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ABSTRACT

In the last decades, several interferometric phase sensitive X-ray imaging setups with highly incoherent sources
were developed. One of the clinically most promising setups is the Talbot-Lau interferometer. However, these
systems still suffer from some challenges that prevent their clinical use. One challenge is the post-patient
attenuation of the analyzer grating, that doubles the effective dose. To address this issue, new setup designs
were proposed using a second phase grating, instead of the absorbing analyzer grating. Those two phase gratings
together can create a beat pattern at the detector that can be resolved by the detector directly. In this paper
the simulation tool CXI is validated for dual phase grating setups. Using the simulation, we found an optimal
setup using existing gratings. A first feasibility study is shown with two phase gratings of 4.12 and 4.37 µm.
The computed visibility of 4.6 % in simulation is in good accordance with the experimental visibility of 4 %. The
final visibility is a trade-off between the inter-grating distance, grating-detector distance, the beat period and
the point spread function of the detector.
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1. INTRODUCTION

X-ray phase contrast imaging (PCI) can provide improved soft-tissue contrast for medical imaging tasks. There
are multiple phase sensitive setups that can provide additional information besides classical attenuation images.
The Talbot-Lau interferometer (TLI) is a promising setup for clinical use. It has only low requirements on the
coherence of the source.1 The TLI can therefore be operated with a standard clinical X-ray source. Besides
a normal detector, three gratings have to be placed within the beam line (Fig. 1a). The source grating G0 in
front of the detector splits the beam into multiple different slit sources, thereby creating a partially coherent
wave front. The phase grating G1 imprints a phase modulation onto the wave. Due to the Talbot-effect, the
grating pattern reappears at the Talbot-distances as self images in the intensity values.2 Phase shifts by objects
in the beam line cause a shift of the intensity pattern at the detector. To be able to resolve the pattern and
the shifts, the analyzer grating G2 is required. It has the same period as the self images, and by moving it in
equidistant fractions of its period, a phase stepping curve is sampled. For reconstruction of the three signals,
attenuation, differential phase and the so-called dark-field, a sine curve is fitted to the measurements for each
pixel. By comparing the fit of an object scan with the fit of a reference scan without an object, the three images
can be reconstructed (Fig. 2). The sine fit of the reference scan (r) provides one quality measure, the so-called
visibility v which can be calculated by

v =
max(r) − min(r)

max(r) + min(r)
. (1)
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Figure 1: The two setups discussed in this paper. In (a) the traditional TLI, with the source S, the optional G0

grating, the phase shifting G1 grating, and the absorbing analyzer grating G2 in front of the detector D. In (b)
the adapted TLI with a second phase grating G′

1 instead of the G2 grating. In both cases the object of interest
O will typically be placed right in front G1.

An alternative way of calculating the visibility is by the Fourier transform (indicated by the hat) of the fitted
sine function

v = 2
r̂[1]

r̂[0]
. (2)

Some challenges need to be adressed before the TLI can be used in the clinical routine. One of them is
caused by the analyzer grating. It introduces a post patient attenuation of about 50 %. Since ionizing radiation
is harmful for the patient, it is desireable to find a setup design that allows to omit G2. In standard TLI setups,
G2 is required because the self images created by G1 grating are in the range of a few micrometers, and cannot
be resolved by medical detectors directly. Miao et al. and Kagias et al. showed that it is possible to perform
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Figure 2: In the left plot the 8 phase steps of an ideal noise free reference scan with blue circles and the ideal
object scan with red circles. The solid lines are the fitted sin curves. The phase shift for this particular pixel can
be extracted by calculating ∆ϕ. The attenuation value can be reconstructed by ∆Ī. The dark-field is computed
as the ratio between the reference visibility and the object visibility as in Eqn. 1.



X-ray PCI by replacing the G2 grating with a second phase grating G′
1 (Fig. 1b).3,4 However, these experiments

were both performed with rather small grating periods.

In this paper, we take several steps towards translating the idea of two phase gratings to more realistic
clinical parameters. Specifically, we report experimental measurements and simulations on grating periods that
can be reliably produced, and on a detector with a point spread function (PSF) that is comparable to a clinical
system. We particularly investigate the impact of grating positions for dual phase grating setups to validate our
simulation tool CXI.5

2. METHODS

In a first step the numerical simulation tool CXI simulated an setup for existing gratings to be validated with
experimental data. In this experiment, we seek a setup with two Nickel phase gratings, both with a height of
8.7 µm, and periods of 4.12 µm and of 4.37 µm, respectively. The setup further consists of a micro focus tube with
a focal spot size of 9.5 µm and a detector with a pixel pitch of 50 µm. The length of the whole setup is constrained
to 1.5 m. The simulation is constrained to create a beat pattern at the detector with a period of 300 µm, and
the distance between focal spot and G′

1 is constrained to arrange of 50 and 135 cm. For the simulation a typical
transmission x-ray spectrum was used with a 40 kVp peak voltage.

To create a beat pattern the effects of the two phase gratings onto the wave can be approximated as adding
two cosine functions. The wave can be approximated by

Φ

[
cos

(
2πx

pproj1

)
+ cos

(
2πx

p′1

)]
, (3)

where pproj1 is the projected period of the first grating onto the G′
1 plane, and p′1 the period of the grating G′

1.
Adding two cosine functions results in a beat pattern with a period pb of the envelope function of the difference
of the frequencies of the two periods

pb =
1

abs
(

1

pproj
1

− 1
p′
1

) (4)

at the G′
1 plane. Important here is, due to the ambiguity of the abs-function, there are two possible pproj1

resulting in the same pb. The two pproj1 can be translated in two different inter grating distances. Depending
on the absolute position in the beam line and the resulting beat period the inter grating distance can vary.
Therefore, in the following it will be named small and large. The beat pattern afterwards gets magnified at the
detector

pdetb =
pb

dist(S −G′
1)

· dist(S −D) (5)

where dist(S−G′
1) is the distance between the source and the grating G′

1 and dist(S−D) is the distance between
the source and the detector resulting in pdetb . Since pb is calculated with the absolute value of a difference, there
are two possible positions for a grating with a fixed period to create the same beat period. Therefore, the grating
G′

1 can be placed on different positions on the Talbot carpet created by G1.

Using Eqn. 5 the necessary beat period at the G′
1 plane can be calculated to get a projected period at the

detector of 300 µm. This allows to calculate the distance between the two gratings for a fixed projected period.
Thus, only the positioning of the gratings in the beam line needs to be optimized in the simulation. The best
setup will be validated experimentally.

In the next step the previously fixed beat period created in the detector plane was varied in in a range
between 200 and 1000 µm in the simulation. A trade-off between the reduced visibility due to the PSF versus a
reduced visibility due to the higher beat period at the detector was investigated.
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Figure 3: Visibility versus different source-G′
1 distances. In (a) the visibility calculated by the initial simulation

is shown. In (b) the visibility after convolution of the simulated detector signal with the measured PSF of the
detector is shown. In both plots the blue line is the smaller distance between the two gratings, the green dashed
line the larger possible distance due to the ambiguity of the absolute value function.
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Figure 4: In (a) and (b) show two complimentary phase steps. (c) shows a visibility map over the whole grating
area, computed from a least-squares sine fit. These visibilities are somewhat lower than 4 % due to noise artifacts
in the least squares fit.

3. RESULTS

The results for the simulation showed an optimal visibility of 16 % at a position of the G′
1 grating at 0.5 m

downstream of the source. The necessary distance between the gratings was 3.8 cm. For G1 the grating with
a period of 4.12 µm was used, and the G′

1 was the 4.37 µm grating. The simulated visibility for the different
distances of the grating G′

1 to the detector are shown in the plots in Fig. 3. The left plot shows the initial results
without taking the PSF of the detector into account, while the right plot does. The blue and green lines show
the results for the smaller and larger G1-G′

1 distances, respectively due to the distance ambiguity in Eqn. 4. The
visibility difference can be explained by the different positions of the G′

1 on the Talbot-carpet caused by G1.
Generally, larger G′

1-detector distances lead to higher visibility.

This system was experimentally set up. The fringe visibility for a line plot was around 4 %. The results of
our experimental setup can be seen in Fig. 4.

The results of compromise between beat period at the detector and the detector PSF can be seen in Fig. 5.
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Figure 5: Results of the simulation for different beat periods on the y-axis and different positions of the position
of the G′

1 grating behind the focal spot on the x-axis. The simulated visibility is color coded in the same range
for each row. In the top row are the results without the PSF, while in the bottom row are the results including
the PSF into the simulation. On the left hand-side is the smaller inter-grating distance. The right hand-side
shows the larger inter-grating distance. It can be seen that with the PSF included, the best visibility can be
reached at 450 µm beat period for the smaller grating distance, and a visibility of around 5 %.

On the x-axis the absolute distance of the G′
1 grating from the source is varied, the y-axis shows the beat period

at the detector between 200 and 1000 µm. Figure 4 is a line plot created with the beat period of 300 µm. The
possible visibility is color coded, and for each row, indicating the smaller inter-grating distance on the left, and
the larger inter grating distance on the right, the same.

4. DISCUSSION AND OUTLOOK

The results show that there is an interaction between visibility, distance between G′
1 and the detector, as well as

the period of the fringes at the detector. After taking into account the point spread function (PSF) (Fig 3b) of
the specific detector, the simulated results are in good accordance to the experiments. The simulations showed
a visibility of 4.4 %, while the experimental results for a single shot were 4 %. The remaining difference can
be explained by noise, the imperfect gratings, and the uncertainty regarding the exact spectrum of the X-ray
source. At the bottom of Fig. 5 (c) and (d), at a beat pattern of 250 µm, there is one line with a noticeably
reduced visibility. This is due to the particular shape of the wave front reaching the detector. The maxima are



very broad with only small minima, which are canceled out by the PSF resulting in a reduced or almost vanished
visibility.

The highest visibility can be seen in the boundary area, in which the period of the pattern is larger due to
magnification. This indicates that the fixed beat period at the detector can be optimized regarding the visibility
with respect to the PSF. With the variation of the beat pattern at the detector a few percentage of visibility
could be gained. The main points to increase the visibility would be to use gratings specially designed for a dual
phase grating setup like Miao et al. and Kagias et al.3,4 did. It would be possible to create smaller periods,
the limiting factor here was the G2 grating with the need of a high aspect ratio. The grating periods could
be optimized for a certain spectrum, with periods to have an optimal inter-grating distance and to create an
optimal beat pattern at the detector. For the grating design it would be interesting to investigate the impact
of the duty-cycle of the phase gratings like shown by Rieger et. al .6 For the given setup the visibility could be
optimized by increasing the propagation distance behind G′

1.

In the next steps gratings and grating parameters should be simulated to increase the visibility. The gratings
used for these experiment and the simulation can be far from ideal for the dual phase grating measurements.
With the validated simulation it is possible to investigate different parameters and larger parameter spaces for
better results.
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