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Towards Forensic Exploitation of 3-D Lighting Environments
in Practice

Julian Seuffert1, Marc Stamminger2, Christian Riess3

Abstract: The goal of image forensics is to determine authenticity and origin of a digital image
or video without an embedded security scheme. Among the existing methods, the probably most
well-known physics-based approach is to validate the distribution of incident light on objects of
interest. Inconsistent lighting environments are considered as an indication of image splicing. However,
one drawback of this approach is that it is quite challenging to use it in practice.

In this work, we propose several practical improvements to this approach. First, we propose a new
way of comparing lighting environments. Second, we present a factorization of the overall error into
its individual contributions, which shows that the biggest error source are incorrect geometric fits.
Third, we propose a confidence score that is trained from the results of an actual implementation.
The confidence score allows to define an implementation- and problem-specific threshold for the
consistency of two lighting environments.
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1 Introduction

Visual media plays an important role in our everyday communication. This is partly due to
the widespread availability of consumer cameras, and partly due to the ease of distributing
visual media, for example over social media. These new possibilities allow to document
events in an unprecedented density. However, when a picture or video is taken as evidence5

that an event actually happened, it is also important to be able to verify its authenticity.
Blind image forensics aims to provide technical tools to authenticate visual media without
the help of an embedded security scheme. In the recent years, several books and overview
papers have been published on image forensics, for example [RTD11, SM13, Fa16].

This work is about so-called physics-based methods in image forensics. The guiding10

idea of these methods is to validate the physics in the depicted scene for its consistency,
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like the direction and color of the incident light [JF07a, RA10], consistency of specular
highlights [JF07b], reflections [OF12], or shadows [Zh09, KOF14]. However, current
physics-based methods have the disadvantages that their applicability depends on the visual
content in the scene, and that they typically require user interaction.15

Several works perform the analysis to human faces only [KF10, Pe16, Pe17]. Faces commonly
occur in pictures and videos, and it may be a forensic goal to validate the composition of
people in a scene. Operating on faces has the advantage that there exists software to estimate
a 3-D model of the face, which then allows to compute the 3-D distribution of incident light.

Nevertheless, using 3-D lighting forensics in practice is still challenging, and oftentimes20

requires expert knowledge. The goal of this paper is to narrow the gap from the base
algorithm in literature towards its use in practice. Specifically, we present an systematic
analysis of the algorithmic steps, and we propose a practical, trainable confidence score that
adapts to the specific implementation of the algorithm at hand. Using the confidence score, a
practitioner not only obtains an assessment whether two lighting environments are identical,25

but also a probability with which this assessment is true. In detail, the contributions of the
paper consist of

• A study of the spherical harmonics model for lighting representation and comparison
with an approach that avoids extrapolation over surface normals without observations.

• A factorization of the fitting error into its individual physical contributions, to better30

understand its impact on the estimation.

• A proposal for a confidence score that describes the reliability of the individual
pipeline implementation.

The paper is organized as follows. We present the underlying model and the computation
of lighting environments in Sec. 2. Approaches for comparing lighting environment are35

presented in Sec. 3, the error factorization in Sec. 4, and the proposed confidence score in
Sec. 5. Finally, our experiments are presented in Sec. 6.

2 3-D Lighting Estimation

Johnson, Kee, and Farid [JF07a, KF10] proposed to estimate the distribution of incident
light on objects of interest in a scene. Such a distribution is called a lighting environment.40

Assuming a single, infinitely distant light source (such as the sun in outdoor scenes) and no
inter-reflections, then all scene objects must exhibit identical lighting environments. With
minor modifications, these assumptions can be used to obtain a forensic test on a given
input image, by approximating the rays of the sun or another distant light source as parallel.

Johnson and Farid proposed to compute 2-D lighting environments from monochromatic45

object contours. Kee and Farid proposed later to estimate more reliable 3-D lighting
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environments from the shape of human faces [KF10], using existing software for fitting a
3-D face shape to a 2-D image.

Kee and Farid model a lighting environment with the help of surface normals and their
associated pixel intensities [KF10]:

e(®n) =
∫
Ω

l(®v)r(®v, ®n)dΩ . (1)

Here, e(®n) is the observed intensity of a pixel with surface normal ®n. Ω is the hemisphere
of all light directions that fall on a patch with surface normal ®n, l(®v) denotes light that50

falls onto that pixel coming from direction ®v, and r(®v, ®n) denotes the reflectance function
for that patch. The model becomes particularly convenient when r(®v, ®n) is assumed to be
Lambertian (purely diffuse), such that the reflected intensity is the cosine between ®v and ®n.

Under the assumption of Lambertian reflectance, the observed intensity e(®n) can be
represented by second order spherical harmonics, i.e.,

e(®n) =
2∑

n=0

n∑
m=−n

ln,mYn,m(®n) , (2)

where Yn,m denotes the m-th spherical harmonics basis function of order n, and ln,m is
a weighting coefficient. These coefficients can be directly estimated from the observed
intensities. Let i(®xi) denote the intensity of the i-th pixel ®xi from a face, and ®n(®xi) the surface
normal of the face at position ®xi . Then, Kee and Farid propose to estimate the lighting
coefficients ®l from the linear equation

M · ®l = ®b , (3)

where ®b = (i(®x1), . . . , i(®xN ))T are the observed intensities and

M =
©«
πY0,0(®n(®x1)) . . . π

4 Y2,2(®n(®x1))
...

. . .
...

πY0,0(®n(®xN )) . . . π
4 Y2,2(®n(®xN ))

ª®®®¬ . (4)

Equation 3 is solved for ®l via least squares, i.e.,

®l = (MTM)−1MT®b . (5)

The mathematical framework by Kee and Farid is elegant, but several special cases are not
explicitly discussed. For example, Peng et al. later proposed to automate this pipeline [Pe16],55

and to add a more complex model for surface reflectance [Pe17].
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Fig. 1: Computed landmarks (a) and fitted 3-D model (b) for obtaining per pixel a 3-D surface
normal. Lighting environments can be computed as spherical harmonics [JF07a, KF10] (c),
intensity binned spheres (d), or hybrid intensity binned spheres (e).

3 Comparison of Lighting Environments

Spherical harmonics are the standard representation for lighting environments [JF07a, KF10].
Two lighting environments are compared by expanding the spherical harmonics coefficients
®l of each object of interest to an intensity profile. The correlation between two such intensity60

profiles is then used to quantify their similarity.

The suitability of spherical harmonics for forensic lighting estimation has to our knowledge
not been investigated. We find this surprising, as spherical harmonics consist of low
frequencies averaged over potentially unevenly distributed or missing observations, which
might lead to wrong results: for example, persons with dense head hair will contribute65

almost no surface normals pointing upwards. Nevertheless, the spherical harmonics model
represents and weighs all angular directions of the hemisphere pointing towards the camera
equally. Thus, it is not possible to distinguish the impact of the actual observations on
similarity ρ from artifacts from extrapolation of lighting environments. An example spherical
harmonics model is shown in Fig. 1c. To compare two spherical harmonics representations,70

we compute their correlation directly on their SH coefficients as proposed earlier [JF07a].

As an alternative, we propose to consider what we call a “intensity binning sphere” (IBS),
where intensities are binned by their surface normals, in steps of 5◦. A concrete example
IBS is shown in Fig. 1d. In contrast to Fig. 1c, the model does for example not cover surface
normals that point upwards, as we do not observe any skin area with that orientation. This75

idea can be further improved by combining both approaches into a representation that we
call “hybrid IBS” (HIBS), shown in Fig. 1e. Here, the spherical harmonics model is cropped
to angular bins with a width of 5◦ that are actually filled with observations. Two IBS or
HIBS representations are compared by computing the correlation over the intersection of
non-empty bins of both representations.80
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(a) diff. & spec. (b) purely diffuse (c) global lighting (d) local lighting

Fig. 2: Example renderings from the synthetic dataset. From left to right: diffuse and specular,
purely diffuse, purely diffuse with global lighting, purely diffuse with local lighting.

4 Error Factorization

Errors of the individual methods accumulate in the processing chain. To optimize the
algorithm, it is important to understand the relative contribution of each factor to the overall
error. Based on the physical model in Eqn. 1, we investigate three potential sources of
error. First, the face fit might yield slightly incorrect surface normals. Second, the required85

reflectance model might be more complex than the assumed pure Lambertian model. Third,
self-shadows due to occlusions could have an impact on real images.

To understand the impact of these three factors, we created a synthetic face dataset consisting
of 12 subjects using MakeHuman and Blender. In MakeHuman, subjects are created from a
parameters like age or gender. The surface normals from the synthetic face model can be90

directly taken as ground truth to evaluate the estimation errors in the geometry.

To obtain data for the other two hypotheses, we re-rendered the data with the default amount
of specular reflections and the computation of self-shadows. Example faces are shown
in Fig. 2. Local lighting denotes illumination of surface patches without self-shadowing.
Global lighting includes self-shadowing. The limited photo realism in this rendered data is a95

minor concern, as only relative performance differences between the variants are considered.
The dataset and the code for generating the data is publicly available on our website4.

5 Confidence Score

We seek to transform the correlations from Sec. 3 into a confidence score that indicates
whether the underlying lighting environments might be identical. Computation of the100

confidence score depends on the concrete implementation of the face fitting and lighting
environment computation. Thus, we propose to learn it from training data, i.e., from face
images that are acquired under known lighting. In our experiments, we further assume a
single dominant light source, such that we can determine the angular resolution of the lighting
environment estimation. Let us denote identical lighting environments as “consistent”, and105

different lighting environments as “inconsistent”. By extension, we consider faces under

4 https://faui1-files.cs.fau.de/public/mmsec/datasets/sfd
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Fig. 3: Angle θ between the dominant light sources on two faces.

identical lighting as consistent, and faces under different lighting as inconsistent. If only a
single light source illuminates a face, let θ be the angular difference between the dominant
light sources of both faces. Then, as shown in Fig. 3, θ , 0 indicates inconsistent lighting
environments (positive class), and θ = 0 consistent lighting environments (negative class).110

We consider the confidence score as a function of the type I and type II error on the respective
dataset. The type I error α denotes the relative number of samples being incorrectly classified
as inconsistent. The type II error β denotes the relative number of samples being incorrectly
classified as consistent. κp = 1 − α and κn = 1 − β denote the confidence score of labelling
the lighting as “inconsistent” and “consistent”, respectively.115

One possible decision template is to choose the class with the highest confidence score κn or
κp . Hence, such a decision exhibits a confidence score function κnp(ρ) = max(κn(ρ), κp(ρ))
whereas κn = 1 − κp .

6 Experiments

We first describe the used datasets and experimental protocol in Sec. 6.1 and Sec. 6.2, and120

then present the experimental results in Sec. 6.3.

6.1 Datasets

We model 12 synthetic subjects, consisting of two males and two females of African, Asian
and Caucasian descent and varying age using MakeHuman v1.1.1. Rendering is performed
with Blender v2.79. We refer to this dataset as the Synthetic Face Dataset (SFD). Each125

subject is illuminated by nine distant point lights with a pitch angle of φ = 23◦ and with a
yaw angle of ψ ∈ {−80◦,−60◦, . . . ,+80◦}. Two light sources exhibit an angular distance
of θ ∈ ΘSFD = {0◦, 18◦, . . . , 130◦}. This parametrization allows for a total of 36 possible
light source combinations. All combinations of two active lights were rendered with four
distinct illumination properties, denoted as “global-spec”, “global-lamb”, “local-spec”,130

and “local-lamb”. “global” denotes global illumination via raytracing and includes cast
self-shadows. “local” denotes local lighting, i.e., shading is only determined by the surface
orientation, and lighting by the angle between incident light ®v and surface normal ®n.
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(a) Synthetic Face Dataset (ground truth geometry)
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(b) Extended Yale Face Dataset B

Fig. 4: Detection of inconsistent lighting environments depending on the angular difference
between light sources.

“spec” denotes Lambertian and specular reflectance. “lamb” denotes Lambertian reflectance.
Additionally, we store the ground truth facial geometry. Only skin pixels are used for further135

processing, other pixels were ignored. In total, the dataset consists of 432 images. Sample
images are shown in Fig. 2 and Fig. 3.

Our experiments on real data are performed on the “Extended Yale Face Database
B” [GBK01], consisting of 28 subjects, each illuminated by a light from one out of
64 positions. We use all 1792 frontal view, single light source images. There are in total140

2071 possible combinations of light sources. We round θ up to a multiple of 20◦. The
resulting set of angular distances between lights is ΘYALE = {0◦, 20◦, 40◦, . . . , 180◦}.

6.2 Evaluation Protocol

Evaluation is performed on pairs of randomly chosen (different) subjects, with controlled
angular differences between the subjects’ lighting environments. Paired lighting environ-145

ments from the SFD dataset are always rendered with identical options, i.e., “global-spec”,
“global-lamb”, “local-spec”, or “local-lamb”. Pairs of lighting environments are grouped
by their angular distances θ. Each experiment uses N pairs with θ = 0◦ and N pairs with
θ = i × 20◦ for i ∈ {1, . . . , 8}. For the Extended Yale Face Database B, we use Nyale = 1700
and for SFD we chose NSFD = 128. Performances are typically given as area under the curve150

(AUC). The samples of consistent lighting are identical across experiments. To compute the
confidence scores, we use 8×N different samples of consistent lighting. We set Nyale = 1500
and NSFD = 64 due to keep the number of consistent and inconsistent samples balanced.
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Fig. 5: Impact of the reflectance model: local vs. global lighting to model shadows, inclusion
or omission of specularities, with estimated (“EOS”) or ground truth (“GT”) geometry.

6.3 Results

The automated lighting estimation pipeline is set up as follows. Faces are detected using the155

OpenCV v3.1 library. For each face in the scene, 68 facial landmarks are determined using
Dlib [Ki09]. Then, the EOS framework [Hu16] is used to fit the 3-D model. Surface normals
and observed intensities are jointly used to estimate the lighting environment (Eqn. 5).

6.3.1 Comparison of Lighting Environment Representations

Figure 4 shows results for comparing the classic spherical harmonics representation160

(denoted as “SPHEHA”) with the intensity binning sphere IBS and the combination of both,
HIBS. SPHEHA and HIBS are evaluated once without any regularization (denoted by the
regularization weight λ = 0) and once with a Tikhonov regularizer [JF07a]. In preliminary
experiments, we determined that a regularization weight of λ = 9 worked reasonably well
on a range of scenarios, and we continue to use that value.165

The results in Fig. 4a are computed on the synthetic dataset with available ground truth
geometry. The results in Fig. 4b are computed on the Extended Yale Face Database B.
Figure 4a is a best case for all estimators. The AUC is consistently high, and almost perfect
for all processing variants at angular differences of about 60◦. Figure 4b on real data is
the most challenging scenario, which can be seen from the fact that even for lighting170

environments with an angular distance of 80◦, the AUC is still in the range of 0.7.

On SFD, regularized spherical harmonics and HIBS perform very well. On the real data, IBS
performs best together with regularized spherical harmonics, but the differences between the
approaches are overall less pronounced. The AUC of the spherical harmonics representation
is slightly higher, but IBS and HIBS yield quite good results for the confidence score175

computation below, which is why we believe that both approaches are worth to consider.
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E{κnp} IBS SPHEHA λ = 0 SPHEHA λ = 9 HIBS λ = 0 HIBS λ = 9
SFD 0.926 0.898 0.954 0.974 0.948

ExtYaleB 0.696 0.622 0.687 0.698 0.670

Tab. 1: Expected decision confidence score

6.3.2 Error Factorization

Fig. 5 shows a comparison between local and global lighting, diffuse and diffuse+specular
reflectance, and estimated geometry (“EOS”) versus ground truth geometry (“GT”) on the
synthetic dataset. The plots consist of two clusters. Using ground truth geometry outperforms180

all other variants by a large margin. At the same time, the differences between all other
variants are minor. Figure 5 shows that accuracy of surface normals has by far the biggest
impact on the estimation error, and that limitations in the computational model are of
secondary concern.

6.3.3 Confidence Score185

Figure 6 shows the confidence scores on the SFD dataset with known geometry and on the
Yale dataset. Left, confidence scores for consistent lighting are shown. Right, confidences for
inconsistent lighting are shown. On the SFD dataset, HIBS exhibits the steepest transition
between consistent and inconsistent lighting. On the Yale dataset, confidences are mostly
lower. The expected confidence score E{κnp} incorporates both the confidence value κnp(ρ)
and the correlation value density p(ρ),

E{κnp} =
1.0∑

ρ=−1.0
p(ρ) · κnp(ρ) . (6)

From a user perspective, higher values E{κnp} can suggest a more reliable decision. The
expectation values in Tab. 1 show that HIBS with λ = 0 performs best on both datasets.

7 Conclusions

We present three components that support the use of 3-D lighting environments for physics-
based detection of image manipulations. First, we propose to include for the similarity190

computation of lighting environments only angular ranges that are backed up by actual
observations (as opposed to extrapolated intensities). Second, we present a method to
factorize and analyze the error contributions of the face fitting and correlation computation.
It turns out that the impact of violations to the physical model due to specularities and
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-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

co
n
fi
d
en

ce
 κ

p

correlation ρ

IBS
SPHEHA; λ=0.0
SPHEHA; λ=9.0

HIBS; λ=0.0
HIBS; λ=9.0

(d) κp for inconsistent lighting on ExtYaleB

Fig. 6: Confidences with known geometry on synthetic data (SFD) and on real-world data
(Extended Yale Face Dataset B).

self-shadows is minor compared to geometric fitting errors. This indicates that a high-quality195

face fit has by far the biggest impact on the overall accuracy. Third, for practical use,
we propose a lighting environment confidence score that is learned from the actual data,
specifically for the available implementation of the processing pipeline.
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