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Abstract—Old master drawings were mostly created step by step
in several layers using different materials. To art historians and
restorers, examination of these layers brings various insights into
the artistic work process and helps to answer questions about the
object, its attribution and its authenticity. However, these layers
typically overlap and are oftentimes difficult to differentiate with
the unaided eye. For example, a common layer combination is red
chalk under ink.

In this work, we propose an image processing pipeline that
operates on hyperspectral images to separate such layers. In partic-
ular, we propose to use two descriptors in hyperspectral historical
document analysis, namely hyper-hue and extended multi-attribute
profile (EMAP). We show that hyperspectral images enable better
layer separation than RGB images, and that spectral focus stacking is
an important preprocessing step towards that goal. Our comparative
results with other features underline the efficacy of the three
proposed improvements.

Keywords-Old Master Drawing, Layer Separation, Hyper-Hue,
EMAP, Spectral Focus Stacking

I. INTRODUCTION

Red chalk was a highly popular drawing material until the late
nineteenth century [1], [2]. In the artistic work process, it has
oftentimes been used for creating a first sketch, in order to later
overdraw it with ink. For art historians today, these sketches
provide insights into the creation process of the art work. In
particular, differences between the underlying sketch and the
drawing above can indicate changes in the direction of the work.

For separating the layers of ink and strokes of chalk on a
drawing, current state of the art consists of destructive and non-
destructive methods. Conservators and museums are oftentimes
understandably hesitant to apply destructive approaches to old
master drawings. Image analysis techniques are typically non-
destructive, for example the classification of brush strokes [3]. To
our knowledge, only few works perform layer separation of the
old drawings. One study separates brush strokes on van Gogh’s
“Self portrait with grey felt hat” via RGB image processing [4].
However, this method has to rely on a good separation of all
strokes in RGB domain.

In this work, we investigate the particular case where red chalk
is overdrawn by ink. A widely used technique to visualize struc-
tures below a layer of ink is to image via infrared reflectography
(IRR) the object in the infrared range, at wavelengths above
2000 nm. In this regime, ink becomes transparent. However,
this approach is not applicable to make red chalk visible: red
chalk consists primarily of natural red clay containing iron
oxide, and the reflectance of red chalk at wavelengths above
2000 nm is very similar to the image carrier (i.e., the paper or
parchment). As a consequence, this range of wavelengths can
not be used to visualize over-painted strata of red chalk [5], [6].
The difficulties of displaying and distinguishing the drawn strata
by conventional IRR, or with remission-spectroscopy poses a
significant challenge to recover the underlying substrate layers.
This is also shown in the comparative sequence of images

from the apocryphal Rembrandt drawings in Munich (visible
spectrum versus infrared imaging), published by Burmester and
Renger [5].

In this work, we propose to close this diagnostic gap to
visualize red chalk below ink by using hyperspectral imaging
together with a pattern recognition pipeline. There are many
works in the literature that used hyperspectral imaging for docu-
ment analysis and proved its superiority to RGB imaging [7], [8],
[9]. Our contributions are three-fold: We propose two descriptors
for using in hyperspectral historical document analysis, namely
hyper-hue and extended multi-attribute profile (EMAP), and we
address a common artifact in hyperspectral imaging called focus
shifting, and propose spectral focus stacking as its solution. We
evaluate the proposed approaches on drawings that are created
to exactly mimic the original work process.

II. HYPERSPECTRAL DESCRIPTORS FOR SKETCH LAYER

SEPARATION

A. Extended Multi-Attribute Profile (EMAP)

Attribute profiles are popular tools in remote sensing [10],
[11]. The idea is to abstract morphological operators like opening
or closing from specific shapes of structuring elements. The
building blocks of attribute profiles are attribute filters that
operate on connected components (CC) of lower or equal gray
level intensities. On each CC in the image, an attribute A (e.g.,
the area, standard deviation, or diameter of the CC) is computed
and compared to a threshold λ. If A(CCi) ≥ λ, it is preserved.
Otherwise, the i-th CC is merged with the closest neighboring
CC. Analogously to classical morphological operators, attribute
thickening (denoted as ΦAλ (f)) is the process of merging the CCs
of image f to neighboring CC with higher gray level. Attribute
thinning (denoted as γAλ (f)) is the process of merging the CCs
of image f to neighboring CC with lower gray level.

The attribute thinning profile of an image f , denoted by
Π(γAλ )(f), is generated by concatenating series of attribute
thinning with an increasing criterion size λ:

Π(γAλ )(f) = {Π(γAλ ) : Π(γAλ ) = γAλ (f), ∀λ ∈ [0, ..., n]} (1)

Analogously, attribute thickening profile of an image f , denoted
by Π(ΦAλ )(f), is generated by concatenating series of attribute
thickenings with an increasing criterion size λ:

Π(ΦAλ )(f) = {Π(ΦAλ ) : Π(ΦAλ ) = ΦAλ (f), ∀λ ∈ [0, ..., n]}
(2)

The attribute profile (AP) is generated by concatenating series
of attribute thickening and thinning profiles with an increasing
criterion size λ:

AP(f) = {
∀λ∈[λ1,...,λn]

Π(γAλ )(f) , f,
∀λ∈[λ1,...,λn]

Π(ΦAλ )(f) } (3)



In the case of λ = 0, Π(γT0 ) = Π(ΦT0 ) = f . Therefore, attribute
profile vector’s size will be 2n+ 1, i.e., n for attribute thinning,
n for attribute closing and one for the original image.

By using more than one attribute and concatenating the
generated APs, multi-attribute profiles (MAPs) are generated.
Finally, stacking the computed MAPs over each spectral channel
of a multi-/hyper-spectral image results in the extended multi-
attribute profile (EMAP). EMAPs use both spatial and spectral
signatures of a hyperspectral image (HSI) and are capable of
modeling and describing an image based on different attributes,
e.g. area, standard deviation and moment of the CCs. In this
work, we used the same attributes and threshold values as the
work by Ghamisi et al. [12].

B. Hyper-Hue

Let (0, . . . , 0)T denote the black in n dimensions, which
we call HyperBlack, and let analogously denote (1, . . . , 1)T

HyperWhite. Let furthermore a denote the achromatic hyper-
axis, which is the normal vector of the hyper-chromatic plane
P that contains the point HyperBlack. In order to mathemati-
cally define P, we derive its spanning unit vectors. In an n-
dimensional space, P is spanned by n−1 pairwise perpendicular
n-dimensional unit vectors, {u1, u2, . . . , un}T . The vectors ui
have the properties that (1) they start from the point HyperBlack,
(2) they are pairwise perpendicular, (3) they are unit vectors
and therefore their norm is 1, (4) the direction of u1 points
towards the projection of (1, . . . , 0)T on the plane P, (5) ui
are orthogonal to a.

Suppose the first n−m elements of ui are 0 and the remaining
m elements are non-zero. From these m elements, denote the
first one as a and the remaining elements as b. As it is derived
in [13], we obtain a basis for P by setting a = m−1√

m(m−1)
and

b = −1√
m(m−1)

. The projection of a hyperspectral point xj onto

P is then

cj = (xj · u1)u1 + (xj · u2)u2 + · · ·+ (xj · un)un . (4)

Liu et al. [13] defined hyper-hue h, saturation S and intensity
I of a hyperspectral point x via its projection c as

h =
c
‖c‖ , (5)

S =
‖c‖
cmax

= max{x1, . . . , xn} −min{x1, . . . , xn} , (6)

I =
1

n
(x1 + · · ·+ xn) . (7)

In this way, an extension of HSI color space is defined for
hyperspectral images.

III. PROCESSING PIPELINE

A. Sensitivity Normalization

Hyperspectral imaging setups suffer from various limitations
and artifacts which need to be corrected. The sensitivity of an
HS camera sensor along the spectrum is not uniform. Using a
white reference, the uneven sensitivity can be corrected. Fig. 1-
(a) shows the sensitivity diagram of the sensor measured from
a white reference. The inverse of this diagram is used as the
sensitivity normalization coefficient. Fig. 1 (b)-(c) show the
sensitivity-normalized version of the channel 20 (representing
407.31 nm wavelength) and channel 230 (representing 932.82 nm
wavelength), respectively.

Every imaging setup needs good lighting for an acceptable
acquisition and HS imaging is not an exception. In real world
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Figure 1: Sensitivity-normalized sample channels of the raw
hyperspectral image. (a) Normalized hyperspectral sensor sen-
sitivity vs. wavelength (nm), (b) channel 20, (c) channel 230.

(a) (b) (c)

Figure 2: Illumination-corrected and registered sample channels
of the raw hyperspectral image to the ground truth. (a) Normal-
ized uneven illumination field, (b) channel 20, (c) channel 230.

scenario, in a museum for instance, the subject may not be
evenly illuminated. To simulate this situation, we sidelit our
scene. Using a white reference, we estimate the uneven lighting,
as shown in Fig. 2-(a). Fig. 2 (b)-(c) show the illumination-
corrected version of the Fig. 1 (b)-(c), respectively.

B. Focus Stacking

Common HS cameras suffer from focus shifting, which is a
well-known artifact in the field [14]. It leads to the issue that
not all of the channels are simultaneously in focus when making
a multispectral acquisition. Fig. 3 shows this behavior for two
hyperspectral images, namely H1 and H2. For acquiring H1, the
lens is focused with the blue range aimed to be in focus. H2, on
the other hand, is captured by having the red spectrum in focus.
Fig. 3 (a) shows channel 41, representing 458.82 nm wavelength,
of H1. Fig. 3 (b) shows the same channel of H2. Especially on
fine edges, we can observe that (a) is sharper and more in focus.
Similarly, Fig. 3 (c) and (d) show the channel 200, representing
the 854.97 nm wavelength, of H1 and H2, respectively. This time
the channel corresponding to H2 is sharper than H1.

One contribution of this work lies in producing one hyperspec-
tral image with all channels in focus via spectral focus stacking.
To this end, we acquire two images with two different focus
points, one in the blue spectrum and one in the red spectrum. The
final all-in-focus image is generated from the in-focus channels
of the two input images. In our work, we generate our final all-
in-focus image by using the first 75 channels from H1 and the
remaining 183 channels from H2. We quantitatively compared
our all-in-focus HSI with H1 and H2.



(a) (b) (c) (d)

Figure 3: H1 which is focused on the blue spectrum vs. H2

which is focused on the red spectrum. (a) H1 channel 41
(457.82 nm), (b) H2 channel 41 (457.82 nm), (c) H1 channel
200 (854.97 nm), (d) H2 channel 200 (854.97 nm).

C. Classification

We assume that it is feasible to obtain a limited number of
labeled pixels by a specialist, for example an art historian. This
allows to use supervised learning for the layer separation. We
consider the three classes red chalk, diluted red chalk and black
ink. Classification is performed using a random forest (RF), with
10 trees. The number of variables for training the trees and
bagging is set to the square root of the number of features [15].
We used 100 random samples per class for training and the
rest for testing. We repeated this process 25 times and reported
the average classification performance metrics and their standard
deviation (SD). In our dataset, the number of pixels for these
classes is 10791, 23528 and 85000, respectively. For training,
we selected 100 pixels from each class, which corresponds to
0.9%, 0.4% and 0.1% of each class, respectively.

IV. EVALUATION

A. Dataset

1) Phantom Data: We created a set of sketches with multiple
layers of graphite, chalk, and different inks of the same chemical
composition that were commonly used in old master drawings.
After each layer was drawn, the picture was scanned with a
book scanner (Zeutschel OS 12000, in RGB mode). This step-
by-step documentation of the controlled creation process allows
to compute ground truth drawing layers, by subtracting two
subsequent scanned images. A sample sketch from this data is
shown in Figure 4.

2) Hyperspectral Imaging: We use a Specim PFD-CL-65-
V10E hyperspectral camera equipped with a CMOS sensor,
capable of capturing the spectrum between 400 nm to 1000 nm.
We use a lens with 16 mm focal length. The distance between the
subject and the camera is 68 cm. The document is illuminated
with a 500 W tungsten lamp.

3) Simulated RGB: Historic documents are highly sensitive to
light exposure. Thus, it is important to compare different imaging
modalities at identical dose levels. To achieve this, we synthesize
an RGB image from the HSI image by channel averaging, which
ensures that both images have the same exposure. The blue,
green, and red colors in RGB domain corresponds to wavelengths
between 415 nm and 495 nm (HSI channels 24 to 56), 495 nm
to 570 nm (HSI channels 57 to 87) and 620 nm to 750 nm (HSI
channels 108 to 156), respectively. We generated the red, green
and blue channels by taking the average of HSI channels 108-
156, 57-87 and 24-56, respectively. Figure 5 shows the simulated
RGBs from the HSIs, before and after pre-processing.

(a) (b) (c)

Figure 4: Sample layers from the data of the creation process as
basis of evaluation: (a) Step 1: first graphite sketch. (b) Step 2:
underdrawings with red chalk. (c) Steps 3 and 4: drawing with
pen and iron gall ink plus final wash with two dilutions of ink in
“two bowl technique”, as described by Armenini [16][pp.54-55].
and Meder [17][pp.54-55]. Delineation after: Stefano della Bella,
“Mother with two children”, Florence, Galleria degli Uffici,
Gabinetto Disegni e stampe, Inv.-Nr. 5937S.

(a) (b) (c)

Figure 5: Simulated RGB image from the hyperspectral image.
(a) RGB image generated from the raw HSI, (b) RGB image
generated from the sensitivity-normalized HSI in Fig. 1, (c) RGB
image generated from illumination-corrected HSI in Fig. 2.

B. Evaluation Protocol

1) Registration of HSI to the ground truth: Our ground truth,
generated from Fig. 4, is acquired by a board scanner. The HSI
images are acquired via a line scanner hyperspectral camera.
Different modalities, resolutions, aspect ratios and the non-flat
surface of the paper make the images from these modalities
geometrically different. In order to compare the HSI analysis
output, hyperspectral images need to be registered to the board
scanner image. We use residual complexity similarity measure
(RC) [18] to register the HSI to the RGB image acquired by
the board scanner, which showed good results in a previous
study [19].

2) Metrics: To evaluate the classification performances, we
used overall accuracy (OA), average accuracy (AA) and Kappa
coefficient metrics. OA is the number of correctly classified
instances divided by the number of all samples, while AA is the
mean class-based accuracies. The Kappa statistic is a measure
of how closely the classified samples matches the ground truth.
By measuring the expected accuracy, it results in a statistic
expressing the accuracy of a random classifier.

C. Results

1) Impact of Spectral Focus Stacking: In order to study the
effect of spectral focus stacking, we conducted two sets of



Table I: Spectral focus stacking results.

Feature AA% (±SD) OA% (±SD) Kappa (±SD)
Simulated RGB image from HSI

H1 70.63 (±1.41) 60.82 (±2.51) 0.3515 (±0.0227)
H2 72.32 (±1.15) 63.62 (±3.09) 0.3777 (±0.0313)
Focus Stacking 73.72 (±1.10) 64.96 (±2.40) 0.3980 (±0.0257)

Illumination-corrected HSI
H1 74.76 (±0.94) 64.67 (±1.45) 0.3998 (±0.0169)
H2 76.12 (±0.96) 66.34 (±1.42) 0.4186 (±0.0165)
Focus Stacking 76.57 (±0.94) 67.21 (±3.56) 0.4304 (±0.0366)

experiments on simulated RGB images and HS images. In the
first experiment, we generated RGB images from H1, H2 and
all-in-focus HSI. In the second experiment, we carried out the
classification on the illumination-corrected H1, H2 and all-in-
focus HSI. The results for these two experiments are presented
in Table I. It can be seen that in both scenarios, spectral focus
stacking yields better AA, OA and Kappa performance.

2) Layer Separation Performance of the Proposed Features:
As spectral focus stacking results in better performance, the
remaining computations are performed over all-in-focus images.
To study the impact of illumination correction, hyper-hue, and
EMAP, we generated the following features.

• SimRGB: Simulated RGB image, generated from the
illumination-uncorrected all-in-focus HSI,
• SimRGB-IC: Simulated RGB image, generated from the

illumination-corrected HSI,
• SimRGB-IC-SI: SimRGB-IC, saturation (S in Eq. 6) and

intensity (I in Eq. 7) concatenated together,
• SimRGB-IC-EMAP: EMAP computed on SimRGB-IC. We

used area as the only EMAP attribute with 20 thresholds λ,
selected by following Ghamisi et al. [12],
• HSI: Illumination-uncorrected all-in-focus HSI,
• HSI-IC: Illumination-corrected all-in-focus HSI,
• HSI-DR: HSI-IC projected to its PCA components such that

99.9% of its variance are preserved,
• HSI-h: Hyper-hue computed from the illumination-corrected

HSI,
• HSIhSI: HSI-IC, hyper-hue, saturation (S) and intensity (I)

concatenated together,
• HSIhSI-DR: Dimensionality reduced HSIhSI via PCA so that

99.9% of its variance is preserved.
• HSI-EMAP: EMAP computed on dimensionality reduced HSI-

IC. EMAP’s parameters are chosen analogously to SimRGB-
IC-EMAP,
• HSIhSI-EMAP: EMAP computed on dimensionality re-

duced HSIhSI. EMAP parameters are chosen analogously to
SimRGB-IC-EMAP.

Quantitative results are shown in Tab. II. Illumination correc-
tion always improves the results, both for SimRGB vs. SimRGB-
IC and for HSI vs. HSI-IC. Furthermore, the comparing HSI-IC
with SimRGB-IC shows the advantage of hyperspectral images
over RGB. The PCA in HSI-DR, further improves the HSI
performance. However, in hyperspectral remote sensing, it has
been shown that dimensionality reduction alone is outperformed
by problem-specific descriptors. We observe a similar behavior
here, as hyper-hue computed over HSI (HSI-h) results in a big
jump in performance. Furthermore, the standard deviation of
HSI-h is smallest among all features, which indicates a high
stability. Neither combining hyper-hue, saturation and intensity
on the HSI image (HSI-hSI), nor an additional dimensionality
reduction (HSI-hSI-DR) exceed the performance of hyper-hue
alone. HSI-EMAP results in a similar performance as HSI-h.

Table II: Performances of the features.

Feature AA% (±SD) OA% (±SD) Kappa (±SD)
SimRGB 71.83 (±0.79) 62.05 (±1.90) 0.3632 (±0.0178)
SimRGB-IC 73.72 (±1.10) 64.96 (±2.40) 0.3980 (±0.0257)
SimRGB-IC-SI 74.29 (±0.61) 66.08 (±2.57) 0.4119 (±0.0261)
SimRGB-IC-EMAP 74.63 (±0.77) 67.25 (±1.84) 0.4251 (±0.0170)
HSI 75.43 (±1.05) 66.94 (±2.11) 0.4196 (±0.0217)
HSI-IC 76.57 (±0.94) 67.21 (±3.56) 0.4304 (±0.0366)
HSI-DR 80.35 (±0.66) 72.58 (±1.53) 0.5019 (±0.0183)
HSI-h 83.00 (±0.47) 77.39 (±1.28) 0.5731 (±0.0161)
HSIhSI 82.86 (±0.52) 77.16 (±1.53) 0.5701 (±0.0213)
HSIhSI-DR 79.58 (±0.86) 71.00 (±2.41) 0.4817 (±0.0273)
HSI-EMAP 82.61 (±1.11) 77.35 (±2.53) 0.5719 (±0.0350)
HSIhSI-EMAP 83.08 (±0.89) 77.70 (±1.18) 0.5766 (±0.0191)

(a) (b) (c)

(d) (e)

Figure 6: Label maps. (a) Ground truth, (b) SimRGB, (c) HSI-h,
(d) HSI-EMAP, (e) HSIhSI-EMAP.

Finally, HSIhSI-EMAP best separates the layers.
Qualitative results are shown in Fig. 6. Fig. 6 (a) represents

the ground truth (GT), where red denotes red chalk, green
denotes red chalk overlaid by black ink, and blue color denotes
black ink. Black denotes the background and is ignored during
classification. As it can be observed from this image, SimRGB
shows many misclassifications, which is highly improved by
HSI-h, HSI-EMAP and HSIhSI-EMAP.

V. CONCLUSION AND DISCUSSION

In this work, we proposed and evaluated a hyperspectral imag-
ing pipeline for decomposing the layers of old Master drawings.
Our particular focus was on distinguishing the commonly used
red chalk and black ink. We propose two descriptors to the field
of hyperspectral historical document analysis, namely hyper-
hue and extended multi-attribute profile. We also address focus
shifting, an artifact in hyperspectral imaging, by focus stacking.

Our comparative results confirm that hyperspectral images are,
at identical resolution and SNR, more informative than RGB
images and result in better layer separation performance. EMAP
and hyper-hue both outperform the raw hyperspectral features,
and focus stacking of hyperspectral images positively impacts
the layer separation.
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