

consecutive images, which at the same time suppresses residual low-frequency object in-

formation. Thus, we estimate the total set of polynomial coefficients, P = [p1,p2, ...pN ],

as

arg min
P

N∑
i=1

‖M · pi −Ou
i ‖1 +

N−1∑
i=1

1

2
‖pi − pi+1‖2w . (5)

The optimization problem in Eqn. 5 consists of two parts. The first part seeks to min-

imize the discrepancy between the low frequency reference phase and the object images,

weighted by the L1-norm. Compared to the L2-norm, this strategy improves robustness

with respect to strong object signals. The second part promotes smooth changes of the

polynomial coefficients (and hence also Rlf) across consecutively acquired tiles. This is

achieved by penalizing the weighted least squares distance between the coefficient vectors

of consecutive images. Here, the weighting vector w models our observation that the lower

degree components of the polynomials experience a stronger drift than the higher ones. The

optimization of the resulting objective function is a mixed L1/L2-weighted problem. The

size of the combined measurements matrices makes direct optimization of Eqn. 5 infeasible

for typical image sizes (see Appendix A for details). An efficient solution to this type of

problem has, to our knowledge, not yet been considered in optimization literature. However,

we found an efficient solution to Eqn. 5 by transforming it into an equivalent constrained

problem that can be solved more easily by applying the Alternating Direction Method of
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Multipliers (ADMM, [32]),

arg min
P,Z

N∑
i=1

‖zi‖1 +
N−1∑
i=1

1

2
‖pi − pi+1‖2w

subject to zi = M · pi −Ou
i ∀i .

(6)

It can be shown that the ADMM applied to this problem corresponds to repeatably solv-

ing a soft-thresholding and a generalized Tikhohov-regularized least squares problem. We

present a full derivation of the optimization method and additional details in Appendix A.

Example estimates for the low frequency reference phase are shown in Fig. 4.

E. Estimation of the high-frequency reference phase

An intermediate estimate Phf
i of each differential phase image can be computed by sub-

tracting the estimated low-frequency reference from Ou
i ,

Phf
i = Ou

i −Rlf
i . (7)

The goal is to compute the high-frequency reference phase Rhf
i from Phf

i . The estima-

tion makes use of the prior observations that the object signal varies between images, but

the high-frequency reference Rhf
i mostly consists of grating artifacts and remains relatively

constant over consecutive acquisitions. In absence of any other model for Rhf
i , we perform

a pixelwise estimation of Rhf
i over a range of 2a images as

arg min
Rhf

i

min(i+a,N)∑
j=max(i−a,1)

‖Phf
j −Rhf

i ‖1 . (8)

Equation 8 states that subtracting the estimated reference scan for image i should mini-

mize the L1-norms of all images over a window of size 2a around i. As with the estimation

of the low-frequency part, the L1-norm is more robust and better rejects strong object sig-

nals than the L2-norm. Equation 8 is equivalent to estimating the pixel-wise median of the

images in the respective windows [33]. Similar as with the low frequency reference phase,

the use of neighboring images allows the separation of the high frequency reference from the
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object signal, even if they show spectral overlap, as long as the object signals in the window

are not correlated.

After computing the high frequency part of the virtual reference scan, the differential

phase images can be computed as

P′i = Phf
i −Rhf

i . (9)

This step concludes the regular processing step of the algorithm. Example results for the

high frequency reference phase are shown in Fig. 5.

F. Refinement step

Optionally, the results can be iteratively refined by excluding individual pixels containing

strong object signals from the estimation. To this end, a set of mask images Ti is generated

via thresholding as

Ti(x, y) =

1 if |P′i(x, y)| < t

0 otherwise
, (10)

where strong object pixels exceeding a threshold parameter t are set to zero. An example

threshold map is shown in Fig. 6. The estimation of the virtual reference scans can be

repeated incorporating the mask images. This way pixels which contain a strong object

signal are not used for estimating the reference scan, as they might bias the estimate. The

refinement step is repeated for a number of k times.

III. EVALUATION

Direct evaluation of the proposed method is challenging. To our knowledge, the effects

leading to drifts or changes in the reference phase have not been deeply studied yet. Thus,

it is not possible to accurately recreate them in simulation studies. In a first step, we

qualitatively analyze the difference between measured reference images and those estimated

by our method. Furthermore, we pursue two quantitative approaches for evaluation. Given

a simple, homogenous object with a known phase signal, it is possible to compare the output

of the proposed method with the classical reference scanning method and the ground truth



13

a) b)

FIG. 6. Computation of the thresholding map Ti. (a) First estimate of the differential phase

image P′i. (b) Corresponding thresholding mask Ti for t = 0.1 after three iterations.

phase signal of the object. The second approach is to have a group of experts rate the image

quality. We compare our method to the classical reference-based scanning approach, with

one reference scan per tile-column. The latter approach is our usually used imaging protocol

for tiled breast scans, and is a tradeoff between reference updates and additional mechanical

motion. The data usually shows strong drift artifacts, which are sometimes already visible

in the first tile acquired after the reference scan (for an example see Fig. 8). Thus we

additionally compare our algorithm to the data obtained with classical reference scanning

after post processing with the shading correction algorithm proposed by Kaeppler et al. [34].

This method, to our experience, yields superior results compared to the post processing

strategy proposed by Tapfer et al. [7], as it additionally uses tile boundary information for

the removal of low-frequency drift artifacts.

A. Data Acquisition & Parameter Tuning

We performed our evaluation on a set of 21 tiling-based acquisitions of cancerous human

mastectomy samples [35]. The data was acquired using a three grating Talbot-Lau inter-

ferometer. The grating size was 24.14 mm × 13.27 mm, the periods were 24.39 µm (G0),

3.37 µm (G1) and 2.4 µm (G2), with a G1-G2 distance of 159 mm. The design energy of

the system was 25 keV, while the X-ray tube was operated at a peak voltage of 40 kVp at

60 mA current. Eight phase steps were acquired for each tile. More details of the setup can

be found in [36]. The number of tiles per acquisition varied between N = 12 and N = 88,



14

and the size of each tile was 380× 380 pixels. The setup was vertically mounted to mimic a

clinical mammography device. Due to the lack of vibration dampening and G0 positioning

above the X-ray tube, drifts of the reference signal occurred frequently. This resulted in

low-frequency and sometimes also in slight Moirè artifacts in the reconstructed raw images.

Before the evaluation, algorithm parameters were manually selected out-of-sample using a

separate set of two images. For the proposed method, we set the polynomial degree d = 5.

The weighting vector w was set to 0 for polynomial degree 0, to 0.001 for polynomial degrees

one and two and to 1 for higher degrees. Furthermore, the weight vector was multiplied by

the number of pixels in each frame for normalization. The window size a for estimating

the high frequency reference phase was set to the number of tiles in the image. Finally, the

number of refinement steps k was selected as k = 3, as subsequent iterations no longer led

to visual changes of the output, while the thresholding parameter was set to t = 0.1. For

the images post processed with the shading correction method [34], we used linear basis

functions with the parameter α set to 100.

B. Qualitative Evaluation

We visually inspected the difference images of the measured and the virtual reference

images produced our algorithm for images with less than 20 tiles. Specifically we were

interested whether the proposed method may be prone to ’leaking’ of object information

into the estimated reference images when the number of tiles is low. Furthermore, we

inspected areas where low fringe visibility and/or strong attenuation lead to phase wrapping

or uniformly distributed phase noise. For the images used in this experiment, these effects

could be observed at metal pins used to fix the specimens (an example can be seen in Fig. 8).

We examined whether these artifacts have a negative impact on phase unwrapping, which

is a required preprocessing step for the proposed method.

C. Evaluation Using Homogenous Objects

Each specimen of our test data set consisted of a human breast mastectomy sample,

compressed between two parallel sheets of PMMA. Some parts of each image contained no

specimen. One of these regions was manually marked for each data set based on the raw data
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FIG. 7. Difference between measured and virtual reference phase for two tiles of a mastectomy

specimen acquisitions with N = 12 tiles. Note that no object information can be identified in the

difference images.

images. The size for each windows was at least 1000 pixels to ensure statistical robustness

for the analysis. As these regions only correspond to two parallel slabs of PMMA, their

differential phase signal should be constant. Ignoring material imperfections, any signal

variation in these windows can be attributed to either noise or imaging artifacts. For each

method and data set we calculated to the standard deviation of the signals within each

window to quantify these signal variations. Note that as our data was generated by a broad

spectrum X-ray source, it is difficult to relate the measured phase variation to a physical

phase-shift. Thus we only calculated the measured phase variations.

D. Expert Study

Six experts in X-ray imaging provided a manual scoring of the overall image quality for

each method and data set. Each expert was asked to assigned a ranked score from 1 to 5 to

each image, whereas 5 indicates perfect image quality in absence of artifacts, and 1 indicates

poor image quality. The experts were instructed to disregard any image degradations that

were not influenced by the reference information (e.g. object-induced phase wraps and tile

registration errors).
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IV. RESULTS

A. Qualitative Evaluation

Visual inspection of the difference between the measured and the computed reference

images revealed low-frequency intensity variations, slight Moirè patterns, and noise. Fig. 7

shows two representative tiles from an image comprised of twelve tiles. No signs of ’leaked’

object signals could be found on any of the difference images.

Local phase wrapping and uniformly distributed phase noise did not impede phase un-

wrapping step. It remained strictly localized and did not propagate into other image ar-

eas (for an example, see Fig. 8).

B. Results of Homogeneity Evaluation and Expert Study

Results for the homogeneity evaluation and the expert scoring, averaged over all data

sets, are given by Table I, while detailed results are listed in Appendix B.

For the homogeneity evaluation, we report for each method the standard deviation in

the marked region, averaged over all images and for the worst image. The post processing

approach yielded more homogenous signals than the raw data in all but two images, while

the proposed method yielded the most homogenous signals for all data sets.

For the expert scoring, we report the mean expert score averaged over all images with

standard deviation, as well as the mean score for the worst image. The proposed method

received the highest score of all methods for all but two of the 21 data sets.

V. DISCUSSION

Qualitative analysis of the difference images of the measured and computationally gener-

ated reference images revealed no signs of ’leaked’ object signals in the computed reference

images, indicating that the method cleanly separates object and reference information. As

the data set with the smallest number of tiles contained twelve tiles, we conclude that twelve

is an upper bound of the number of tiles required by our method. Future experiments with

data sets containing even fewer tiles could reveal more insights on this bound. The low-

frequency signals and slight Moirè patterns found in the difference images can be explained
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Homogeneity Evaluation

Raw Data Post-Processed Proposed Method

Average std. dev. 0.06± 0.03 0.04± 0.02 0.03± 0.01

Std. dev. of worst data set 0.1 0.08 0.05

Expert Scoring

Raw Data Post-Processed Proposed Method

Average of mean score 1.6± 0.4 3.0± 0.4 4.0± 0.5

Mean score of worst data set 1.0 2.2 2.2

TABLE I. Results of the homogeneity evaluation and expert scoring. Best results are shown in

bold. The proposed method yields the lowest inhomogeneity and the highest average expert score.

by interferometer detuning, which our method is designed to compensate. Unlike in our pre-

vious work [30], we did not observe any ringing artifacts at strong object edges. We attribute

this to the fact that the proposed method jointly estimates the references from all tiles. Our

qualitative analysis further revealed that the computed reference images contained slightly

less noise than the measured reference. This can be attributed to the fact that the measured

reference images in our study were acquired with a limited number of phase steps and dose,

and that any noise in the reference gets transferred to the phase image upon subtracting

the reference from the object image. Since the proposed virtual reference is statistically

estimated from multiple images, it shows less noise. Thus, the proposed method may be

advantageous in terms of noise if time constraints prohibit the acquisition of a noise-free

reference image.

For all data sets, the proposed method yielded the lowest standard deviations in the

homogenous regions outside of the samples. Most of the signal variation in the images

reconstructed from measured reference images was due to low-frequency reference drift.

While the post-processing method removed a bulk of these drift artifacts, the proposed

method was more effective in suppressing them. We attribute this to our model of the

low-frequency reference phase, which increases robustness to object signals by inter-tile

smoothing, while the post processing approach mainly relies on tile boundary information

to remove drift artifacts.

The experts assigned the highest score to the images from the proposed method, except
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FIG. 8. Two of the images of mastectomy samples used for evaluation. (a,d) Raw data. (b,e) Post

processed raw data. (c,f) Proposed method. Note that in the raw data images, artifacts due to

drift of the reference phase increase from the top tiles towards the bottom tiles. The sample in the

bottom row is one of the two samples where the output of the post processing method was rated

higher than that of the proposed method. We attribute this to the presence of Moirè artifacts in

this sample image.

for two cases, where they assigned the highest score to the post-processed images. In these

images, most of the tiles showed Moirè artifacts for all three investigated methods. We

hypothesize that the presence of the Moirè artifacts negatively influenced the proposed

estimation algorithm. Moirè artifacts in Talbot-Lau interferometry haven recently been

investigated by Pelzer et al. [37], who identified errors during the phase stepping procedure

as their underlying cause and proposed an algorithmic solution for suppressing them already

during phase reconstruction from the phase stepping data. However, this method was not
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part of our study.

One limitation of our experiments is that the interferometer used to acquire the data

was vertically mounted in order to imitate a clinical mammography system. For vibration-

controlled laboratory interferometers, the benefit of the proposed method may be less strong.

Another caveat is that our method relies on phase unwrapping as a preprocessing step. While

our evaluation showed that our method is robust to local measurement defects due to phase

wrapping and noise, we did not investigate the impact of large-area phase wrapping. While

we can not exclude that large-area phase-wraps may become an issue in very general imaging

scenarios, we assume that large-area phase-wraps can potentially be avoided when scanning

relatively homogeneous materials such as breasts by selecting an appropriate design energy

and setup sensitivity.

VI. CONCLUSIONS AND OUTLOOK

Talbot-Lau X-ray imaging is an emerging imaging technique. Despite initial encouraging

results, several problems still need to be addressed for translation of this technique to clinical

use. In this paper, we presented a computational method for obtaining the reference phase

for a tiled grating-based X-ray phase-contrast system instead of measuring it. We expect that

the proposed algorithm improves the practical applicability of tiling-based phase-contrast

imaging due to simplification of the acquisition process. Furthermore, our experiments

show that the method improves the quality of the resulting images. While absorption and

dark-field signals typically suffer from much less drift artifacts, extending the algorithm to

these images could be worthwhile. In principle, the proposed method could also be used for

reference-free Talbot-Lau phase-contrast tomography. However, a tomographic acquisition

is likely to violate the assumption that the content of subsequent tiles is uncorrelated. We

will investigate this possibility in future work.
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A. APPENDIX: OPTIMIZATION SCHEME FOR ESTIMATING THE

LOW-FREQUENCY PHASE IMAGES

The optimization problem in Eqn. 5 for obtaining the set of polynomial coefficient P is:

arg min
P

N∑
i=1

‖M · pi −Ou
i ‖1 +

N−1∑
i=1

1

2
‖pi − pi+1‖2w . (11)

It is difficult to solve this problem directly due to a) problem size and b) the combined

use of the L1- and weighted L2-norm. Typically, L1-norm regression problems are solved

directly by linear programming [38], or iteratively using the Alternating Direction Method

of Multipliers (ADMM, [32]) or Iteratively Reweighted Least Squares [39]. However, these

methods are designed to handle pure L1-norm problems without an additional weighted L2

term. Furthermore, iterative approaches require the inversion of a matrix that considers

the pixels of all tiles and all polynomial coefficients simultaneously. Due to this fact, the

number of matrix entries grows quadratically with the number of tiles. The inversion of such

a matrix is usually intractable for our problem size (as an example, assuming 300×300 pixels

per tile, 40 tiles, polynomial degree 5, the corresponding matrix would have approximately

130 million entries). We propose an extended ADMM-type optimization scheme, exploiting

the loose coupling between the polynomial coefficients of distant tiles, thereby solving the

optimization problem efficiently. We introduce a set of splitting variables Z = [z1, z2, ...zN ]

and rewrite Eqn. 11 in a constrained form:

arg min
P,Z

N∑
i=1

‖zi‖1 +
N−1∑
i=1

1

2
‖pi − pi+1‖2w

subject to zi = M · pi −Ou
i ∀i .

(12)

Note that for any feasible (i.e. constraint-fulfilling) choice of P and Z, this problem is

equivalent to the original optimization problem. The corresponding augmented Lagrangian

of this problem is

L̂(P,Z, λ) =
N∑
i=1

‖zi‖1 +
N−1∑
i=1

1

2
‖pi − pi+1‖2w

+
N∑
i=1

λi(zi − (M · pi −Ou
i )) +

N∑
i=1

ρ

2
‖zi − (M · pi −Ou

i )‖22

(13)
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Here, λ = [λ1, λ2, . . . , λN ] is the matrix of the Lagrangian multipliers, and ρ > 0 is a

scalar penalty parameter. Note hat for any feasible choice of P and Z the penalty term

vanishes. The augmented Lagrangian can be rearranged [32] as:

L̂(P,Z, λ) =
N∑
i=1

‖zi‖1 +
N−1∑
i=1

1

2
‖pi − pi+1‖2w

+
N∑
i=1

ρ

2
(‖(zi − (M · pi −Ou

i )) + (1/ρ)λi‖22 − ‖(1/ρ)λi‖22)

(14)

The ADMM method minimizes the constrained objective function by iteratively minimiz-

ing L̂(P,Z, λ) with respect to the primal variables, followed by an gradient ascent update of

the dual variables. However, the update of primal variables is performed alternatingly, i.e.

one variable is updated after another. Using j as an iteration counter, the update rules are:

Pj+1 = arg min
P

L̂(P,Zj, λj) (15)

Zj+1 = arg min
Z

L̂(Pj+1,Z, λj) (16)

λj+1
i = λji + ρ(zi

j+1 − (M · pj+1
i −Ou

i )) (17)

The update of the dual variables λ can be computed directly from the constraint vi-

olation. The joint update of Z decouples to the element-wise L1 proximal operator, i.e.

soft-thresholding:

zj+1
i = prox ρ

2
,‖.‖1 [(zi − (M · pj+1

i −Ou
i )) + (1/ρ)λji ] (18)

zj+1
i = arg min

zi

‖zi‖1 +
ρ

2
(‖(zi − (M · pj+1

i −Ou
i )) + (1/ρ)λji‖22 (19)

The update rule for the polynomial coefficients P is:

Pj+1 = arg min
P

L̂(P,Zj, λj) (20)

Pj+1 = arg min
P

N−1∑
i=1

1

2
‖pi − pi+1‖2w (21)

+
N∑
i=1

ρ

2
(‖(zji − (M · pi −Ou

i ) + (1/ρ)λji‖22)
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This problem can be reformulated as weighted least squares problem. Still, as indicated

above, the resulting matrix inversion is intractable due to the matrix size. However, we

note that the variables from one tile are only coupled to those of the neighboring tiles by

their corresponding smoothness terms. Thus, the combined matrix shows a strong block

structure that can be exploited. Here, we do not solve for P directly. Instead, we update

its components iteratively:

pj+1
i = arg min

pi

L̂(pj+1
1 , ...,pi,p

j
i+1, ...,p

j
N ,Z

j, λj) (22)

pj+1
i = arg min

pi

1

2
‖pi − pj+1

i−1‖2w +
1

2
‖pi − pji+1‖2w (23)

+
ρ

2
(‖(zji − (M · pi −Ou

i ) + (1/ρ)λji‖22) (1 < i < N)

This problems corresponds to a Least Squares Problem with generalized Tikhonov reg-

ularization and only requires the inversion of MTρIM + 2(wT I). This matrix inversion

is tractable, because the number of matrix entries is only the number of pixels times the

number of polynomial coefficients. We also note that the inverse, when computed once, can

be stored for further iterations. The proposed iteration scheme is in some sense similar to

the Gauss-Seidel method, except that whole matrix blocks are used to update the solution,

instead of single matrix rows. We note that this step no longer leads to a minimization

of L̂(P,Z, λ) with respect to the polynomial coefficients P. Instead, the value of the aug-

mented Lagrangian is only decreased. However, convergence of the ADMM algorithm is still

achieved in this case [32].

Convergence speed of the ADMM method is highly dependent on the choice of the penalty

parameter ρ. In pilot experiments, we found ρ = 1.0 to be a good choice for a wide range

of weight vectors w, while a number of 100 iterations seemed to be sufficient to achieve a

stable solution. The optimizing scheme required a runtime of 34 seconds for a sample data

set (36 tiles, 300 × 300 pixels per tile, polynomial degree 5) running on a standard laptop

(DELL M4800, Intel Core i7-4910MQ CPU, 32 GB RAM, MATLAB 2014b).
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B. APPENDIX: DETAILED RESULTS OF THE EVALUATION

Homogeneity - Std. Dev. Reader Study - Mean Score

Dataset Raw Data Post-Proc. Proposed Raw Data Post- Proc. Proposed

1 0.05 0.03 0.02 1.5 3.0 4.0

2 0.08 0.03 0.02 1.2 2.3 4.2

3 0.04 0.02 0.01 2.5 3.1 4.3

4 0.03 0.02 0.02 1.7 3.0 4.2

5 0.07 0.03 0.02 1.2 2.7 4.2

6 0.05 0.04 0.02 1.8 3.3 4.3

7 0.02 0.02 0.02 1.33 3.3 4.2

8 0.02 0.02 0.01 1.8 3.2 4.3

9 0.06 0.03 0.02 1.3 3.2 4.5

10 0.03 0.03 0.02 1.8 3.3 4.5

11 0.02 0.02 0.02 1.8 3.5 4.2

12 0.05 0.03 0.02 1.3 3.2 4.2

13 0.03 0.02 0.02 2.2 3.3 4.2

14 0.09 0.08 0.05 1.3 3.2 2.2

15 0.09 0.08 0.05 1.2 2.3 3.7

16 0.10 0.06 0.04 1.3 3.7 3.0

17 0.06 0.05 0.04 1.5 2.8 3.8

18 0.05 0.05 0.04 1.2 2.8 4.0

19 0.06 0.06 0.04 1.7 3.2 4.0

20 0.12 0.08 0.04 1.0 2.2 3.7

21 0.07 0.06 0.04 1.3 2.8 4.0

avg. 0.06± 0.03 0.04± 0.02 0.03± 0.01 1.6± 0.4 3.0± 0.4 4.0± 0.5

TABLE A1. Detailed results of the homogeneity evaluation and expert scoring. The best result

for each dataset is shown in bold.



25

[1] U. Bonse and M. Hart, “An X-ray Interferometer with Long Separated Interfering Beam

Paths,” Applied Physics Letters 7, 99–100 (1965).

[2] A. Momose, I. Koyama, Y. Hamaishi, K. Takai, and Y. Suzuki, “Demonstration of x-ray

talbot interferometry,” Japanese Journal of Applied Physics 42, L866–L868 (2003).

[3] T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, and E. Ziegler,

“X-ray Phase Imaging with a Grating Interferometer,” Optics Express 12, 6296–6304 (2005).

[4] F. Pfeiffer, T. Weitkamp, O. Bunk, and C. David, “Phase Retrieval and Differential Phase-

contrast Imaging with Low-brilliance X-ray Sources,” Nature Physics 2, 258–261 (2006).

[5] M. Bech, T. Jensen, R. Feidenhans, O. Bunk, C. David, and F. Pfeiffer, “Soft-tissue phase-

contrast tomography with an x-ray tube source,” Physics in Medicine and Biology 54 (2009).

[6] T. Donath, F. Pfeiffer, O. Bunk, C. Grunzweig, E. Hempel, S. Popescu, P. Vock, and C. David,

“Toward Clinical X-ray Phase-Contrast CT: Demonstration of Enhanced Soft-Tissue Contrast

in Human Specimen,” Investigative Radiology 45, 445–452 (2010).

[7] A. Tapfer, M. Bech, A. Velroyen, J. Meiser, J. Mohr, M. Walter, J. Schulz, B. Paulwels,

P Bruyndonckx, X. Liu, A. Sasov, and F. Pfeiffer, “Experimental results from a preclinical x-

ray phase-contrast ct scanner,” Proceedings of the National Academy of Sciences 109, 15691–

15696 (2012).

[8] Z. Wang, C. A. Clavijo, E. Roessl, U. van Stevendaal, T. Koehler, N. Hauser, and M. Stam-

panoni, “Image fusion scheme for differential phase contrast mammography,” in 7th Medical

Applications of Synchrotron Radiation Workshop (2012) pp. 1–14.

[9] F. Pfeiffer, M. Bech, O. Bunk, P. Kraft, E. F. Eikenberry, C. Brönnimann, C. Grünzweig, and
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