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Abstract. Illumination direction and color are two physics-based forensic
cues that are based on the same underlying model. In this work, we discuss
these methods in the light of their joint physical model, with a particular
focus on the limitations and a qualitative study of failure cases of these
methods. Our goal is to provide directions for future research to further
reduce the list of constraints that these methods require in order to work.
We hope that this eventually broadens the applicability of physics-based
methods, and to spread their main advantage, namely their stringent
models for deviations of the expected image formation.
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1 Introduction

The goal of image forensics is to provide algorithms for determining authenticity
and origin of image data [12, 24, 27]. With the increasing ease of creating and
distributing digital imagery, attention to this field of research also increased in
recent years. Within image forensics, our particular interest for this paper is in the
task of detecting image manipulations. The majority of the proposed approaches
to manipulation detection arguably belongs to the group of so-called statistical
methods. These algorithms look for statistical deviations from an expected model
that is built around e. g.,, compression artifacts [1, 3], noise residuals [2, 4, 7],
resampling artifacts [19, 23], or copy-move forgeries [5, 6]. Advantages of the
statistical methods are that they can typically run offline in batch processing large
amounts of images, and that they achieve excellent detection rates, particularly
in scenarios where the amount of postprocessing to the imagery is limited.

Another, less popular group of methods in image forensics are the so-called
physics-based approaches. Here, a model is built on a physical property of the
scene [12]. Deviations from the model are assumed to be manipulations. Notable
features to physics-based methods are illumination direction [15,17,22], illumi-
nation color [9, 13,25], specular reflection [16,20,31], vanishing points [14], and
shadows [18,32]. Broadly speaking, physics-based methods are widely accepted
as being less sensitive to image postprocessing like compression or downsam-
pling. Also, the fact that the underlying models are typically drawn from physics



or optics, allows in principle stronger statements on the (in-)consistency: a
physics-based method typically constrains the observed interaction between scene
elements or parts of scene elements. However, as a consequence, the applicability
and chances for success of a physics-based method very often depends on the
actual content of the scene. This dependence on scene content is oftentimes
perceived as the most serious limitation of physics-based methods. The second
severe limitation of many physics-based approaches is that they require user
interaction to reliably work. Thus, most of the current methods can not easily
be adapted to an automated batch processing pipeline.

Algorithms that exploit the interaction of illumination with the scene take
a central position among physics-based methods. Our group has investigated
in recent years manipulation cues from investigating illumination direction and
illumination color. In this work, we provide an overview of our findings and
our perspective on open issues in illumination-based forensics. By “illumination-
based forensics”, we denote forensic methods that operate on objects under direct
illumination (as opposed to, for example, methods that explicitly make use of
shadow boundaries [18]). We first introduce a general model for image formation
in Sec. 2.1, and discuss this model with respect to illumination-based forensics in
Sec. 2.2. The approaches to exploiting illumination environments (or direction,
respectively) are presented in Sec. 3, including some notable limitations. A similar
presentation is done in Sec. 4 for the forensic exploitation of illumination color. A
short discussion and conclusion on the similarities and differences between both
approaches is presented in Sec. 5

2 Illumination-based Forensics

We first introduce the overall model of image formation in Sec. 2.1, and then
discuss its application to image forensics in Sec. 2.2.

2.1 Image Formation

The general image formation model for a color camera is

i(x,θ) =

∫
Ω

∫
λ

r(x,ν, λ,θ) · e(x,ν, λ) · c(λ) dλ dν , (1)

where x denotes a point in the scene and θ subsumes geometric scene parameters,
most notably the camera pose. e(x,ν, λ) denotes the intensity of incident light
on x from direction ν with wavelength λ. r(x,ν, λ,θ) denotes the reflectance
function. Finally, c(λ) denotes the vector of camera responses for light of wave-
length λ, which essentially models the red, green, and blue color filters of the
camera. In the case of a grayscale camera, c(λ) is just a one-dimensional vector
containing a single broad color filter. The relationship of these quantities is also
sketched in Fig. 1. Here, the incident spectrum of wavelengths λ is shown in
magenta. The spectrum potentially varies across the hemisphere of incident angles
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Fig. 1. Sketch for the set of angles of incident light Ω with individual directions ν, the
angle of exiting light θ, and the wavelength of light λ incident on a surface location x,
analogously to the image formation model of Eqn. 1.

Ω (green), where ν (blue) denotes one specific direction of incidence of light onto
a surface location x. The reflectance function at x is evaluation with respect to
the direction of exitance θ (red). The contribution of each color to the respective
color channel is determined by the color filters c(λ) (cyan). Note that this model
only covers photometric effects, but does not include any non-linearities. For
image forensics, the probably most important non-linear contributions are the
camera’s gamma function and JPEG compression. We omitted these effects from
Eqn. 1 because these effects are introduced by the digital signal processor, i.e.,
after the physical image formation.

The image formation model in Eqn. 1 is rather general. Specializations can be
done by specifying the reflectance function r(x,ν, λ,θ). For example, the widely
known Lambertian reflectance model can be expressed as

rLambert(x,ν, λ,θ) = ρ(x, λ) ·max

(
n(x) ◦ ν
‖n(x)‖‖ν‖

, 0

)
, (2)

where ρ(x, λ) denotes the albedo for wavelength λ at position x, and n(x) denotes
the surface normal at point x and ◦ denotes the scalar product. This reflectance
model is also referred to as “purely diffuse” reflectance, since the reflected intensity
only depends on the angle between incident light and surface normal, but not
on the position of the viewer. Another alternative is the dichromatic reflectance
model by Shafer [28]. Here, the reflectance term splits into a diffuse and a specular
portion,

rDichrom(x,ν, λ,θ) = αrLambert(x,ν, λ,θ) + (1− α)rspec(x,ν, λ,θ) , (3)

where the weighting term α depends on the surface material at x. The charac-
teristic of the specular component rspec is that it is zero everywhere except of
the specific constellation where angle of incidence ν, surface normal n(x) and
the vector of the viewing direction θ are coplanar, and the angles (ν,n(x)) and
(n(x,θ) are identical. For color research, one additional, common assumption for



the dichromatic reflectance model is the so-called neutral interface reflectance
assumption. It states that the observed color in a pure specularity is identical to
the color of the light source.

2.2 Forensic Applications of the Image Formation Model

The key assumption of illumination-based forensics is that with an appropriate
choice of the reflectance function r(x,ν, λ,θ), and sufficient information about
the environment (e.g., about number and positions of light sources, or object
surface normals), it is possible to explain the observed pixels with the model. In
particular, this also allows to compare two objects with respect to the quality of
the model fit. Thus, if an image is manipulated, e. g.,, by splicing it from two
sources, it may be the case that one object matches the model while the other
one does not. Such a disagreement between objects within the same image is
then taken as an indicator for manipulation.

In practice, existing methods estimate the model parameters from each
object (as if the object would be an original, and belong to that scene). In
a second step, model parameters between objects are compared, and outliers
are marked as manipulated. In the context of Eqn. 1, any of the explicitly or
implicitly given model parameters can be used for detecting inconsistencies.
For example, methods that are based on the illumination direction estimate
the surface normal n(x) to compute the intensity distribution of the lighting
environment e(x,ν, λ), integrated over all λ in the visible range and all x in a
sufficiently local neighborhood. Methods based on the illumination color are in a
less apparent way linked to Eqn. 1, but they basically exploit small variations in
the surface normals n(x) to estimate e(x,ν, λ) · c(λ), integrated over all ν, and
all x in a sufficiently local neighborhood.

3 Illumination Direction

The key ideas for examining illumination direction were presented by Johnson
and Farid [15] and Kee and Farid [17]. Both works propose ways to estimate the
distribution of incident light e(x,ν, λ) using estimates of the surface normals
n(x). At object contours, the z-component of surface normals is 0, i. e.,, the
normals are located in the image plane. Johnson and Farid propose to estimate
the orientation of these normals from orientation of the contour. Assuming
furthermore Lambertian reflectance on a monochromatic image, and user-selected
directly illuminated (non-shadowed) contours along the same surface material,
the estimation of e(x,ν, λ) can be written as a least squares fit of the observed
contour intensities to a spherical harmonics model [15].

Specifically, the estimation problem can be written as

Ah = i , (4)

where i = (i(x1), . . . , i(xN ))T denotes the N -element vector of observed (gray-
level) intensities along the contour, and A ∈ Rn×5 denotes a matrix of spherical



harmonics bases that are evaluated for the surface normals (n(x1), . . . , n(xN ))
associated with each of the N contour points. The unknown vector h ∈ R5×1

consists of the five coefficients that parameterize a second-order 2-D spherical
harmonics model. For increased robustness, this linear system of equations is
solved using a Tikhonov regularizer [15].

The same idea is used in the work by Kee and Farid [17], with the main
exception that an a priori known object class — faces — is used to estimate
the surface normals. Due to major progress in recent years in fitting a 3-D face
model to a 2-D face image, it became possible to obtain 3-D surface normals for
all face pixels instead of only the 2-D contour normals. This allows to estimate
3-D lighting environments, with essentially the same fitting approach as above.
The main difference is that a second-order 3-D model consists of nine coefficients
instead of five.

There are two immediate advantages from the availability of 3-D normals.
First, since all face pixels can be used instead of only a few contour pixels, the
numerical estimation of the lighting environment becomes much more robust.
Second, the 3-D model allows to not only distinguish 2-D projections of light
sources onto the image plane, but their location in 3-D space. Both factors
together make the 3-D approach more accurate than the 2-D approach, at the
expense of being only applicable to scenes with at least two faces.

3.1 Addressing the Constraints: Surface Albedo, Automation and
Shape-from-Shading

With the outlined basic idea published, a number of follow-up works aim at
reducing the constraints that are imposed on the methods. For example, for
numerical stability of the 2-D contour-based approach, it is necessary to collect
occluding contours from an angular range of about 120 degrees or more. The
brightness information along the contours must be obtained from materials with
the same object color (albedo). In our work, we found that this requirement of
constant albedo is one of the big obstacles for using the method in practice. When
selecting in an image contours along two objects for comparison, we regularly
were unable to find admissible, monochromatic occluding contours across the
required angular range. Thus, we proposed to include a multiplicative factor
to the estimated coefficients that neutralizes surface colors [26]. A similar idea
has been proposed by Peng et al. for the 3-D approach, namely to obtain a
texture estimate together with the face fit that is used to normalize the intensity
distribution [22]. Furthermore, since face detection is a well-examined computer
vision task, the same group also proposed a slight extension of the original
method that automatically finds faces and fits a face model to it [21]. Another
severe restriction of the 3-D method is that it can only detect manipulations
that involve faces. This has been addressed by Fan et al. by experimenting with
shape from shading on more general objects [11]. Nevertheless, this additional
flexibility naturally comes at the expense of a somewhat reduced model accuracy,
which, by extension, reduces the ability of the method to detect manipulations.



Fig. 2. Examples for different surface materials and textures. Top left: synthetic mate-
rials like outdoor clothing typically violate the Lambertian reflectance model. Top right:
unstructured materials like hair are very prone to mislead the estimation, and hence
need to be segmented out beforehand. Bottom row: texture like on the jeans or the
makeup is oftentimes barely separable from intensity gradients that arise from varying
illumination.

3.2 Unsolved Challenges in Lighting Environments for Forensics

We noticed in our experiments with 2-D and 3-D estimators for lighting environ-
ments, that there also exists a number of “hidden” constraints. These constraints
can be readily derived from the underlying model, but we find them to be some-
what less obvious. We group these constraints into surface materials/texture,
geometry, and scene layout.

Surface Material and Texture: Many artificial materials exhibit unusual re-
flectance behavior, that greatly differs from the assumed Lambertian reflectance
model. An example case is shown in Fig. 2 in the top left. While casual clothing is
oftentimes approximated as Lambertian, this does not hold for synthetic outdoor
clothing like the shown ski suit. Also, hair (Fig. 2, top right) and smooth textures
on the surface (Fig. 2, bottom row) are cases where material and illumination
information are easily confused, leading to failure cases. An approach to mitigate
these issues in an automated manner might be to use specialized detectors for
the most common cases. For example, the color gradients on the jeans in Fig. 2
on the bottom left is actually a colored gradient, and could probably as such be
filtered out.



Fig. 3. Examples for object geometries that do not permit a reliable 3-D estimation of
the direction of the incident illuminant. The reason is that these objects do not exhibit
normals in all directions, but only along a lower-dimensional manifold. In the left and
middle image, the columns and the hangar roof spread out the surface normals along a
2-D plane. In the right image, the flat building facade confines all surface normals to be
parallel. As a result, the observations are severely undersampled and can not be used
for a stand-alone estimation of the illuminant direction.

Geometry: Scene geometry can cause subtle, yet significant errors in the es-
timation of the illuminant direction. One requirement of the method is that
a sufficient variety of surface normals is observed. However, many man-made
structures exhibit surfaces that reside on a lower-dimensional manifold, and hence
can not provide a sufficient variety of surface normals. Example images are shown
in Fig. 3. On the left, the surface normals on the columns all reside on a plane
that perpendicularly intersects the columns. As a consequence, a 3-D lighting
estimator that solely relies on these normals is unable to distinguish different
elevation angles of the illuminant. An almost identical examples is shown in the
middle image for the cylindrical hangar roof. A third example, where all surface
normals are even parallel, is the building facade shown in the right image. It is
important to note, and to communicate to users of lighting-environment methods
that in such cases the scene geometry inherently limits the applicability of the
method, even if the normals on these problematic surfaces are admissible with
respect to the other required constraints.

Scene Layout: Upon closer examination, it turns out that a surprising number
of scene layouts, i. e.,, constellations of objects, cameras, and light sources,
create very challenging cases for the use of methods based on the direction of the
illumination. The canonical best case for the analysis of 2-D lighting environments
are light sources that are located between camera and object. Since the 2-D
approach is only able to distinguish the projection of the lighting environment
onto the image plane, analysis becomes in principle easier if the light sources are
located closer to the object than to the camera. A good case in terms of lighting
positioning for the 2-D estimator is shown in Fig. 4 in the top left. Three other
typical cases are shown in the remaining pictures from Fig. 4. In the top right,
the light is mainly coming from the front. This is a case where the 2-D estimator
becomes less accurate. However, the 3-D estimator can operate on images of this
type. In the bottom left, the light source is located behind the person, which is
not modelled by the methods and hence is a situation where the method can not



Fig. 4. Examples for scene geometry and lighting. Top left: with a single dominant light
source between camera and object, in a lateral position, this is a case where the 2-D
lighting estimator is expected to perform very reliably. Top right: light sources located
more in front of the object are challenging for the 2-D estimator, but can be estimated
with the 3-D lighting estimator. Bottom left: the light source is located behind the
object, which is modelled by neither of the two estimators. Bottom right: another failure
case for both estimators is the absence of a direct light source, e. g.,, in a shadow region.

be used. Similarly in the bottom right, where there is apparently no directional
light, but only ambient illumination.

Not shown in this image, but in Fig. 6, are two cases where the scene consists
of more than a single light source. This is no problem if the mixture of light
sources is identical on the compared objects or persons. However, the problem
becomes ill-posed in the case of multiple inhomogeneous light sources, which
makes the two lighting environments incomparable [22].

4 Illumination Color

A second approach to use Eqn. 1 for the detection image manipulations is to
solve for the spectral distribution of the light source e(x,ν, λ) · c(λ). Gholap and
Bora proposed to examine objects that can be assumed to follow the dichromatic
reflectance model, and to use the intersection point of so-called “dichromatic lines”
to detect image manipulations [13]: if each of the three objects is illuminated by
the same light source, the three dichromatic lines are expected to intersect in
one point.



In our work, we followed a slightly different approach. We propose to subdivide
the image into small regions, and to estimate the color of the illuminant locally
for each region [25]. In computer vision, estimating the color of the illuminant
is typically a preparatory step to white balancing (the field of research is called
“color constancy”). However, in a forensic context, we assume that the image
is manipulated if these local estimates differ too much. The color constancy
estimators with the lowest error rates are statistical, and many of these are
based on machine learning. Such estimators are not optimal from a theoretical
perspective: if a statistical estimator is applied locally to an image region, the
area may just not contain sufficiently diverse pixel information in order to allow a
low-error estimate. Second, the statistical estimators typically lack a theoretical
model for their success cases and failure cases. In that sense, an illuminant color
framework containing statistical estimators is not entirely physics-based anymore.
To mitigate these issues, we preferably work with physics-based illuminant color
estimator by Tan et al. that assumes the dichromatic reflectance model [29]. This
estimator requires surface patches that exhibit some variation in the surface
normals. However, the requirements are much milder than for the set of surface
normals that are needed for estimating an illumination environment. However,
the method additionally requires that some of the pixels exhibit partially specular
reflectance. It turns out that this requirement is a major source of error in many
practical scenarios, particularly for pixel regions in the background. However,
in our previous work, we paired the physics-based estimator with a statistical
estimator, with the goal to backup the physics-based estimator in such cases [9].

An interesting idea for the purpose of source camera identification has been
proposed by Deng et al., by assuming that repeated white balancing with the
camera’s internal white balancing algorithm is an idempotent operation [10].
This allows to find a camera-model specific white balancing algorithm for a given
input image.

4.1 Addressing the Constraints: Surface Albedo and Learned
Decision Boundaries

In our experiments, it turned out that a direct, agnostic comparison of locally
estimated illuminant colors is oftentimes a too weak decision criterion. The
estimation of an illuminant color is an underconstrained problem, and as such
must rely on constraints to be solvable. Estimations on local image patches,
as proposed for the purpose of image forensics, by tendency further increases
the error rates. We observed that particularly the object color influences the
direction of the illuminant estimate. As a consequence, we propose a method that
operates on areas where we can assume to observe roughly the same underlying
material, namely on faces [9]. The idea is to relate illuminant estimates from
similar underlying objects to be able to set up a tighter decision boundary. In
this work, the decision is learned from a rather sophisticated feature map, which
unfortunately leaves the physics-based grounds of the method. Nevertheless, this
closes the gap towards a more reliable detection method based on illuminant
color.



Fig. 5. Example face shots exhibiting small specularities. Physics-based illuminant
estimators oftentimes benefit from specular areas. Instead of estimating these regions
directly, it may be beneficial to heuristically search for objects like faces, expecting that
nose, cheeks or forehead exhibit slight specularities.

4.2 Unsolved Challenges in Color Constancy for Forensics

Although the underlying ideas for using illuminant color in image forensics have
already been presented a while ago, there are — particularly on the theoretical
side — a number of unsolved questions with respect to the realization of an
end-to-end physics-based pipeline. Thus, the purpose of this section is to provide
a brief introduction into what we belief are the major open issues that need to
be addressed.

Dependence on Specularities: Most physics-based illuminant color estimators
expect at least partially specular pixels to perform their estimation. Conversely,
if a region contains only purely diffuse pixels, it is most likely that a specularity-
based estimator will fail. However, specularity segmentation is in general similarly
hard as the color constancy problem itself. Nevertheless, it may be an option to
use prior information from another channel to constrain the domain of where
specularities are more likely to be found. For example, oftentimes exhibit faces
a slight specular spots at the tip of the nose. Example pictures are shown in
Fig. 5. In such a case, it may suffice to find faces and search within the face for
specularities instead of blindly segmenting the whole image for specularities.

Physics-based Decisions: One major missing link for a fully, end-to-end physics-
based method that exploits the illuminant color is a physically motivated, yet
reliable, metric to distinguish consistent areas from inconsistent areas. Several
results have been reported for statistical decision functions that build on top of
the illuminant color estimators [8, 9, 30]. Therefore, it might be a good approach
to search for general, ideally analytical, rules for distinguishing consistent from
inconsistent illuminations.

Scene Layout: Analogously to the analysis of illumination environments, scene
layout, and particularly local illuminants have great impact on the success of the
illuminant estimators. For example, a considerable number of indoor scenes are



Fig. 6. Examples for multiple illuminants. Indoor scenes with windows are common
multi-illuminant cases. Another case (not shown here) are pictures taken with a flash
light.

multi-illuminant scenes, with sunlight from a window, another electric light, and
maybe even additional secondary light sources, e. g.,, from electronic devices, or
interreflections from furniture or walls. Two examples for such cases are shown
in Fig. 6. Another common source for two illuminants are photographs that are
taken with flash light that also include some background illumination. Resolving
cases with multiple different, inhomogeneous illuminants can lead to very difficult
situations, since the task of comparing illumination environments is not well-
defined anymore: a difference in illuminant colors can either be due to a spliced
manipulation, or due to the fact that there are two different light sources in
the scene. It turns out that this problem is exactly analogous to multiple light
sources for estimating illuminant environments at the end of Sec. 3.2.

5 Discussion and Conclusion

We provide an overview of physics-based methods that analyze illumination envi-
ronments and illumination color for the purpose of exposing image manipulations.
Physics-based methods share the advantage that they are based on rigorous
models, but they suffer from their relatively strict assumptions on the content of
the scene. This inherently limits their applicability, particularly in an automated
batch-processing scenario.

In our review, we show that both families of physics-based methods are based
on essentially the same models for image formation, but both families focus on
different quantities in the model. For estimating illumination environments, the
surface normals of an object are required. For estimating the illuminant color,
it is required that an object exhibits a certain variation in the surface normals,
but less than for illumination environments. Additionally, for an end-to-end
physics-based model, it is required that some pixels exhibit partially specular
reflectance to estimate the illuminant color. Thus, both families of methods have
similar, yet somewhat different requirements on the object areas they operate on.

As a consequence, estimators for illumination environments have stricter
requirements on a sufficiently diverse geometric structure of the object. For



example, all normal vectors of a column reside in a plane, and hence the estimated
illuminant environment is also confined to that plane. Conversely, estimators
for the illuminant color only require a small variation of the surface normal.
However, physics-based estimators typically require at least partially specular
pixels, which are oftentimes only very sparsely contained in a scene, and may
be difficult to segment automatically. We also provide several other pointers to
ongoing challenges with both estimators.

Since both methods are based from the same underlying formulation, it
may be interesting to further explore the consequences of this joint lineage. For
example, it appears to be interesting to search for a confidence measure that
is derived from the methods’ dependence on the underlying geometry. It may
also be interesting to further, more rigorously investigate in which cases each of
the two approaches can succeed, and to quantify their overlap in applicability to
forensic examination of images.
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