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ABSTRACT

Video content can be acquired with off-the-shelf hardware, and is
thus increasingly used to record events. With the growing role of
video data for communicating to a large audience, we need tools to
ensure the authenticity of video content. However, until now, only
few methods exist to forensically analyze videos.

In this work, we propose a method for statistically comparing
two video sequences. Per sequence, intra- and inter-frame residu-
als are computed. Optical flow is used to compensate for motion
artifacts on inter-frame residuals. We use one sequence to build a
statistical model, and compare it to the second sequence. From a
forensic perspective, the proposed method enables two applications.
First, manipulations can be accurately localized if both sequences
are subsequences of the same video. Second, source cameras can be
distinguished if both sequences stem from different videos. The pro-
posed method is evaluated on collected smartphone data and green-
screen splices. Further, it is quantitatively compared to both a recent
PRNU-based approach and a technique based on autoencoders.

Index Terms— Video Forensics, Chroma Keying, Noise Resid-
uals, SPAM Features, Optical Flow, Video Splicing

1. INTRODUCTION

The widespread of sophisticated video processing tools allows for
a fast and effective manipulation of videos. Visual content may be
changed for amusement, but also for malicious purposes, for exam-
ple to modify evidence in court, make propaganda, or blackmailing1.

Video forensics is an emerging research direction with the goal
of exposing video manipulations and to attribute videos to source
cameras [1]. Source identification has been investigated using sen-
sor noise [2], and in particular photo-response non-uniformities
(PRNU) [3, 4]. Manipulation detection has been addressed in
several variants, e.g., for detecting insertion or deletion of frame
groups [5–8], or copy-move forgeries [9,10]. There exists also meth-
ods that exploit codec-specific properties, e.g., in MPEG [11–13].

In this work, we propose a method to statistically compare two
video sequences. We see two useful applications for the proposed
scheme. First, it can be used for weak source identification, i.e.,
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Fig. 1. Top: Simplified illustration outlining the presented algo-
rithm. Bottom: Examples of possible usage.

to check whether two videos are created with the same process-
ing stack. Second, it can be used for manipulation localization: if
a subsequence of a video is suspected to contain a manipulation,
the method can assess the statistical consistency of this subsequence
with an unsuspicious subsequence of the same video.

Related methods include the work on photo-response non-
uniformity [14, 15], which is a powerful training-based approach.
However, for video, the approach is challenged by automated pro-
cessing such as video stabilization [16]. Xu et al. propose a method
that detects video compression inconsistencies on manually seg-
mented foreground and background regions [17]. This method
makes use of the DCT, and as such performs well on MPEG encoded
videos. However, it is unknown how well the algorithm performs
on other video codecs such as H.264. Su et al. detect splicing via
inconsistencies in the camera’s Bayer pattern interpolation along
object edges [18]. Nonetheless, detecting the relatively weak Bayer
pattern along relatively few edge pixels can be challenging, particu-
larly when the video is recoded or automatically stabilized. Hsu et
al. exploit the statistical properties of noise residuals [19]. Tem-
poral correlation is modeled as a Gaussian mixture per block. One
limitation of this approach is that it considers only two consecutive
frames, and hence can only discover the first and last frame of a



manipulation. Features extracted from noise residuals are also used
in [20]. However, they worked with a very high-dimensional feature
vector proposed in [21]. This requires a large database for train-
ing, and is computationally very expensive. Recently, D’Avino et
al. used autoencoders and recurrent neuronal networks to detect
splicings in videos [22]. This technique shows good results, but it
lacks the capability to track objects in the video. Tracking is benefi-
cial to differentiate between foreground and background objects to
ultimately avoid merging pristine and spliced parts to one entity.

The biggest advantage of the proposed approach is that it per-
forms a black-box comparison of the videos. It statistically relates
noise residuals of two video sequences. If the software settings or the
processing chain of the video sequences differ, the statistics differ. If
applied within the same video, local manipulations can be detected
— assuming that a consistent video has only been subject to global
processing like recoding. It operates directly on the provided video
sequences, and does not require additional training data.

2. RESIDUAL-BASED VIDEO MANIPULATION
DETECTION

The core idea of residual-based media forensics is to compute a sta-
tistical descriptor from noise. To this end, the image is first high-pass
filtered to obtain residuals. Descriptors are computed from blocks
of residuals, and are used to build a statistical model. A schematic
overview of the proposed method is shown on top of Fig. 1. First,
residuals are computed. Then, residuals are temporally aligned using
optical flow vectors. For the first video, a model is computed from
spatial and temporal histograms of residual co-occurences. The Ma-
halanobis distance between the model and co-occurence histograms
of the second video allows to compare two video sequences.

2.1. Computation of the Statistical Descriptor

We use a 1-D high-pass filter h(u) with coefficients [1,−3, 3,−1]
along rows, columns, and temporal direction to compute the residu-
als. Among other filters suggested in [21], this turns out to be a good
tradeoff between filtering complexity and residual quality [23].

To suppress strong edges from image content, residuals are trun-
cated and quantized [21], such that the residual vector IR(c) at po-
sition c, is

IR(c) = min

(
t, max

(
−t,

⌊
(I ∗ h)(c)

q

⌋))
, (1)

where I denotes a 1-D slice of the video, h the high-pass filter from
above, t the truncation threshold and q the quantization factor. When
the intensities are represented as values between 0 and 255, it is rea-
sonable to select small positive integer values for t and q. In our
experiments, we set t = 2 and q = 3. This leads to 2t + 1 possi-
ble values. Thus, for n neighboring residuals, there exist (2t + 1)n

different combinations of values, which is also referred to as co-
occurrence. We chose n = 4 in accordance with other recent foren-
sic works that are based on co-occurrence features [22,24]. Mirrored
co-occurrences like [0, 2, 0, 1] and [1, 0, 2, 0] are considered identi-
cal. Thus, the number of individual co-occurences reduces to 169.
We compute histograms of co-occurences along rows, columns and
frames of the video. These histograms are concatenated to form a
3 · 169 = 507 dimensional statistical block descriptor, on windows
of size 128 × 128 pixels, with an step size of 8 pixels.

However, it may be suboptimal to directly accumulate co-
occurences from the same pixel position in temporal direction. In
the case of inserted objects, statistics of foreground and background

Fig. 2. Example frames from our chroma-key spliced videos. Top to
bottom: woman, runner, laptop, and vanDamme.

mix if motion is not taken into account. We use optical flow to
compensate for such motion effects, and to increase the likelihood
that all feature vectors are either computed on background or on the
overlay. More specifically, we estimate per pixel a dense motion
field that tracks motion from one frame z − 1 to the next frame z by
computing a translation vector (vx, vy)T such that

I(x, y, z) = I(x+ vx, y + vy, z − 1) . (2)

To estimate such a motion field, we relied on the publicly available
implementation by Ce Liu [25].

Using these motion estimates, the co-occurence histogram in
temporal direction is built by following the estimated motion tra-
jectory. More precisely, we compute a seven-frame block of 3-D
features, where pixels from consecutive frames follow the optical
flow translation (vx, vy)T.

2.2. Comparison of Two Video Sequences

To compare descriptors from two video subsequences, we select all
descriptors from one sequence, and compute their mean ~µ and co-
variance Σ, after passing the feature vectors through a square-root
non-linearity. Then, each descriptor of the other sequence is evalu-
ated on these statistics by computing the Mahalanobis distance [24].

Thus, let ~fi denote the i-th descriptor from the first video se-
quence. The model (~µ,Σ) is constructed by computing

~µ =
1

N

N∑
i=1

~fi , Σ =
1

N

N∑
i=1

(~fi − ~µ)(~fi − ~µ)T . (3)

Let furthermore ~g denote a descriptor from the second video. Then,
the Mahalanobis distance dMahal is

dMahal(~g; ~µ,Σ) =
√

(~g − ~µ)TΣ−1(~g − ~µ) . (4)

The larger the mismatch between ~g and the model, the larger
the Mahalanobis distance. For a perfect match, i.e., if ~g ≡ ~µ,
dMahal(~g; ~µ,Σ) equals zero.
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Fig. 3. Detection performance on the spliced videos without sec-
ondary compression.

3. DATASETS

3.1. Spliced Video Dataset

The spliced video dataset is compiled using green screen technique.
For three videos, we collected samples for video overlays from
YouTube and used smartphones to capture suitable backgrounds. A
fourth example was created by recording a sequence containing a
green notebook screen, in which we inserted a video. Three example
frames from each of these videos are shown in Fig. 2. From top to
bottom, we denote these videos as woman, runner, laptop, and
vanDamme. The resolution of these videos is between 640 × 480
pixels and 1920 × 1080 pixels. All videos have between 150 and
170 frames.

3.2. Smartphone Dataset

We collected short video sequences from nine smartphones. The
camera models were two Motorola G1LTE (1,2), Motorola X Play
(3), HTC One M8 (4), iPhone 5s (5), iPhone 6 (6), Microsoft Lumia
820 (7), One Plus 2 (8), and Xiaomi Redmi Note 3 Pro (9). Smart-
phone capturing settings were not adapted in any way. All videos
contain roughly the same content. A landscape as seen from a high
rise while performing a camera sweep. Two example frames are
shown in Fig. 1.

From each video, we arbitrarily cropped 660 × 330 central pix-
els from 120 frames. The first 50 frames of each video are reserved
for building the model. Data after frame 62 was used to compute
descriptors for testing against other smartphone models. No resam-
pling, frame interpolation or other processing was applied to the in-
put videos to ensure that only video artifacts are compared.

4. EVALUATION

For comparison, we evaluate three variants of the proposed method.
First, we use 2-D features, computed only along x and y direction,

Fig. 4. Mahalanobis distances on runner, corresponding to the
rightmost image in the second row of Fig. 2. From left to right: 3-D,
2-D with optical flow and 3-D with optical flow.

with temporal alignment via optical flow. Second and third, we use
3-D features (computed in x, y and temporal direction) without and
with temporal alignment via optical flow. As metric we report re-
ceiver operating characteristic curves (ROCs). Since the features are
extracted with a stride width of 8 pixels, we upsample our result by
that factor for pixelwise comparison with the ground truth.

4.1. Manipulation Localization

As a baseline result, Fig. 3 shows the detection performance on the
spliced videos without secondary recompression. The difficulty of
these four videos greatly varies: the easiest case is vanDamme (top
right), the hardest case is laptop (bottom right). The performance
variation stems from several effects. First, camera egomotion (i. e.,
a globally moving background) makes it more difficult to build the
model. Second, very dark or very bright pixels in the scene also
complicate to obtain meaningful statistics. Both of these effects oc-
cur in laptop, which is why we consider this a particularly difficult
case. Conversely, strong compression artifacts in the spliced fore-
ground of vanDamme help the algorithm to distinguish background
and overlay. The two remaining videos runner and woman range
in-between, with a detection performance that is overall quite reli-
able.

In vanDamme and laptop, 2-D descriptors with optical flow
perform best, in runner and woman, 3-D descriptors with optical
flow perform best. In every case, the inclusion of optical flow con-
siderably improves the results. Fig. 4 shows a qualitative example
for the resulting Mahalanobis distances for frame 150 of the video
runner. The leftmost image shows 3-D descriptors. The other two
images present results with optical flow, for 2-D (middle) and 3-D
(right). For the remainder of the experiments, we use 3-D descriptors
with optical flow as the proposed method.

4.1.1. Number of Frames for Computing the Model

We investigate how the number of frames used for building the
model affects the performance of forgery localization. We report the
ROC curves averaged over all four videos using the proposed 3-D
features with optical flow. The results are shown in Fig. 5 (left).
Performance gently decays when reducing the number of frames
for building the model. This provides some degree of flexibility
to the analyst if less than 50 genuine frames are available. Good
performance is achieved already for as few as fifteen frames.

4.1.2. Evaluation of Re-Compression

We evaluated the effect of secondary compression on the spliced
videos. The videos were recompressed with ffmpeg2. Analogously
to the previous Section, we report averaged ROC curves for the pro-
posed method. Fig. 5 (right) shows that localization performance is

2Example recompression command: ffmpeg -i input.avi -c:v
mpeg4 -vtag xvid -qscale:v 7 output.avi
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Fig. 6. Comparison of the proposed method with a PRNU-based
and an autoencoder-based approach. Left: averaged results. Right:
results on uncompressed runner video.

high under slight recompression. At MPEG-4 quality 7, localization
accuracy deteriorates.

4.1.3. Comparison with other Forgery Detection Methods

We compared the proposed method to forgery detection that ex-
ploits photo-response non-nuniformity (PRNU) [26] and a procedure
based on autoencoders with recurrent neuronal networks [22]. We
also experimented with the methods presented in [18] and [19], but
were not able to obtain meaningful results on our data. Results for
the two tested reference algorithms averaged over all spliced videos
are shown in Fig. 6 (left). We trained the PRNU-based method on
50 frames as done for the proposed method. PRNU performance
is considerably lower compared to the proposed method. Some of
the videos have relatively static background, which makes it more
difficult for a PRNU-based estimator to extract a good fingerprint.
To create a best-case scenario for PRNU, we also report results only
on the video runner where we used several and different videos
extracted from the same camera to obtain a better PRNU estimation.
Results for this experiment are shown in Fig. 6 (right) by considering
a variable number of frames. However, even when using 100 frames
for PRNU estimation, performance is not competitive. Also, on aver-
age, we observe better results than the autoencoder-approach, which
does not consider objects’ motion. We presume that this weakens
the performance of this method slightly.

4.2. Differentiation of Camera Processing Stacks

Table 1 shows results for differentiating video sequences from the
smartphone dataset (Sec. 3.2). The smartphone along one row is
used to build the model, the smartphone in the respective column

Table 1. AUCs for distinguishing video processing stacks. Rows:
source for the model, Columns: source for testing the descriptors.

ID 1 2 3 4 5 6 7 8 9

1 - 0.48 0.88 0.72 0.94 0.95 0.96 0.92 0.56
2 0.99 - 1.00 0.92 1.00 1.00 1.00 0.99 0.93
3 1.00 1.00 - 0.96 0.99 1.00 0.99 1.00 0.91
4 1.00 0.99 0.99 - 0.98 0.97 0.99 1.00 0.96
5 1.00 1.00 1.00 0.99 - 1.00 1.00 1.00 1.00
6 1.00 0.98 1.00 0.95 0.99 - 1.00 1.00 1.00
7 0.99 0.99 0.99 0.96 0.96 0.99 - 0.95 0.95
8 0.99 0.95 1.00 0.98 1.00 0.99 0.96 - 0.96
9 0.99 0.99 1.00 0.98 1.00 1.00 1.00 1.00 -
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Fig. 7. Performance for distinguishing smartphones under added
white Gaussian noise. Left: no secondary compression, right: re-
compressed with MPEG-4 quality 3.

is tested. We report the areas under the curve (AUCs) for the ROC
curves over the Mahalanobis distances.

The method provides a high detection rates, with a mean value of
0.96±0.085. Three notable outliers with worse performance can be
observed for the case when smartphone (1) is used for training. Upon
visual inspection of the data, we noticed that the image content in
(1) greatly varies between subsequences used to build the model and
subsequences used to test against the model. However, the overall
strong results indicate that the method is able to distinguish videos
from different sources.

In a second experiment, to illustrate more decisive that differ-
ences in the noise residuals are traceable and in which order of mag-
nitude they have to be, we add Gaussian noise to the tested descrip-
tors of one of the smartphones. All other evaluation settings are
identical to the previous experiments. Fig. 7 shows that Gaussian
noise is reliably recognized down to a very low noise standard devi-
ation of σ = 0.18. Under compression with MPEG-4 quality 3 (on
the right), results are somewhat weaker, but still discriminative.

5. CONCLUSIONS

We presented a residual-based method for forensic comparison of
two video sequences. We compute residual co-occurences in spatial
and temporal domain, compensating video motion via optical flow,
to build a statistical model. Descriptors from the second sequence
are matched to that model. The method can be used either for ac-
curate forgery localization, or for reliable discrimination of smart-
phones. It is less sensitive to scene content than PRNU, detects also
small statistical disturbances such as mildly added Gaussian noise,
and performs well under moderate recompression. In future work,
we will expand this investigation towards the methods robustness
under stronger recompression, noise pre-filtering or globally added
noise.
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tal camcorder identification using sensor photo response non-
uniformity,” in Proc. of SPIE Security, Steganography, and
Watermarking of Multimedia Contents IX, Feb. 2007.

[4] W. van Houten and Z. Geradts, “Source video camera iden-
tification for multiply compressed videos originating from
YouTube,” Digital Investigation, vol. 6, no. 1-2, pp. 48–60,
Sept. 2009.

[5] M.C. Stamm, W.S. Lin, and K.J. Ray Liu, “Temporal Forensics
and Anti-Forensics for Motion Compensated Video,” IEEE
Transactions on Information Forensics and Security, vol. 7, no.
4, pp. 1315–1329, Aug. 2012.

[6] A. Gironi, M. Fontani, T. Bianchi, A. Piva, and M. Barni, “A
video forensic technique for detecting frame deletion and inser-
tion,” in IEEE International Conference on Acoustics, Speech
and Signal Processing, May 2014, pp. 6226–6230.

[7] R. D. Singh and N. Aggarwal, “Optical Flow and Prediction
Residual Based Hybrid Forensic System for Inter-Frame Tam-
pering Detection,” Journal of Circuits, Systems and Comput-
ers, vol. 26, no. 07, pp. 1–37, 2017.

[8] Y. Wu, X. Jiang, T. Sun, and W. Wang, “Exposing video inter-
frame forgery based on velocity field consistency,” in IEEE
International Conference on Acoustics, Speech and Signal Pro-
cessing (ICASSP), May 2014, pp. 2674–2678.

[9] P. Bestagini, S. Milani, M. Tagliasacchi, and S. Tubaro, “Lo-
cal tampering detection in video sequences,” in IEEE Interna-
tional Workshop on Multimedia Signal Processing, Oct. 2013,
pp. 488–493.

[10] L. D’Amiano, D. Cozzolino, G.Poggi, and L. Verdoliva,
“Video forgery detection and localization based on 3D Patch-
Match,” in IEEE International Conference on Multimedia and
Expo Workshops, 2015, pp. 1–6.

[11] W. Wang and H. Farid, “Exposing Digital Forgeries in Video
by Detecting Double Quantization,” in ACM Workshop on Mul-
timedia and Security, 2009, pp. 39–48.

[12] W. Wang and H. Farid, “Exposing Digital Forgeries in Inter-
laced and Deinterlaced Video,” IEEE Transactions on Informa-
tion Forensics and Security, vol. 2, no. 3, pp. 438–449, Sept.
2007.

[13] D. Labartino, T. Bianchi, A. De Rosa, M. Fontani, D. Vázquez-
Padı́n, A. Piva, and M. Barni, “Localization of forgeries

in MPEG-2 video through GOP size and DQ analysis,” in
IEEE International Workshop on Multimedia Signal Process-
ing (MMSP), Sept 2013, pp. 494–499.

[14] M. Chen, J. Fridrich, M. Goljan, and J. Lukás, “Determining
image origin and integrity using sensor noise,” IEEE Transac-
tions on Information Forensics and Security, vol. 3, no. 1, pp.
74–90, Mar. 2008.

[15] N. Mondaini, R. Caldelli, A. Piva, M. Barni, and V. Cappellini,
“Detection of malevolent changes in digital video for foren-
sic applications,” in Proc. of SPIE Conference on Security,
Steganography and Watermarking of Multimedia, 2007, vol.
6505.

[16] S. Taspinar, M. Mohanty, and N. Memon, “Source camera at-
tribution using stabilized video,” in IEEE International Work-
shop on Information Forensics and Security, 2016, pp. 1–6.

[17] J. Xu, Y. Yu, Y. Su, B. Dong, and X. You, “Detection of blue
screen special effects in videos,” Physics Procedia, vol. 33, pp.
1316–1322, 2012.

[18] Y. Su, Y. Han, and C. Zhang, “Detection of blue screen
based on edge features,” in IEEE Joint International Informa-
tion Technology and Artificial Intelligence Conference, 2011,
vol. 2, pp. 469–472.

[19] C.-C. Hsu, T.-Y. Hung, C.-W. Lin, and C.-T. Hsu, “Video
forgery detection using correlation of noise residue,” in IEEE
Workshop on Multimedia Signal Processing, 2008, pp. 170–
174.

[20] S. Chen, S. Tan, B. Li, and J. Huang, “Automatic Detection of
Object-based Forgery in Advanced Video,” IEEE Transactions
on Circuits and Systems for Video Technology, in press 2015.
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