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Abstract—In hyperspectral remote sensing, feature data can
potentially become very high dimensional. At the same time, man-
ual labeling of that data is an expensive task. As a consequence
of these two factors, one of the core challenges is to perform
multi-class classification using only relatively few training data
points.

In this work, we investigate the classification performance
with limited training data. First, we revisit the optimization
of the internal parameters of a classifier in the context of
limited training data. Second, we report an interesting alternative
to parameter optimization: classification performance can also
be considerably increased by adding synthetic GMM data to
the feature space while using a classifier with unoptimized
parameters. Third, we show that using variational expectation
maximization, we can achieve a much faster convergence in fitting
the GMM on the data.

In our experiments, we show that addition of synthetic samples
leads to comparable, and in some cases even higher classification
performance than for a properly tuned classifier on limited
training data. One advantage of the proposed framework is
that the reported performance improvements are achieved by
a quite simple model. Another advantage is that this approach
is computationally much more efficient than classifier parameter
optimization and conventional expectation maximization.

Index Terms—HSRS image classification, limited training data,
classifier parameter tuning, synthetic data, variational EM

I. INTRODUCTION

REMOTE sensing (RS) is of high importance for several
application fields, including environmental monitoring,

urban planning, ecosystem-oriented natural resources manage-
ment, urban change detection and agricultural region monitor-
ing [1].

The history of spectral RS sensors can be tracked back
to the 1960s when Television Infrared Observation Satellite
(TIROS-1) was launched with the mission of observing large-
scale weather patterns from space [2]. Due to the low spatial
resolution of sensors at that time, the recorded images could
only be processed based on spectral information. Today’s
hyperspectral remote sensing (HSRS) sensors record hyper-
spectral images that also exhibit a high spatial resolution,
which leads to much more informative data than before.

The majority of the monitoring and detection applications
counted above require the construction of a label map of
remotely sensed images in which individual pixels are marked
as members of specific classes like water, asphalt, or grass.
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Automated generation of these label maps is done via classi-
fication.

Classification algorithms on high-resolution RS data ex-
ploits both the spectral and spatial properties of pixels [3]. It
was shown in the literature that jointly exploiting spatial and
spectral information considerably enhances the classification
performance. Fauvel et al. [4] provide a thorough review
on recent advances in the spectral-spatial analysis of HSRS
images. To this end, morphological profiles (MP) are one
of the most popular and powerful approaches to compute
such spectral-spatial pixel descriptions. Indeed, they have been
studied extensively in the last decade, and their effectiveness
has been validated repeatedly [5], [6], [7]. Morphological
profiles are particularly suitable for representing the multi-
scale variations of image structures, but they are limited by
the shape of the structuring elements. To avoid this limitation,
several follow-up works lead to the extended multi-attribute
profiles (EMAP) [8], [9]. EMAP allows to employ arbitrary
region descriptors like shape, color, or texture. In addition,
EMAP can be implemented efficiently, for example via max-
and min-trees [10] or alpha trees [11].

However, a notorious limitation in RS image classification is
the availability of only a limited number of labeled pixels for
classifier training, because manual labeling is expensive and
time consuming. However, powerful descriptors like EMAP
often produce high dimensional features. These two factors
together lead to the Hughes phenomenon [12], and make clas-
sifier training challenging. Researchers have put considerable
effort into developing algorithms to address this challenge,
which we categorize into three groups: 1) Development of
new or reformulation of existing classifiers to improve perfor-
mance with limited training data, 2) Dimensionality reduction
of the feature vectors, 3) Increase of the feature pool by
synthesized feature vectors. There exist several recent works
on generative adversarial networks (GANs) for synthetic data
generation [13], [14]. However, GANs themselves require
significant amounts of data, which in conjunction with the
high dimensionality of HS data prevents their use if training
data is severely limited.

To address limited training data, Hoffbeck, Tadjudin and
Landgrebe proposed Gaussian maximum likelihood for high-
dimensional features [15], [16]. In particular, they proposed
an estimator for the covariance matrices that requires consid-
erably less labeled samples for generating a well-performing
Gaussian maximum likelihood classifier. Similar in spirit, but
on the SVM classifier, Chi et al. proposed a modification to the
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SVM classifier that is more robust to limited training data [17].
Also, Bruzzone et al. [18] proposed semi-supervised classifi-
cation by introducing transductive and inductive functions as
a controlling unit on the outputs of SVM classifier which are
the candidates to be used as semi-labeled training data. Semi-
supervised classification has also been proposed by Jackson et
al. and Vatsavai et al. as a remedy to limited training data [19],
[20]. Their main idea is to exploit classifier decisions on
unlabeled data as semi-labeled data. The classifier is re-trained
with that data to increase its performance. To minimize the
impact of wrongly classified samples, semi-labeled data is
weighted using a maximum likelihood (ML) filter. Recently,
Xia et al. proposed a novel ensemble approach called rotation-
based SVM (RoSVM) [21], using random feature selection
to diversify the classifier. Compared to standard SVM, this
approach performs better on limited training data, but it is
computationally expensive. Li et al. proposed a classification
framework based on integrating multiple linear and non-linear
features, including EMAP [22], into a more effective classifier.

Another family of algorithms to address HS limited training
data uses dimensionality reduction (DR). Reducing the number
of spectral channels can effectively cure the Hughes phe-
nomenon. Principle component analysis (PCA) and indepen-
dent component analysis (ICA) are two of the most commonly
used DR algorithms in the literature. In a recent work by
Kang et al., PCA is used to reduce the dimensionality of edge-
preserving filters prior to classification [23]. They showed that
the combination of edge-preserving filters and PCA results
in a powerful feature vector. Sofolahan et al. introduced the
summed component analysis, which exploits PCA and princi-
ple feature analysis (PFA) for dimensionality reduction [24].
A benefit of PFA over PCA and ICA is that PFA selects
a subset of features, and thus its output can be physically
further interpreted. However, PFA also causes a loss of infor-
mation as it simply disregards certain features and dimensions.
In contrast to the unsupervised DR techniques mentioned
above, there exist also supervised dimensionality reduction
algorithms, which are guided by the label information. To this
end, non-parametric weighted feature extraction (NWFE) [25],
discriminant analysis feature extraction (DAFE) [26] and deci-
sion boundary feature extraction (DBFE) [27] are probably the
most popular reduction algorithms, which performed strongly
in a comparison by Castaings et al. [28]. The common idea
behind these algorithms is to map the data to another space,
to minimize the within-class distance while maximizing the
between-class distance in the lower dimensional space. While
being conceptually similar to linear discriminant analysis, it
was shown that NWFE in particular outperforms LDA on
limited training data [29]. Recently, Kianisarkaleh et al. pro-
posed nonparametric feature extraction (NFE) [29] for limited
training data. It is similar to NWFE, but uses k neighbors in
a class to compute the local class mean.

The third family of approaches aims to overcome the limited
training data by generating synthetic data that is statistically
similar to the available labeled data. To our knowledge,
only few methods have been proposed in this direction.
Skurichina et al. proposed to inject Gaussian noise in the k
nearest neighborhood of the training data (k-NN DNI) [30].

Neagoe et al. proposed virtual sample generation using the
weights of concurrent self-organizing maps (CSOM) [31]. In
our previous work [32], we showed that re-sampling from
the training data to increase the set population has positive
effect on the classifier. However, as the added synthetic data
was drawn from the dataset, the improvement was minor. In a
later work, we showed that drawing synthetic samples from an
accurately estimated distribution is more effective [33]. This
is supported by several works in the literature that aim to find
a general distribution model for hyperspectral remote sensing
images. Specifically, Marden et al. proposed to use an ellipti-
cally contoured distribution, a more general distribution case
of multivariate Gaussian, for generating statistically similar
synthetic data [34]. Camps et al. propose a kernel-based frame-
work for change detection and classification of multi-temporal
and multi-source RS images [35] using a Gaussian mixture
model (GMM). Williams et al. showed that GMM fitting with
variational Bayesian Expectation Maximization works well on
limited sample data [36], [37]. They estimate the number
of GMM components by evidence maximization [38]. They
also showed that a severely imbalanced dataset degrades the
classification performance, which is another good application
for synthetic data generation.

The first two families of methods, namely to design classi-
fiers for limited amounts of training data and to reduce feature
vector dimensionality, seem to be quite challenged by extreme
cases when training data is severely limited. As a consequence,
we focus on the third direction, and present a framework for
generation of synthetic feature vectors to remedy the limited
training data problem.

This work is an extension of our work presented in [39] on
variational expectation maximization and provides a broader,
consolidated view on our previous work on addition of syn-
thetic samples [33]. Specifically, we show that synthetic sam-
ples can alleviate the limited data problem with minimal addi-
tional knowledge in a way that is computationally extremely
efficient. It mitigates the costly traditional parameter tuning of
a classifier. Instead, a GMM is fitted to the limited training data
with a Variational Bayesian. This GMM is used to generate
additional training data, using the common assumption that
HS remote sensing samples can be modelled by a GMM [3],
[40]. We show that if an off-the-shelf, unoptimized classifier is
trained with this data, the resulting performance is comparable
to a properly tuned classifier, at a fraction of the computational
effort.

The paper is organized as follows. Gaussian mixture models
are introduced in Sec. II, and variational expectation maxi-
mization in Sec. III. The proposed framework for addition
of synthetic samples is presented in Sec. IV. Experimental
results are reported in Sec. V, before we conclude our paper
in Sec. VI.

II. GAUSSIAN MIXTURE MODEL

For a d-dimensional random variable x, the multivariate
Gaussian density function is defined as:

N (x|µ,Λ) =
1

(2π)
d
2 |Λ| 12

exp

(
− 1

2
(x−µ)TΛ−1(x−µ)

)
,

(1)
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where µ and Λ are mean vector and covariance matrix of the
Gaussian model respectively.

Mixture models model the data by a combination of com-
ponents. A Gaussian Mixture Model (GMM) is a parametric
probability density function that can model any other distri-
bution. It is represented as the weighted sum of K Gaussian
density components:

p(x|ψ) =

K∑
i=1

πiN (x|µi,Λi), (2)

with parameters ψ = (πi,µi, Λi), where for the i-th com-
ponent, πi denotes the mixture weight, µi the mean and Λi

the covariance matrix. The mixture weights is constrained to∑K
i=1 πi = 1.
To estimate the GMM parameters from the data, iterative

algorithms for expectation maximization (EM) or Maximum
A Posteriori (MAP) estimation are commonly used [41], [42].

When the training data is severely limited, it is particularly
important to consider the number of parameters of a GMM.
For d-dimensional training data and K mixture components,
the most general formulation of GMM requires a total of
K(1 + d + d2) parameters. However, this number can be
reduced by applying simplifying assumptions. For example,
the covariance matrix can be set identical for all components,
or the covariance is constrained to be diagonal, or diagonal
with identical entries per dimension. It is also possible to
combine these assumptions, i.e., to share covariances while
constraining their content.

In our work, the only constraint is that we assume diagonal
covariance matrices. Thus, Λi = diag(σ2

i1, σ
2
i2, . . . , σ

2
id). This

leads to a total of K(1 + 2d) parameters, which is a trade-off
between the number of parameters and the model flexibility:
for example, a linear combination of diagonal covariance
matrices is still able to model correlations between the data
dimensions [42].

III. VARIATIONAL BAYESIAN INFERENCE FOR GMM

Variational Bayesian (VB) can be considered as a family
of methods that makes the computation of probability distri-
butions tractable. VB methods are an extension of the EM
algorithm that maximize a lower bound on model evidence
p(X), where X denotes the set of observations. Variational
methods and EM are both iterative algorithms which alternate
between a) determining the probabilities for a data point to
belong to a mixture component and b) fitting the mixture
to the corresponding data. However, variational methods add
regularization by integrating information from prior distribu-
tions. A particularly useful property of VB over maximum
likelihood GMM is that VB methods avoid over-fitting and
singularities [43].

We denote N observations as X = {x1, ..., xN}, and N
latent variables as Z = {z1, ..., zN}. Probabilistic formulation
of VB becomes easier when the membership of the GMM
components is made explicit. To this end, each observation xi

has an associated latent indicator variable zi. Then, p(X) is
the marginal distribution of p(X,Z), i.e.,

p(x) =
∑
z

p(z)p(x|z) =

K∑
k=1

πkN (x|µk,Λk) , (3)

where we omitted for clarity of notation the dependency on
the model parameters µ, Λ, and π.

Consider a variational distribution which factorizes into
latent variables and model parameters as

q(Z,π,µ,Λ) = q(Z)q(π,µ,Λ) . (4)

This factorization is the only assumption required in order to
acquire a tractable and useful result for the mixture model.
With the expectation maximization (EM) algorithm, q(Z) is
estimated in the expectation and q(π,µ,Λ) in the maximiza-
tion step. Both can be determined automatically by optimizing
the variational distribution. For the full theoretical derivation
we refer to [43, Chap. 10] due to space constraints. The EM
update equations are presented in the Appendix of the paper.

IV. GMM-BASED SYNTHETIC DATA GENERATION:
OVERVIEW AND BENEFITS

In this work, we consolidate our earlier works on synthetic
data generation for hyperspectral remote sensing (HSRS) im-
ages [33], [39], evaluate the performance on two new datasets,
and show additional experiments on the benefit of added
synthetic samples including a neural network classifier. In our
previous work, we have proposed the generation of GMM-
based synthetic samples as a remedy for limited availabil-
ity of training samples in HSRS image classification [33].
The generated synthetic samples are a considerably faster
alternative for tuning the classifiers’ parameters. We further
proposed to substitute the classical expectation maximization
(EM) with the variational EM to gain a faster convergence in
our GMMs [39]. In this section, we explain each part of this
pipeline in detail.

A. GMM-Based Synthetic Data Generation
We show the effectivity of synthetic sample addition on a

standard classification pipeline that is based on dimensionality
reduction. Our pipeline is shown in Fig. 1. First, the dimen-
sionality of the hyperspectral image is reduced via PCA. Then,
extended multi-attribute profiles (EMAP) [9] are computed as
the feature vector for every pixel. The EMAP feature vectors
can be further reduced in their dimensionality via PCA or
non-parametric weighted feature extraction (NWFE). We then
estimate the probability density function (PDF) of each class
in the dataset by fitting a GMM on the training data. The
approach we took for handling the issues for GMM estimation
is as follows:

a) Number of Gaussian components: the distribution of
a class label is typically not a clean Gaussian, and hence a
GMM typically requires more than one component to model
the distribution. Thus, for each class we construct GMMs
with 1 to 4 components, to compromise between the model
flexibility and the number of model parameters. To find the
best model for representing the class, the well-known Akaike
Information criterion (AIC) is used.
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(a) Our proposed classification pipeline.

(b) Proposed GMM-based synthetic sample generation block.

Fig. 1: The (a) classification pipeline and (b) GMM-based
synthetic sample generator block. Rectangle represents a data,
diamond indicates a function (operation), and the plus sign
shows the data concatenation operation.

b) Initialization: The iterative EM algorithm is highly
sensitive to its initial values. To start the iteration from a
reasonably good solution, we initialize the GMM components
with the cluster centers of a k-means clustering to the data,
where k is identical to the number of GMM components [43,
Sec. 9.1, p. 427].

c) Constraints on the covariance matrices: We use di-
agonal covariance matrices as a trade-off between represen-
tational power and the feasibility of fitting such a model
to the few training data samples. Linear combinations of
diagonal matrices can model the correlation between the
dimensions [42], such that full covariance matrices are not
necessarily needed. On the other hand, when estimating full
covariance matrices on very few samples, EM may not con-
verge. Thus, diagonal covariance matrices have much fewer
parameters, which makes the estimation feasible and much
more efficient [42].

After the construction of the feature vector and the GMMs
from the training data, we draw an equal number n of synthetic
samples per class by sampling from the GMMs and add them
to the original training data for classifier training.

B. GMM-based Synthetic Data; An Alternative to Classifier
Parameter Tuning

When using, e.g., the support vector machine classifier
(SVM), it is widely known that parameter selection is a critical
preparatory step towards obtaining competitive results. This
is the reason why for example the SVM parameter selection
is hardwired into the popular SVM implementation libSVM.
However, other classification frameworks do not necessarily
include a parameter selection submodule. One notable example

is classification with a random forest. Several works [8],
[32], [44], [45], [46], [47], [48] rely on the default settings
of 100 trees with a tree depth equal to the square root of
the feature dimensionality,

√
d, as originally proposed by

Breiman [49]. However, these parameters have been proposed
based on training on a relatively large dataset. In the case of
classification on severely limited training data, such default
parameters yield suboptimal classification performance [33].

GMMs only roughly approximate the true underlying distri-
bution of hyperspectral data [34]. Nevertheless, synthetic data
can enrich the feature space with additional, similar features to
compensate challenges that a non-optimized classifier has on
severely limited samples. This is illustrated with an example
on simulated data in Fig. 2.

In this simulation, we generate a 2-class dataset. The classes
have the ”Extreme Value” distribution, which is parameterized
by location parameter µ and scale parameter σ > 0,

f(x|µ, σ) = σ−1 exp

(
x− µ
σ

)
exp

(
− exp

(
x− µ
σ

))
.

(5)
We show the interplay of a classifier with unoptimized

parameters, the amount of overlap between the classes’ un-
derlying distributions, and the addition of synthetic data. For
the first class, 2000 points are sampled from an extreme
distribution with parameters (µ,σ)=(0,5). For the second class,
2000 data points are sampled from an extreme distribution
with σ = 7 and µ ∈ [1, 20] with steps of 0.5. In this way,
different class distributions with different amount of overlap
are produced. Examples are shown on the left of Fig. 2. The
overlap between the classes is plotted in green. We randomly
sample 13 training examples from each class to create a 2-
class-classification problem. We then fit a GMM to each group
of training samples, draw 500 additional samples and train
on that data an otherwise unoptimized random forest with 2
and 10 trees. The results are plotted on the right of Fig. 2.
On the x-axis, the distance of the two distributions is shown.
This distance is defined as the inverse of the distributions’
overlap area. The y-axis shows the kappa difference between
unoptimized classifiers when using additional samples or not.
For moderate to high amounts of class overlap, addition of
the synthetic samples improves the classification. Although
the GMM does not exactly match the extreme distributions,
the classification performance is considerably improved by the
added samples. This shows that the mis-parameterization of
the classifier is a major performance bottleneck that can be met
by (gently) adapting the feature space to the classifier. When
the class distributions get far from each other, the positive
benefit of synthetic samples decreases as the classifier can
easily distinguish these classes from the initial 13 samples.
Moreover, the further the classifier’s parameters are from the
optimal values, the higher the effect of the synthetic data
augmentation will be.

C. Faster and More Efficient GMM fitting via Variational EM

The estimation of GMM parameters usually is carried
out using the expectation maximization (EM) algorithm. It
was shown in [36], [37] that the GMM model estimated
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(a) 83.14% overlap (b) 53.71% overlap (e)

(c) 33.86% overlap (d) 20.07% overlap (f)

Fig. 2: Simulation example on model accuracy gain versus the overlap of the classes distributions. The left plots show the distributions
of a two class data. The class overlap for each example is stated under each plot. Plots (e) and (f) show the Kappa gain after adding 500
synthetic samples to the limited training data (13 samples per class). The x-axis shows the inverse of the overlapping area of the two class
distributions. The classifier is a random forest. Number of variables is square root of the number of data features and number of trees in (e)
and (f) are chosen to be 2 and 10, respectively.

by their proposed optimization technique, i.e. variational
Bayesian expectation maximization (VB-EM), performs better,
particularly when dealing with a small number of training
samples. Furthermore, they addressed another problematic
factor, the determination of the number of GMM components
when estimating a probability density function (PDF). They
showed that using VB-EM instead of EM, the importance of
this factor will be lessened. Conventionally, determining the
number of components in a GMM is carried out by fitting
different models a posteriori and the best model is being
chosen via an algorithm, e.g. Akaike information criterion,
Bayesian information criterion, etc. However, the number of
GMM components can be exactly determined by evidence
maximization [38] in conjunction with the VB-EM algorithm.
The main advantage of using VB-EM is that there is no need
to generate multiple models a posteriori. Therefore, in order to
speed up the GMM computation and make it memory efficient,
we use Variational Bayesian method to determine the number
of GMM components automatically.

V. EVALUATION

A. Datasets Description

We use, for the evaluation, the Salinas, SalinasA, Botswana
and Pavia Centre datasets. All these datasets are publicly

available via [50], [51]. Salinas dataset is a 512× 217 pixels
image with a geometrical resolution of 3.7 m. It was acquired
by the AVIRIS sensor in 224 spectral bands over Salinas
Valley, California. 20 bands were discarded due to water
absorption and the remaining 204 bands are used in this
work. Its ground truth contains 16 classes, including different
types of vegetation, fields and soil, with 54129 labeled pixels.
SalinasA is a 86×83 pixels subset of the Salinas dataset which
is commonly used as a benchmark in the community [52], [53],
[54], [55], [56], [57] and contains 6 classes. The number of
available labeled pixels in this dataset is 5348.
The Botswana dataset was acquired by NASA EO-1 satellite
using the Hyperion sensor in 242 bands in the wavelength
range of 400-2500 nm. After removing the noisy bands, 145
spectral channels were used in this work. This dataset contains
14 classes, including different swamps and woodlands. The
number of available labeled pixels are 3248.
The Pavia Centre dataset has been acquired by the ROSIS
sensor in 115 spectral bands over Pavia, northern Italy. 13 of
these bands are removed due to noise and therefore 102 bands
are used in this work. The scene image is 1096× 715 pixels
with a geometrical resolution of 1.3 m. This dataset contains
148152 labeled pixels in 9 classes.
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B. Classification Pipeline

To demonstrate the effect of adding synthetic samples,
we use a standard classification pipeline that is based on
dimensionality reduction. The algorithm variants are shown in
Fig. 1. First, PCA is performed on the input data to preserve
99% of the total spectral variance. On these PCA compo-
nents, extended multi-attribute profile (EMAP) features are
computed. We followed the literature by using four attributes
and four thresholds λ per attribute [9], [58]. More specifically,
the thresholds for area of connected components are chosen as
λa = [100, 500, 1000, 5000], and the thresholds for length of
the diagonal of the bounding box fitted around the connected
components λd are chosen as λd = [10, 25, 50, 100]. The
thresholds for standard deviation of the gray values of the
connected components λs and the moment of inertia λi are
chosen differently per dataset [9], [58], i.e., for Salinas and
SalinasA λs = [20, 30, 40, 50] and λi = [0.1, 0.15, 0.2, 0.25],
and λs = [20, 30, 40, 50] and λi = [0.2, 0.3, 0.4, 0.5] for the
Botswana dataset. For the Pavia Centre dataset, the threshold
values of the attributes are similar to [9].
For the second dimensionality reduction, we use in one variant
the unsupervised PCA, and in another variant the supervised
non-parametric weighted feature extraction (NWFE) [25], [28]
to preserve 99% of the feature variance. In our experiments,
we use abbreviations to specify the used pipeline configura-
tion. We use either EMAP, EMAP-PCA, or EMAP-NWFE to
distinguish the use of no secondary dimensionality reduction,
PCA, or NWFE, respectively. Classification is performed with
random forest classifier.

C. Feature Set Augmentation via Synthetic Samples

To quantitatively evaluate the difference between an unop-
timized and an optimized classifier, we use the random forest
default parameters as proposed by Breiman [49], with 100
trees, H = 100, and number of parameters to be the square
root of number of feature dimensions, D =

√
d. The optimized

random forest parameters are found via leave-one-sample-
out cross validation. On average, the kappa value for the
classification grows by 5.47% after optimizing the classifier,
with a standard deviation of 3.06%. The parameter optimiza-
tion for SalinasA and Botswana datasets takes in average
48.21 seconds and 77.74 seconds, respectively. Representative
example results are shown in Tab. I. In this table, we show the
average accuracy (AA), overall accuracy (OA) and the Cohen’s
Kappa [59] for a random forest classification on the Botswana
and the SalinasA datasets. We showed the results on the Pavia
Centre and Salinas datasets in a previous work [33], which
agree with the experiments shown here.

In a second experiment, we add synthetic samples to the
feature space. A first result is shown in Fig. 3. Here, we
performed classification on 13 (left) and 40 (right) training
samples per class, respectively. We used a random forest
with unoptimized parameters on EMAP-NWFE computed on
Salinas dataset, and report Kappa for different numbers of
up to 5000 added synthetic samples. It turns out that adding
only a few synthetic samples leads to a jump in classification
performance, e.g. from about 0.78 to about 0.86 if 13 training

Fig. 3: Unoptimized random forest’s classification perfor-
mance (kappa) versus the number of synthetic samples added
to the original training set. Classification is performed on
EMAP-NWFE computed over Salinas dataset. Red line rep-
resents the classification performance of raw EMAP without
any synthetic sample addition.

samples per class are used (Fig. 3, left plot). This performance
gain is quite stable with respect to the exact number of added
samples, i.e., it does not make much difference whether 500
or 5000 samples are added.

A full quantitative evaluation is performed with the same
feature variants EMAP, EMAP-PCA, EMAP-NWFE, and the
same experimental protocol as explained earlier on the Sali-
nasA and Botswana datasets. Since we require a low feature
dimensionality to fit the GMM model to very few sam-
ples, synthetic samples are only added to the dimensionality-
reduced variants of EMAP feature, i.e. EMAP-PCA and
EMAP-NWFE, but not to the very high-dimensional EMAP
space. Representative example results are shown in Tab. I. In
every case, the variants using synthetic samples improve the
classification performance over an unoptimized classifier. The
average improvement of the kappa value jumps 5.84% up after
adding synthetic samples to the training set, with a standard
deviation of 3.18% [33].

Two observations can be made when comparing the results
of synthetically augmented data using unoptimized classifier
versus an optimized classifier in Tab. I. First, the addition
of synthetic samples performs comparable and sometimes
even slightly higher than an optimized classifier. Second,
a dimensionality-reduced EMAP (EMAP-PCA or EMAP-
NWFE) with synthetic samples performs comparably or in
some cases even better than using full EMAP feature vector
with a properly tuned classifier. Both observations indicate the
positive impact of adding synthetic samples and show that it
is an interesting alternative to classifier optimization.

The class-wise classification performance for the SalinasA
and Botswana datasets are presented in Tab. II and Tab. III,
respectively. Analogously to the summary results in Tab. I, the
results on an optimized classifier and on an unoptimized clas-
sifier with added synthetic samples are comparable. Addition-
ally, it is interesting to further investigate the relationship of
the unoptimized classifier without and with synthetic samples.
A subset of classes achieves low accuracy when using just the
original limited training data. These classes are challenging
for the classifier, and reduce the overall classifier accuracy.
Adding the additional synthetic samples greatly boosts the
performance on those classes, and thereby improves the overall
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TABLE I: Random forest performance computed over Sali-
nasA and Botswana. H and D represent the forest parameters,
where “-” indicates an unoptimized forest. |S| denotes the
number of added synthetic samples per class.

Algorithm H D |S| AA% (±SD) OA% (±SD) Kappa (±SD)
SalinasA

13 pix/class
HS raw - 0 85.42 (±3.34) 79.85 (±5.21) 0.7546 (±0.0612)
HS raw 5 4 0 95.40 (±0.95) 94.90 (±1.25) 0.9363 (±0.0155)
EMAP - 0 94.88 (±4.06) 93.38 (±6.06) 0.9186 (±0.0736)
EMAP 10 4 0 99.04 (±0.45) 99.15 (±0.34) 0.9893 (±0.0043)
EMAP-PCA - 0 93.21 (±2.73) 91.58 (±4.01) 0.8958 (±0.0484)
EMAP-PCA 5 4 0 98.53 (±1.15) 98.59 (±1.09) 0.9824 (±0.0136)
EMAP-PCA - 500 99.04 (±0.29) 99.22 (±0.23) 0.9903 (±0.0028)
EMAP-NWFE - 0 93.13 (±2.12) 90.34 (±3.13) 0.8808 (±0.0384)
EMAP-NWFE 10 4 0 99.11 (±0.23) 99.17 (±0.15) 0.9896 (±0.0019)
EMAP-NWFE - 500 99.10 (±0.28) 99.00 (±0.54) 0.9874 (±0.0067)

40 pix/class
HS raw - 0 92.43 (±1.13) 90.02 (±1.70) 0.8764 (±0.0207)
HS raw 5 4 0 97.39 (±0.40) 96.96 (±0.56) 0.9620 (±0.0070)
EMAP - 0 98.46 (±0.43) 98.52 (±0.64) 0.9815 (±0.0080)
EMAP 10 10 0 99.61 (±0.32) 99.67 (±0.23) 0.9959 (±0.0029)
EMAP-PCA - 0 97.38 (±0.87) 97.40 (±1.17) 0.9675 (±0.0146)
EMAP-PCA 10 6 0 99.15 (±0.25) 99.31 (±0.23) 0.9914 (±0.0029)
EMAP-PCA - 500 99.12 (±0.22) 99.28 (±0.26) 0.9909 (±0.0032)
EMAP-NWFE - 0 95.83 (±1.04) 94.30 (±1.53) 0.9293 (±0.0188)
EMAP-NWFE 20 2 0 99.40 (±0.19) 99.45 (±0.19) 0.9932 (±0.0023)
EMAP-NWFE - 500 99.47 (±0.15) 99.49 (±0.16) 0.9936 (±0.0020)

Botswana
13 pix/class

HS raw - 0 70.39 (±2.42) 67.32 (±2.69) 0.6473 (±0.0287)
HS raw 10 8 0 81.60 (±1.06) 79.84 (±0.90) 0.7819 (±0.0098)
EMAP - 0 89.83 (±1.94) 88.79 (±2.17) 0.8786 (±0.0235)
EMAP 10 10 0 94.69 (±0.72) 94.04 (±0.87) 0.9354 (±0.0094)
EMAP-PCA - 0 83.45 (±2.13) 83.05 (±2.18) 0.8165 (±0.0236)
EMAP-PCA 20 8 0 91.64 (±0.73) 91.00 (±0.83) 0.9025 (±0.0090)
EMAP-PCA - 500 93.35 (±0.55) 92.72 (±0.49) 0.9212 (±0.0053)
EMAP-NWFE - 0 87.38 (±1.96) 87.12 (±1.51) 0.8605 (±0.0163)
EMAP-NWFE 10 4 0 92.31 (±1.07) 91.59 (±1.11) 0.9089 (±0.0120)
EMAP-NWFE - 500 93.73 (±0.77) 93.17 (±0.77) 0.9260 (±0.0083)

40 pix/class
HS raw - 0 82.58 (±0.36) 80.39 (±0.52) 0.7880 (±0.0056)
HS raw 5 8 0 88.29 (±0.33) 86.77 (±0.46) 0.8568 (±0.0049)
EMAP - 0 95.61 (±0.34) 94.90 (±0.38) 0.9448 (±0.0041)
EMAP 10 10 0 97.35 (±0.36) 96.98 (±0.40) 0.9673 (±0.0043)
EMAP-PCA - 0 93.25 (±0.92) 92.39 (±1.23) 0.9176 (±0.0133)
EMAP-PCA 20 4 0 94.91 (±0.48) 94.38 (±0.51) 0.9391 (±0.0055)
EMAP-PCA - 500 95.04 (±0.44) 94.49 (±0.42) 0.9403 (±0.0046)
EMAP-NWFE - 0 93.63 (±0.42) 92.76 (±0.55) 0.9217 (±0.0060)
EMAP-NWFE 10 4 0 95.28 (±0.46) 94.73 (±0.54) 0.9429 (±0.0058)
EMAP-NWFE - 500 95.33 (±0.32) 94.66 (±0.37) 0.9421 (±0.0040)

performance on the whole dataset. It is also interesting to
note that the addition of synthetic samples greatly reduces
the standard deviation of the overall dataset, and in particular
on the classes with low accuracy. Overall, we conclude that
addition of GMM-based synthetic samples not only improves
the accuracy of the classifier, but also boosts the confidence
of the classifier, which is reflected by having lower standard
deviation.

Figures 4 and 5 show the qualitative results, i.e. label maps,
on SalinasA and Botswana datasets with unoptimized random
forest classifier when adding synthetic samples. The synthetic
data augmentation improves the classification accuracy and
avoids some misclassification.

One interesting question is whether the improvement should
be attributed simply to the increased number of samples,

(a) (b) (c) (d)

Fig. 4: Label maps on SalinasA using 13 training samples
per class and unoptimized random forest. (a) ground truth;
(b) EMAP (OA: 93.38%, Kappa: 0.9186); (c) EMAP-PCA
with 500 synthetic samples (OA: 99.22%, Kappa: 0.9903);
(d) EMAP-NWFE with 500 synthetic samples (OA: 99.00%,
Kappa: 0.9874).

or to an improved representation of the underlying distribu-
tion. While it is difficult to experimentally factorize these
influencing factors, a comparison with other data augmenta-
tion schemes (confer Tab. XVI of the supplemental material
of [33]) indicates that the representation is at least better suited
than that from earlier works [31], [30].

D. Variational Bayes instead of the Conventional Expectation
Maximization

Expectation maximization (EM) is commonly used for find-
ing and optimizing GMM parameters. One difficulty, however,
is how to determine the number of components in the GMM.
In this work, we compared the runtime and classification
performance of our synthetic data generation pipeline using
variational EM (VEM) with four other algorithms, namely,
Akaike information criterion (AIC) [60], Bayesian information
criterion (BIC) [61], average silhouette width [62], [63] and
gap [64]. What all these algorithms have in common is the
fact that they choose the best model, i.e. the most suitable
number of components, from the a posteriori generated GMMs
with different number of components. In contrast, variational
Bayesian (VB), does not require the pre-computation of GMM
models with different number of components.

For the GMMs, the covariance matrix is constrained to be
diagonal. As for the AIC, BIC, average silhouette width and
gap methods, we constrain K between 1 and 4 and let these
algorithms choose the best model. We did not fit GMMs with
more than 4 components, because the number of parameters
would be large enough and considering the limited available
training data, EM algorithm fails to converge. Please refer
to Section II for more information. As stated in Section III,
we prefer to have a large initial number of components (K).
Therefore, K is selected to be 25. The number of generated
synthetic samples is set to 5000 samples per each class for all
the experiments.

The quantitative evaluation results are shown in Table IV,
Table V, Table VI and Table VII for the Pavia Centre, Salinas,
SalinasA and Botswana data sets, respectively. Considering
the classification performance, all variants that make use of
VB generate similar, if not better, classification results. The
Wilcoxon statistical significance test indicated no significant
difference in the classification results that are computed with
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TABLE II: Class-wise performance computed over SalinasA dataset using both optimized (o-RF) and unoptimized random
forest (u-RF), with 0 and with 500 synthetic samples per class. The bold font numbers represent the classes, which benefit the
most from the addition of GMM-based synthetic samples.

o-RF u-RF o-RF u-RF
Class Train/Test EMAP-PCA EMAP-PCA EMAP-PCA-Synth EMAP-NWFE EMAP-NWFE EMAP-NWFE-Synth
Broccoli green weeds 1 13/391 99.23 ± 1.71 99.92 ± 0.12 99.80 ± 0.11 99.83 ± 0.15 99.72 ± 0.08 99.74 ± 0.00
Corn 13/1343 99.18 ± 1.33 74.18 ± 17.76 99.91 ± 0.15 99.16 ± 0.50 66.49 ± 11.77 98.97 ± 0.59
Lettuce romaine 4wk 13/616 96.59 ± 0.92 91.69 ± 8.16 96.31 ± 2.07 97.93 ± 2.74 97.69 ± 2.26 99.11 ± 1.20
Lettuce romaine 5wk 13/1525 98.20 ± 2.49 99.91 ± 0.27 99.55 ± 0.92 99.98 ± 0.04 98.54 ± 2.42 98.90 ± 1.97
Lettuce romaine 6wk 13/674 99.24 ± 0.68 99.60 ± 0.20 99.51 ± 0.24 99.55 ± 0.26 99.78 ± 0.08 99.57 ± 0.18
Lettuce romaine 7wk 13/799 98.75 ± 1.40 93.97 ± 5.49 99.16 ± 0.59 98.21 ± 0.71 96.55 ± 1.51 98.27 ± 0.66

Average Accuracy 98.53 ± 1.15 93.21 ± 2.73 99.04 ± 0.29 99.11 ± 0.23 93.13 ± 2.12 99.10 ± 0.28
Overall Accuracy 98.59 ± 1.09 91.58 ± 4.01 99.22 ± 0.23 99.17 ± 0.15 90.34 ± 3.13 99.00 ± 0.54

Kappa 0.9824 ± 0.01360.8958 ± 0.0484 0.9903 ± 0.0028 0.9896 ± 0.0019 0.8808 ± 0.0384 0.9874 ± 0.0067

TABLE III: Class-wise performance computed over Botswana dataset using both optimized (o-RF) and unoptimized random
forest (u-RF), with 0 and with 500 synthetic samples per class. The bold font numbers represent the classes, which benefit the
most from the addition of GMM-based synthetic samples.

o-RF u-RF o-RF u-RF
Class Train/Test EMAP-PCA EMAP-PCA EMAP-PCA-Synth EMAP-NWFE EMAP-NWFE EMAP-NWFE-Synth
Water 13/270 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Hippo grass 13/101 96.37 ± 4.00 93.56 ± 6.16 94.36 ± 5.50 95.05 ± 4.54 90.69 ± 16.49 97.52 ± 2.96
Floodplain grasses1 13/251 98.27 ± 1.66 94.74 ± 6.57 96.57 ± 2.25 95.48 ± 4.41 97.13 ± 4.92 98.53 ± 1.44
Floodplain grasses2 13/215 93.49 ± 3.05 94.42 ± 6.02 94.84 ± 3.23 93.49 ± 3.63 92.47 ± 7.18 94.47 ± 2.63
Reeds1 13/269 81.41 ± 1.12 65.99 ± 14.94 83.94 ± 8.85 78.94 ± 4.65 75.46 ± 11.85 87.73 ± 4.30
Riparian 13/269 73.11 ± 5.05 70.52 ± 14.49 81.64 ± 9.26 84.26 ± 12.36 68.18 ± 15.52 79.33 ± 5.18
Firescare2 13/259 97.55 ± 1.36 97.88 ± 2.66 99.23 ± 0.60 98.71 ± 0.59 95.14 ± 2.43 99.00 ± 0.49
Island interior 13/203 99.84 ± 0.28 99.75 ± 0.48 99.85 ± 0.33 100.00 ± 0.00 100.00 ± 0.00 100.00 ± 0.00
Acacia woodlands 13/314 95.65 ± 4.64 77.52 ± 5.96 97.10 ± 1.98 89.92 ± 8.62 86.75 ± 4.84 93.47 ± 5.93
Acacia shrublands 13/248 87.37 ± 3.75 89.68 ± 9.91 86.85 ± 5.34 88.63 ± 6.94 91.61 ± 9.30 90.16 ± 5.19
Acacia grasslands 13/305 84.97 ± 6.40 66.98 ± 11.08 86.89 ± 5.80 89.73 ± 5.98 80.30 ± 6.99 89.67 ± 7.30
Short mopane 13/181 97.05 ± 0.32 91.49 ± 10.06 96.35 ± 2.57 90.24 ± 2.30 96.46 ± 5.35 95.80 ± 2.00
Mixed mopane 13/268 83.45 ± 3.77 65.78 ± 18.92 89.85 ± 6.07 88.19 ± 5.78 74.44 ± 18.42 90.90 ± 5.51
Exposed soils 13/95 94.44 ± 3.04 60.00 ± 21.08 99.47 ± 1.02 99.65 ± 0.61 74.63 ± 31.17 95.58 ± 6.54

Average Accuracy 91.64 ± 0.73 83.45 ± 2.13 93.35 ± 0.55 92.31 ± 1.07 87.38 ± 1.96 93.73 ± 0.77
Overall Accuracy 91.00 ± 0.83 83.05 ± 2.18 92.72 ± 0.49 91.59 ± 1.11 87.12 ± 1.51 93.17 ± 0.77

Kappa 0.9025 ± 0.00900.8165 ± 0.0236 0.9212 ± 0.0053 0.9089 ± 0.0120 0.8605 ± 0.0163 0.9260 ± 0.0083

TABLE IV: GMM model selection methods vs. Variational
Bayesian on the Pavia Centre dataset.

samp. AA% (±SD) OA% (±SD) Kappa (±SD) Runtime (s) (±SD)
EMAP-PCA

AIC
13 85.17 (±1.21) 93.39 (±1.44) 0.9072 (±0.0197) 0.0877 (±0.0115)
30 88.52 (±0.71) 94.68 (±0.51) 0.9252 (±0.0070) 0.0978 (±0.0054)

BIC
13 85.50 (±1.14) 93.67 (±0.82) 0.9110 (±0.0114) 0.0781 (±0.0017)
30 88.23 (±1.06) 94.81 (±0.46) 0.9270 (±0.0064) 0.0856 (±0.0025)

sil.
13 85.10 (±1.27) 93.64 (±1.03) 0.9105 (±0.0142) 0.2013 (±0.0082)
30 87.61 (±1.14) 94.68 (±0.32) 0.9251 (±0.0045) 0.3521 (±0.0223)

gap
13 83.14 (±1.87) 92.23 (±1.00) 0.8911 (±0.0138) 16.4766 (±0.1400)
30 85.87 (±2.62) 93.54 (±1.03) 0.9091 (±0.0145) 35.4273 (±0.2511)

VB
13 85.60 (±0.62) 93.52 (±0.40) 0.9090 (±0.0055) 0.0324 (±0.0030)
30 89.14 (±0.46) 95.15 (±0.42) 0.9317 (±0.0059) 0.0450 (±0.0029)

EMAP-NWFE

AIC
13 87.72 (±1.96) 94.75 (±0.96) 0.9260 (±0.0133) 0.0788 (±0.0043)
30 91.86 (±1.05) 96.41 (±0.53) 0.9493 (±0.0074) 0.0895 (±0.0037)

BIC
13 89.84 (±0.90) 95.65 (±0.66) 0.9387 (±0.0092) 0.0785 (±0.0044)
30 91.98 (±0.53) 96.50 (±0.45) 0.9506 (±0.0063) 0.0884 (±0.0038)

sil.
13 88.83 (±0.99) 95.00 (±0.61) 0.9297 (±0.0084) 0.2136 (±0.0103)
30 91.30 (±0.78) 96.28 (±0.64) 0.9476 (±0.0089) 0.3817 (±0.0377)

gap
13 89.08 (±0.83) 95.30 (±0.61) 0.9338 (±0.0084) 17.5375 (±0.1385)
30 90.75 (±1.16) 96.01 (±0.61) 0.9437 (±0.0084) 39.1785 (±0.5053)

VB
13 89.60 (±1.37) 96.11 (±0.53) 0.9404 (±0.0075) 0.0328 (±0.0023)
30 91.55 (±0.62) 96.43 (±0.47) 0.9469 (±0.0065) 0.0471 (±0.0026)

normal EM and variational EM. Besides, in most cases the
standard deviation is generally lower for Variational EM,
which indicates the more accurate underlying data distribution
approximation by VEM.

TABLE V: GMM model selection methods vs. Variational
Bayesian on the Salinas dataset.

samp. AA% (±SD) OA% (±SD) Kappa (±SD) Runtime (s) (±SD)
EMAP-PCA

AIC
13 91.01 (±0.87) 83.90 (±1.61) 0.8214 (±0.0175) 0.1430 (±0.0060)
30 92.55 (±0.31) 85.80 (±0.91) 0.8425 (±0.0098) 0.1686 (±0.0069)

BIC
13 90.40 (±0.85) 83.00 (±2.02) 0.8115 (±0.0222) 0.1391 (±0.0071)
30 92.68 (±0.55) 85.93 (±1.45) 0.8440 (±0.0158) 0.1646 (±0.0065)

sil.
13 90.50 (±0.72) 82.76 (±1.31) 0.8092 (±0.0141) 0.4293 (±0.0159)
30 92.14 (±0.42) 85.35 (±1.29) 0.8374 (±0.0140) 0.7702 (±0.0418)

gap
13 90.01 (±1.08) 81.66 (±1.69) 0.7973 (±0.0183) 38.9433 (±0.6351)
30 91.49 (±0.87) 84.27 (±1.82) 0.8258 (±0.0199) 81.9563 (±0.8802)

VB
13 91.02 (±0.87) 84.07 (±1.60) 0.8235 (±0.0175) 0.0579 (±0.0044)
30 92.59 (±0.55) 86.00 (±1.01) 0.8447 (±0.0110) 0.0802 (±0.0051)

EMAP-NWFE

AIC
13 92.46 (±1.08) 85.93 (±2.33) 0.8435 (±0.0254) 0.1491 (±0.0049)
30 94.38 (±0.51) 88.42 (±1.30) 0.8715 (±0.0142) 0.1734 (±0.0096)

BIC
13 93.22 (±0.60) 86.99 (±1.28) 0.8557 (±0.0140) 0.1493 (±0.0051)
30 94.33 (±0.30) 88.90 (±0.64) 0.8767 (±0.0070) 0.1660 (±0.0058)

sil.
13 93.02 (±0.57) 85.84 (±1.96) 0.8430 (±0.0213) 0.3710 (±0.0184)
30 93.95 (±0.44) 87.30 (±1.65) 0.8591 (±0.0179) 0.6242 (±0.0246)

gap
13 92.98 (±0.62) 86.60 (±1.05) 0.8514 (±0.0115) 30.4463 (±0.5223)
30 94.05 (±0.42) 87.93 (±1.13) 0.8659 (±0.0124) 65.7990 (±1.5273)

VB
13 93.26 (±0.67) 87.05 (±1.03) 0.8562 (±0.0112) 0.0610 (±0.0070)
30 94.09 (±0.55) 88.30 (±1.31) 0.8700 (±0.0144) 0.0818 (±0.0024)

Furthermore, we compared the classification performances
which are obtained via our synthetic data generation pipeline
versus the ones that are computed via an optimized random
forest on the original raw HS images. The results are reported
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(a)

(b)

(c)

(d)

Fig. 5: Label maps on Botswana using 13 training samples per class and unoptimized random forest. (a) ground truth; (b) EMAP
(OA: 88.79%, Kappa: 0.8786); (c) EMAP-PCA with 500 synthetic samples (OA: 92.72%, Kappa: 0.9212); (d) EMAP-NWFE
with 500 synthetic samples (OA: 93.17%, Kappa: 0.9260).

in Table VIII. It can be observed that in all cases, our proposed
pipeline results in a considerable boost in the performance,
comparing to using the raw hyperspectral image.

Focusing on the runtime, it can be observed that VB is in
average almost two times faster than the AIC and BIC and
eight times faster than the average silhouette width method.
These timing differences are visualized in the diagram in Fig.
6. The gap method is by about two orders of magnitude slower
than the other methods, and therefore is not shown in the plot.

The AIC, BIC, silhouette and gap methods select among
different models, there is a need to create multiple GMMs,
which is not the case for VB. This is the main reason for the
big runtime advantage of the Variational Bayesian.

E. Synthetic Samples for Data Augmentation in Neural Net-
works

Neural networks (NNs) are powerful tools in machine
learning. They are capable of finding complex linear or non-
linear mappings between the input and the output. Despite
their power, NNs have many parameters and hence, their
training requires a lot of training data. One strategy that is
commonly used for increasing the size of the training data is
data augmentation [65].

Synthetic sample generation can be viewed as a data aug-
mentation strategy as it enhances the population of the training
data with statistically similar samples. In order to investigate
the effectiveness of our proposed variational Bayesian GMM
synthetic sample generation as data augmentation in deep
learning, we designed this set of experiments.

To do so, we generated a rather simple feed forward fully
connected neural network with two hidden layers. We used 50
neurons in each hidden layer. In all layers, except the last layer,
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TABLE VI: GMM model selection methods vs. Variational
Bayesian on the SalinasA dataset.

samp. AA% (±SD) OA% (±SD) Kappa (±SD) Runtime (s) (±SD)
EMAP-PCA

AIC
13 98.84 (±0.32) 98.86 (±0.61) 0.9858 (±0.0075) 0.0588 (±0.0062)
30 99.14 (±0.25) 99.15 (±0.36) 0.9894 (±0.0045) 0.0762 (±0.0105)

BIC
13 98.78 (±0.63) 98.83 (±1.17) 0.9854 (±0.0146) 0.0659 (±0.0212)
30 99.41 (±0.25) 99.53 (±0.17) 0.9941 (±0.0021) 0.0834 (±0.0301)

sil.
13 98.64 (±0.33) 98.60 (±0.66) 0.9824 (±0.0082) 0.1695 (±0.0132)
30 99.22 (±0.20) 99.31 (±0.29) 0.9913 (±0.0036) 0.2770 (±0.0114)

gap
13 99.00 (±0.22) 99.09 (±0.44) 0.9886 (±0.0055) 13.8983 (±0.1091)
30 99.12 (±0.20) 99.26 (±0.26) 0.9907 (±0.0032) 33.2671 (±0.2481)

VB
13 98.63 (±0.63) 98.67 (±0.74) 0.9834 (±0.0093) 0.0431 (±0.0194)
30 99.13 (±0.26) 99.27 (±0.25) 0.9909 (±0.0031) 0.0716 (±0.0186)

EMAP-NWFE

AIC
13 98.48 (±0.72) 98.25 (±1.09) 0.9782 (±0.0135) 0.0702 (±0.0379)
30 99.44 (±0.22) 99.44 (±0.34) 0.9930 (±0.0042) 0.0813 (±0.0202)

BIC
13 98.74 (±1.06) 98.63 (±1.55) 0.9829 (±0.0193) 0.0666 (±0.0134)
30 99.30 (±0.46) 99.32 (±0.42) 0.9915 (±0.0053) 0.0809 (±0.0176)

sil.
13 99.01 (±0.47) 99.08 (±0.39) 0.9884 (±0.0049) 0.1606 (±0.0128)
30 99.22 (±0.25) 99.26 (±0.31) 0.9908 (±0.0038) 0.2697 (±0.0282)

gap
13 98.97 (±0.25) 99.08 (±0.40) 0.9885 (±0.0050) 14.0880 (±0.1594)
30 99.08 (±0.24) 99.09 (±0.38) 0.9887 (±0.0048) 34.0915 (±0.6003)

VB
13 99.38 (±0.30) 99.33 (±0.48) 0.9916 (±0.0060) 0.0461 (±0.0218)
30 99.52 (±0.14) 99.55 (±0.16) 0.9944 (±0.0020) 0.0753 (±0.0221)

TABLE VII: GMM model selection methods vs. Variational
Bayesian on the Botswana dataset.

samp. AA% (±SD) OA% (±SD) Kappa (±SD) Runtime (s) (±SD)
EMAP-PCA

AIC
13 93.60 (±0.51) 92.93 (±0.64) 0.9234 (±0.0069) 0.1532 (±0.0234)
30 95.61 (±0.46) 95.09 (±0.54) 0.9468 (±0.0059) 0.1630 (±0.0097)

BIC
13 93.25 (±0.67) 92.80 (±0.71) 0.9220 (±0.0076) 0.1505 (±0.0231)
30 95.55 (±0.43) 95.07 (±0.47) 0.9466 (±0.0051) 0.1690 (±0.0139)

sil.
13 93.74 (±0.92) 93.21 (±1.13) 0.9265 (±0.0123) 0.3162 (±0.0143)
30 95.52 (±0.47) 94.93 (±0.52) 0.9451 (±0.0056) 0.5463 (±0.0271)

gap
13 93.27 (±0.83) 92.56 (±0.95) 0.9194 (±0.0102) 25.6284 (±0.1868)
30 94.79 (±0.40) 94.16 (±0.39) 0.9367 (±0.0042) 56.2470 (±0.8254)

VB
13 93.35 (±0.81) 92.73 (±0.95) 0.9212 (±0.0102) 0.0965 (±0.0062)
30 95.76 (±0.55) 95.25 (±0.62) 0.9486 (±0.0067) 0.1541 (±0.0074)

EMAP-NWFE

AIC
13 93.42 (±0.72) 92.82 (±0.88) 0.9222 (±0.0095) 0.1466 (±0.0116)
30 95.56 (±0.36) 95.01 (±0.34) 0.9459 (±0.0037) 0.1700 (±0.0126)

BIC
13 93.77 (±0.66) 93.27 (±0.59) 0.9271 (±0.0064) 0.1515 (±0.0123)
30 95.42 (±0.39) 94.79 (±0.44) 0.9436 (±0.0048) 0.1808 (±0.0154)

sil.
13 93.59 (±0.51) 93.05 (±0.54) 0.9247 (±0.0058) 0.2584 (±0.0616)
30 94.42 (±0.49) 93.79 (±0.52) 0.9328 (±0.0056) 0.3677 (±0.0180)

gap
13 93.45 (±0.79) 92.93 (±0.60) 0.9234 (±0.0065) 25.4886 (±0.6314)
30 94.93 (±0.21) 94.17 (±0.26) 0.9368 (±0.0028) 56.8894 (±0.2117)

VB
13 93.64 (±0.62) 93.03 (±0.74) 0.9245 (±0.0080) 0.1008 (±0.0104)
30 95.64 (±0.33) 95.10 (±0.38) 0.9469 (±0.0041) 0.1493 (±0.0087)

we used rectified linear units (RELU) as activation functions
with a Sigmoid as the activation function of the last layer. As
for the regularizer, we used dropout [66] with dropout fraction
set to 20%. We used ADAM as the optimizer with learning
rate = 0.001, and binary cross entropy as the loss function.
We trained our model for 75 epochs.

We fed EMAP-PCA and EMAP-NWFE to the network,
once without synthetic samples and once after adding 500
synthetic samples. Furthermore, to compare the quality of
the synthetic samples that are generated via normal EM and
variational Bayesian EM (VBEM), we computed the results
using both EM and VBEM. Finally, for the sake of compari-
son, we report the performance of the neural network on the
raw hyperspectral image. The classification results on Pavia
Centre, Salinas, SalinasA and Botswana datasets are presented
in Tables IX, X, XI and XII, respectively. It can be observed

TABLE VIII: Quantitative comparison of the classification
performances, obtained by VB in the proposed synthetic
sample generation pipeline and the optimized classifier using
the raw HS data. The classifier is a random forest (RF).
Optimized and unoptimized RF are indicated by ”o” and ”u”,
respectively. The training set size is 13 pixels per class. |S|
represents the number of added synthetic samples in the case
of an unoptimized RF.

Algorithm RF |S| AA% (±SD) OA% (±SD) Kappa (±SD)
Pavia Centre

HS raw o - 83.98±0.81 89.83±1.22 0.8583±0.0163
VB EMAP-PCA u 500 87.65±1.54 94.50±0.73 0.9225±0.0101
VB EMAP-NWFE u 500 88.44±2.76 95.74±1.14 0.9358±0.0159

Salinas
HS raw o - 87.93±1.07 80.65±1.57 0.7854±0.0174
VB EMAP-PCA u 500 92.43±0.78 85.82±1.69 0.8428±0.0185
VB EMAP-NWFE u 500 93.06±0.56 87.33±0.83 0.8596±0.0093

SalinasA
HS raw o - 95.40±0.95 94.90±1.25 0.9363±0.0155
VB EMAP-PCA u 500 98.89±0.52 99.09±0.46 0.9886±0.0058
VB EMAP-NWFE u 500 99.25±0.36 99.25±0.33 0.9906±0.0042

Botswana
HS raw o - 81.60±1.06 79.84±0.90 0.7819±0.0098
VB EMAP-PCA u 500 93.61±0.52 92.90±0.53 0.9231±0.0058
VB EMAP-NWFE u 500 93.95±0.82 93.37±0.83 0.9282±0.0090

(a) Salinas (b) SalinasA

(c) Botswana (d) Pavia Centre

Fig. 6: Runtimes in seconds for EMAP-PCA and EMAP-
NWFE, computed over (a) Salinas, (b) SalinasA, (c) Botswana,
and (d) Pavia Centre datasets, using 13 and 30 samples per
class. It can be observed that for all the variants, VB’s runtime
is less than the other algorithms under study.

that in all cases, addition of synthetic samples increases the
performance. Moreover, in most cases, VBEM outperforms the
EM algorithm.

The training and validation loss for the aforementioned
four datasets for the first 50 epochs are depicted in Fig. 7.
As we had limited training data, we did not use a separate
validation set during the training and used all the test data as
the validation set. In other words, the validation loss in this
figure represents the evolution of the network’s capability in
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classifying the test set. It can be observed that in all cases,
adding synthetic samples results in a faster decrease of the
loss, and a lower final loss. For example, in the case of EMAP-
NWFE in the SalinasA dataset, i.e. Fig. 7-(k) and Fig. 7-
(l), without the synthetic samples, the loss value reached to
around 2 after 50 epochs. However, after adding 500 synthetic
samples, the loss value reaches close to zero within almost 20.

TABLE IX: Classification performance of the neural network
on the variants of Pavia Centre dataset, with and without
adding synthetic samples, and using the conventional EM or
variational EM.

Algorithm EM type |S| AA%±SD OA%±SD Kappa±SD
13 pixels per class

HS raw - 0 33.48±2.26 33.48±2.26 0.1347±0.0606
EMAP-PCA - 0 78.57±2.76 78.57±2.76 0.8310±0.0373
EMAP-PCA EM 500 88.15±1.83 88.15±1.83 0.9273±0.0121
EMAP-PCA VBEM 500 89.33±1.21 89.33±1.21 0.9341±0.0050
EMAP-NWFE - 0 16.50±5.84 16.50±5.84 0.0655±0.1295
EMAP-NWFE EM 500 83.21±0.91 83.21±0.91 0.8038±0.0060
EMAP-NWFE VBEM 500 82.36±0.79 82.36±0.79 0.7769±0.0201

40 pixels per class
HS raw - 0 75.85±5.32 75.85±5.32 0.8153±0.0487
EMAP-PCA - 0 89.20±1.58 89.20±1.58 0.9323±0.0088
EMAP-PCA EM 500 90.39±1.05 90.39±1.05 0.9391±0.0087
EMAP-PCA VBEM 500 94.33±0.65 94.33±0.65 0.9580±0.0021
EMAP-NWFE - 0 29.84±15.19 29.84±15.19 0.1955±0.1781
EMAP-NWFE EM 500 85.53±0.80 85.53±0.80 0.8513±0.0172
EMAP-NWFE VBEM 500 85.82±0.37 85.82±0.37 0.8516±0.0090

TABLE X: Classification performance of the neural network
on the variants of Salinas dataset, with and without adding
synthetic samples, and using the conventional or variational
EM.

Algorithm EM type |S| AA%±SD OA%±SD Kappa±SD
13 pixels per class

HS raw - 0 15.15±3.27 15.15±3.27 0.0970±0.0321
EMAP-PCA - 0 65.64±3.78 65.64±3.78 0.5959±0.0627
EMAP-PCA EM 500 93.04±0.76 93.04±0.76 0.8539±0.0170
EMAP-PCA VBEM 500 93.10±0.30 93.10±0.30 0.8598±0.0129
EMAP-NWFE - 0 26.54±9.05 26.54±9.05 0.2209±0.1263
EMAP-NWFE EM 500 92.39±0.95 92.39±0.95 0.8416±0.0178
EMAP-NWFE VBEM 500 92.29±0.53 92.29±0.53 0.8494±0.0069

40 pixels per class
HS raw - 0 27.62±3.30 27.62±3.30 0.2039±0.0242
EMAP-PCA - 0 83.50±3.49 83.50±3.49 0.7649±0.0480
EMAP-PCA EM 500 94.55±0.58 94.55±0.58 0.8789±0.0160
EMAP-PCA VBEM 500 94.23±0.61 94.23±0.61 0.8641±0.0188
EMAP-NWFE - 0 56.62±9.22 56.62±9.22 0.4924±0.0989
EMAP-NWFE EM 500 93.86±0.43 93.86±0.43 0.8642±0.0110
EMAP-NWFE VBEM 500 93.81±0.59 93.81±0.59 0.8649±0.0168

VI. CONCLUSION

A common issue in hyperspectral remote sensing image
classification is limited training data. Limited data requires
special classifier tuning, which can be done in multiple
ways. First, a rather conventional parameter grid search based
on cross-validation can be used, which indeed significantly
improves the classifier. Second, it is also possible to add
synthetic samples to adapt the data to the classifier. These
samples are drawn from a GMM that is fitted to the training
samples. On the SalinasA and Botswana datasets, results for
addition of synthetic samples are comparable or even higher

TABLE XI: Classification performance of the neural network
on the variants of SalinasA dataset, with and without adding
synthetic samples, and using the conventional or variational
EM.

Algorithm EM type |S| AA%±SD OA%±SD Kappa±SD
13 pixels per class

HS raw - 0 37.53±4.53 37.53±4.53 0.1289±0.0471
EMAP-PCA - 0 90.96±8.61 90.96±8.61 0.9357±0.0475
EMAP-PCA EM 500 98.78±0.41 98.78±0.41 0.9862±0.0038
EMAP-PCA VBEM 500 98.78±0.25 98.78±0.25 0.9850±0.0052
EMAP-NWFE - 0 61.12±16.50 61.12±16.50 0.4580±0.1803
EMAP-NWFE EM 500 98.85±0.32 98.85±0.32 0.9849±0.0034
EMAP-NWFE VBEM 500 98.78±0.30 98.78±0.30 0.9862±0.0040

40 pixels per class
HS raw - 0 66.36±0.45 66.36±0.45 0.4090±0.0538
EMAP-PCA - 0 98.66±0.23 98.66±0.23 0.9847±0.0034
EMAP-PCA EM 500 98.91±0.19 98.91±0.19 0.9857±0.0044
EMAP-PCA VBEM 500 98.87±0.14 98.87±0.14 0.9849±0.0032
EMAP-NWFE - 0 94.99±1.02 94.99±1.02 0.9150±0.0195
EMAP-NWFE EM 500 99.13±0.20 99.13±0.20 0.9892±0.0024
EMAP-NWFE VBEM 500 99.01±0.14 99.01±0.14 0.9904±0.0011

TABLE XII: Classification performance of the neural network
on the variants of Botswana dataset, with and without adding
synthetic samples, and using the conventional or variational
EM.

Algorithm EM type |S| AA%±SD OA%±SD Kappa±SD
13 pixels per class

HS raw - 0 7.14 ±0.00 7.14 ±0.00 -0.0005±0.0010
EMAP-PCA - 0 77.05±3.75 77.05±3.75 0.7459±0.0320
EMAP-PCA EM 500 93.34±0.91 93.34±0.91 0.9194±0.0083
EMAP-PCA VBEM 500 94.86±0.49 94.86±0.49 0.9377±0.0050
EMAP-NWFE - 0 26.18±7.36 26.18±7.36 0.1800±0.0790
EMAP-NWFE EM 500 94.16±0.23 94.16±0.23 0.9278±0.0042
EMAP-NWFE VBEM 500 92.22±2.40 92.22±2.40 0.9142±0.0089

40 pixels per class
HS raw - 0 19.93±7.03 19.93±7.03 0.1237±0.0610
EMAP-PCA - 0 93.21±0.50 93.21±0.50 0.9154±0.0046
EMAP-PCA EM 500 96.11±0.43 96.11±0.43 0.9505±0.0055
EMAP-PCA VBEM 500 96.45±0.37 96.45±0.37 0.9555±0.0047
EMAP-NWFE - 0 86.50±5.15 86.50±5.15 0.8287±0.0659
EMAP-NWFE EM 500 95.40±0.16 95.40±0.16 0.9413±0.0018
EMAP-NWFE VBEM 500 95.78±0.21 95.78±0.21 0.9463±0.0032

than for an optimized classifier, at a lower computational
cost. Furthermore, taking advantage of variational expectation
maximization rather than conventional EM in the GMM fitting
achieves the aforementioned improvements in a considerably
faster and more efficient way.

APPENDIX

We present here the update equations for the Expectation-
Maximization algorithm. For the expectation, the update is

q∗(Z) = E[znk] = rnk , (6)

where rnk denotes the “responsibility” of component k to
sample n, which will be defined in Eqn. 17 further below.
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(a) EMAP-PCA, 0 Synth (b) EMAP-PCA, 500 Synth (c) EMAP-NWFE, 0 Synth (d) EMAP-NWFE, 500 Synth

(e) EMAP-PCA, 0 Synth (f) EMAP-PCA, 500 Synth (g) EMAP-NWFE, 0 Synth (h) EMAP-NWFE, 500 Synth

(i) EMAP-PCA, 0 Synth (j) EMAP-PCA, 500 Synth (k) EMAP-NWFE, 0 Synth (l) EMAP-NWFE, 500 Synth

(m) EMAP-PCA, 0 Synth (n) EMAP-PCA, 500 Synth (o) EMAP-NWFE, 0 Synth (p) EMAP-NWFE, 500 Synth

Fig. 7: Training loss and validation loss of the neural network versus the number of epochs for different datasets. Each row
represents one dataset. Rows one to four represent Pavia Centre, Salinas, SalinasA and Botswana datasets, respectively. It can
be observed that in all the cases, adding synthetic samples helps the network to converge faster and the loss to get smaller.

Let furthermore

Nk =

N∑
n=1

rnk (7)

x̄k =
1

Nk

N∑
n=1

rnkxn (8)

Sk =
1

Nk

N∑
n=1

rnk(xn − x̄k)(xn − x̄k)T (9)

denote three auxiliary statistics derived from rnk, namely the
number of assigned samples, average and covariance. The
update equations for the maximization step are based on the
factorization

q(π,µ,Λ) = q(π)

K∏
k=1

q(µk,Λk) . (10)

The individual terms are

q?(π) = Dir(π|α) , (11)

where Dir denotes the Dirichlet distribution as a prior for
the mixture weights, and αk = α0 + Nk, where α0 is a
hyperparameter, which we heuristically set to 1.

The second factor of Eqn. 10 is represented as a product of
a Gaussian distribution N and a Wishart distribution W ,

q∗(µk,Λk) = N (µk|mk, (βkΛk)−1)W(Λk|Wk,νk) (12)
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where

βk = β0 +Nk (13)

mk =
1

βk
(β0m0 +Nkx̄k) (14)

W−1
k = W−1

0 +NkSk +
β0Nk

β0 +Nk
(x̄k −m0)(x̄k −m0)T

(15)
νk = ν0 +Nk (16)

denote the remaining parameters for the maximization step,
where again ν0 and β0 are hyperparameters to the distribution
that we heuristically set to 1.

Finally, the responsibilities rnk are computed as

rnk ∝ π̃kΛ̃
1/2
k exp{− D

2βk
− νk

2
(xn−mk)TWk(xn−mk)} ,

(17)
where D denotes the feature dimensionality. Eqn. 17 makes
use of the expectation

Eµk,Λk
[(xn − µk)Tλk(xn − µk)]

= Dβ−1
k + νk(xn −mk)TWk(xn −mk) (18)

and the expectations

ln Λ̃k ≡ E[ln |Λk|] (19)
ln π̃k ≡ E[ln πk] (20)

with

ln Λ̃k =

D∑
i=1

ψ

(
νk + 1− i

2

)
+D ln 2 + ln |Wk| (21)

ln π̃k = ψ(αk)− ψ(
∑
k

(αk)) , (22)

where ψ(·) denotes the digamma function. The EM equations
are iteratively evaluated analogously to the standard EM
algorithm [43].
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Suay, L. Gómez-Chova, G. Mateo-Garcı́a, A. B. Ruescas, V. Laparra,
J. A. Padrón, J. Amorós, and G. Camps-Valls, “Hyperlabelme: a web
platform for benchmarking remote sensing image classifiers,” 2017.
V1.0.

[52] L. Tian, Q. Du, I. Kopriva, and N. Younan, “Spatial-spectral based multi-
view low-rank sparse sbuspace clustering for hyperspectral imagery,” in
IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing
Symposium, pp. 8488–8491, IEEE, 2018.

[53] B. Pan, Z. Shi, and X. Xu, “Multiobjective-based sparse representation
classifier for hyperspectral imagery using limited samples,” IEEE Trans-
actions on Geoscience and Remote Sensing, no. 99, pp. 1–11, 2018.

[54] F. Deng, S. Pu, X. Chen, Y. Shi, T. Yuan, and S. Pu, “Hyperspectral im-
age classification with capsule network using limited training samples,”
Sensors, vol. 18, no. 9, p. 3153, 2018.

[55] M. Hamouda, K. S. Ettabaa, and M. S. Bouhlel, “Modified convolutional
neural network based on adaptive patch extraction for hyperspectral
image classification,” in 2018 IEEE International Conference on Fuzzy
Systems (FUZZ-IEEE), pp. 1–7, IEEE, 2018.

[56] F. Poorahangaryan and H. Ghassemian, “A multiscale modified mini-
mum spanning forest method for spatial-spectral hyperspectral images
classification,” EURASIP Journal on Image and Video Processing,
vol. 2017, no. 1, p. 71, 2017.

[57] V. Menon, Q. Du, and J. E. Fowler, “Random-projection-based non-
negative least squares for hyperspectral image unmixing,” in Hyper-
spectral Image and Signal Processing: Evolution in Remote Sensing
(WHISPERS), 2016 8th Workshop on, pp. 1–5, IEEE, 2016.

[58] T. Liu, Y. Gu, X. Jia, J. A. Benediktsson, and J. Chanussot, “Class-
Specific Sparse Multiple Kernel Learning for Spectral-Spatial Hyper-
spectral Image Classification,” IEEE Transactions on Geoscience and
Remote Sensing, vol. 54, pp. 7351–7365, Dec 2016.

[59] J. Cohen, “A Coefficient of Agreement for Nominal Scales,” Educational
and Psychological Measurement, vol. 20, pp. 37–46, Apr. 1960.

[60] H. Akaike, “Information theory and an extension of the maximum
likelihood principle,” in Selected Papers of Hirotugu Akaike, pp. 199–
213, Springer, 1998.

[61] G. Schwarz et al., “Estimating the dimension of a model,” The annals
of statistics, vol. 6, no. 2, pp. 461–464, 1978.

[62] T. M. Kodinariya and P. R. Makwana, “Review on determining number
of cluster in k-means clustering,” International Journal of Advance
Research in Computer Science and Management Studies, vol. 1, no. 6,
pp. 90–95, 2013.

[63] P. J. Rousseeuw and L. Kaufman, Finding Groups in Data: An Intro-
duction to Cluster Analysis. Wiley Online Library, 1990.

[64] R. Tibshirani, G. Walther, and T. Hastie, “Estimating the number of
clusters in a data set via the gap statistic,” Journal of the Royal Statistical
Society: Series B (Statistical Methodology), vol. 63, no. 2, pp. 411–423,
2001.

[65] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning,
vol. 1. MIT press Cambridge, 2016.

[66] Y. Gal and Z. Ghahramani, “Dropout as a bayesian approximation:
Representing model uncertainty in deep learning,” in international
conference on machine learning, pp. 1050–1059, 2016.

AmirAbbas Davari received the B.Sc. degree
in Electrical Engineering from the University of
Tehran, Tehran, Iran, in 2011. In 2013 He received
the M.Sc. degree, also in Electrical Engineering,
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