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ABSTRACT
The detection of images that are spliced from multiple sources is
one important goal of image forensics. Several methods have been
proposed for this task, but particularly since the rise of social me-
dia, it is an ongoing challenge to devise forensic approaches that are
highly robust to common processing operations such as strong JPEG
recompression and downsampling.

In this work, we make a first step towards a novel type of cue for
image splicing, which is based on the color formation of an image.
We make the assumption that the color formation is a joint result of
the camera hardware, the software settings, and the depicted scene,
and as such can be used to locate spliced patches that originally stem
from different images. To this end, we train a two-stage classifier
on the full set of colors from a Macbeth color chart, and compare
two patches for their color consistency. Our preliminary results on
a challenging dataset on downsampled data of identical scenes indi-
cate that the color distribution can be a useful forensic tool that is
highly resistant to JPEG compression.

Index Terms— image forensics, color image formation, splic-
ing detection

1. INTRODUCTION AND RELATED WORK

In passive image forensics, the task is to determine the origin and
authenticity of one or more images that do not have an embedded
security scheme. Thus, an image has to be validated just from image
content and maybe some (limited) additional contextual information
about its provenance. Different forensic methods are applicable for
this task. The suitability of a particular method oftentimes depends
on external factors such as distribution channels and history, the data
format, and available contextual information. For a general overview
on the field, please refer to one of the books and surveys on the
topics, e.g., [1, 2].

Much of the current research activity focuses on statistical image
forensics. This family of methods aims at detecting manipulation-
induced distortions in the pixel statistics, e.g., by using compression
artifacts [3, 4], prior knowledge about resampling [5] or copy-move
operations [6], or general noise statistics [7, 8, 9].

A challenge for most forensic methods is to operate with com-
pression and downsampling, which is a commonly used operation
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Fig. 1. Example image from the database by Cheng et al. [12] (left),
cutout of the Macbeth color chart region (top right), and extracted
ground truth in RGB color space (bottom right). In contrast to ex-
isting forensic color methods, we not only consider the Macbeth
gray patches, but instead represent the full color gamut, i.e., all 24
patches. This allows to characterize the color gamut of the image.

in social media. Several physics-based methods that operate on the
distribution of light and shadow can be remarkably robust to these
operations [10, 11]. However, these methods typically make quite
restrictive assumptions on the type of objects that can be analyzed
in the scene. Thus, there is an ongoing need for a family of quite
general methods that are able to cope with strong imaging artifacts.

In this work, we explore a new approach to characterize the color
image formation in an image. On modern cameras, colors are formed
by a combination of camera hardware and software. We hypothesize
that the color formation of an image is determined by the hardware
platform and the specific software path on the imaging device when
the picture is taken. For example, two automatically white-balanced
images from the same camera may exhibit quite different color char-
acteristics from one image to another, depending on the way how the
white balancing is performed. Thus, when an object is spliced from
one image into another, and colors are potentially re-balanced, it is
still reasonable to assume that the color formation differs between
the spliced object and the background.

Towards characterization of the color distribution, we propose
a method that learns the color distribution of an image, and how to
distinguish two color distributions. To our knowledge, this is the first
forensic method that considers the full color gamut instead of a sin-
gle white point. This is achieved by training a neural network on all
patches of MacBeth Color chart to model the interplay between the
colors of objects and illumination, as illustrated in Fig. 1. We show
that this method for determining whether an image patch belongs
to the same image is remarkably robust, even to heavy JPEG com-
pression. These initial results are promising, and indicate that color
formation can be a promising direction for future forensic research.

Several related works in computer vision tackle the color con-



stancy problem, i.e., to separate the (intrinsic) body reflection of an
object from the spectrum of the light source. Color constancy is of-
tentimes considered equivalent to the estimation of the light color,
by arguing that if the light source is known, the colors in the scene
can be factored into light color and object color. To achieve this
goal, elementary estimators are have been proposed that are either
statistical [13, 14], physics-based [15, 16], or learning-based estima-
tors [17, 18].

Selected findings from the fundamental works on color con-
stancy have also been proposed for splicing detection in image
forensics. Gholap and Bora [19] proposed to use the intersection of
dichromatic planes to detect inconsistencies in specularities. Other
works used white point estimators on patches to characterize incon-
sistencies in the illumination [20, 21]. However, these methods are
either somewhat too general for an automated analysis of images,
or they have quite restrictive assumptions on the scene composition,
e.g., they can only compare pairs of faces [21]. Moreover, these
methods are difficult to apply in situations when there are multiple
light sources present in the scene. Our proposed method differs from
these works, as it does not aim to estimate a single white point of
the illuminant. Instead, it aims at learning the full color distribution,
which, in principle, offers much richer information to model device-
or image-specific radiometric distortions.

The paper is organized as follows. The background on color
image formation and the method itself are presented in Sec. 2. Ex-
perimental results on closed and open image sets are presented in
Sec. 3. We conclude the work in Sec. 4.

2. PROPOSED ALGORITHM

The proposed method first learns the color statistics of an image with
a Convolutional Neural Network (CNN). Then, a random forest de-
termines the consistency of local image patches to expose splices.
Such a two-stage approach has recently become popular in statisti-
cal image forensics works, e.g., [8, 9, 22].

2.1. Preliminaries

When creating a spliced image from two sources, it is likely that the
source images were recorded under different illuminant conditions
or with devices with different internal color processing. Thus, our
basic assumption is that the color statistics in an original image are
consistent, whereas in a spliced image they are not.

We use scenes containing a Macbeth color chart (MCC) for mea-
suring the color distribution, as shown in Fig. 1 (left). This chart con-
tains nπ patches with defined spectral reflectances πi(λ), 1 ≤ i ≤
nπ , where λ represents the wavelength. The color patches appear
differently from image to image, depending on the spectral illumi-
nation conditions e(λ), the vector-valued function c(λ) of spectral
camera sensitivities for the red, green and blue channel, as well as in-
camera color processing operations such as white-balancing, color
space transformations and tone mapping. We summarize these op-
erations by the potentially nonlinear function Ω. Thus, an observed
image color Πi in a MCC patch i can be modeled as

Πi = Ω

∫
Λ

πi(λ)e(λ)c(λ) dλ

 , (1)

where the integral is evaluated over the visible spectrum Λ.
Contrary to the forensic scenario, where images after the in-

camera color processing stack Ω are analyzed, color constancy al-
gorithms have the goal to estimate and correct an image’s color cast

within the camera pipeline. This color correction is typically applied
prior to other potentially nonlinear in-camera color processing oper-
ations, such that Ω can be assumed to be the identity mapping for
this task. Thus, color constancy methods regress the observed color
Πw of the MCC white patch with πw(λ) ≡ 1 as single target, which
shows the illuminant color filtered by the camera sensitivity:

Πw =
Ω≡Id

∫
Λ

e(λ)c(λ) dλ . (2)

For application in forensics, however, we argue that in order to
characterize the illuminant conditions e(λ) and the full camera color
processing pipeline (Ω, c), the MCC white patch alone does not suf-
fice. Instead, we propose to estimate the colors of all color patches
in the MCC to characterize the spectral statistics of the imaging con-
ditions and the nonlinear imaging system.

2.2. CNN-based Color Statistics Estimator

To estimate this color statistics, we train a CNN on a set IMCC
tr

of images containing MCCs. For each training image I ∈ IMCC
tr ,

the full set of observed colors {ΠI
i }nπi=1 of the color patches in the

MCC is extracted as ground truth, see Figure 1 (bottom right). After
removal of the MCC area (Figure 1 top right), each training image I
is split into nIp patches xIj , 1 ≤ j ≤ nIp, of size M ×N × 3.

As done in several color constancy works, e.g. [17, 18], we ne-
glect the luminance values of the ground truth colors and only esti-
mate their chrominance. To this end, the ground truth is transformed
to the normalized r-g-chromaticity space with

ΠI
i,c =

ΠI
i,C

ΠI
i,R + ΠI

i,G + ΠI
i,B

, (3)

where C ∈ {R,G,B}, c ∈ {r, g, b}, and ΠI
i,C and ΠI

i,c represent
a channel of color patch ΠI

i in RGB and normalized chromaticity
space, respectively. As the three normalized color coordinates ΠI

i,c

sum to 1, it suffices to consider two of them, ΠI
i,r and ΠI

i,g . This
results in a regression target ΠI =

(
ΠI

1, . . . ,Π
I
nπ

)
∈ [0, 1]2nπ for

each image I ∈ IMCC
tr .

The CNN is trained to compute an estimate Π̂I
j of ΠI for each

xIj , i.e., it learns a function

Π̂I
j = f(xIj ;θ) , (4)

with the vector θ collecting all trainable parameters of the CNN. The
objective function uses the mean squared error loss, i.e.,

θ? = argmin
θ

∑
I∈Itr

nIp∑
j=1

(
ΠI − f(xIj ;θ)

)2

(5)

We base our CNN on the XceptionNet [24] architecture with
weights pretrained on ImageNet [25]. The CNN input are patches
of size 128 × 128 × 3. We remove the final classification layer
of the pretrained XceptionNet and apply global average pooling to
the features maps of the previous layer, yielding 2048-dimensional
feature maps. Then, a further dense hidden layer with 128 Rectified
Linear Units [26], and a dense output layer with 2nπ = 48 units and
linear activations are stacked on top.



2.3. Image-level Consistency Assessment

We use the outputs of the trained CNN Π̂I
j = f(xIj ,θ) as features

to characterize the imaging conditions (eI ,ΩI , cI). Inconsistencies
between estimates Π̂Rj1 and Π̂Tj2 from a reference regionR ⊂ I and
a test region T = I\R of a test image I ∈ Ite with Ite∩IMCC

tr = ∅
are then used to expose splices.

We do not assume any knowledge on the color statistics of a test
image. Instead, we learn the similarity of a pair of estimates Π̂j1

and Π̂j2 from a disjoint set of images Itr with Itr ∩ IMCC
tr = ∅

and Itr ∩ Ite = ∅. For this, the CNN outputs Π̂j1 and Π̂j2 for the
pair of patches xj1 , xj2 are combined into a feature vector Π̂j1j2 ,

Π̂j1j2 =

(
|Π̂j1 − Π̂j2 | ,

1

2

(
Π̂j1 + Π̂j2

))
, (6)

where the absolute value | · | is taken per element. This form of pair-
ing feature vectors has the advantage of being symmetric.

We train a 2-class Random Forest classifier [27] h with parame-
ters ζ on these combined feature vectors Π̂j1j2 such that

h(Π̂j1j2 ; ζ) =

{
0 for xj1 ∈ I1,xj2 ∈ I2, I1 = I2
1 for xj1 ∈ I1,xj2 ∈ I2, I1 6= I2

(7)

At test time, we extract all pairs of patches xIj1 ∈ R, xIj2 ∈ T ,
with R ∪ T = I ∈ Ite and classify the combined feature vectors
Π̂j1j2 using h( · ; ζ). We use the fraction of patch pairs that are
classified as spliced as overall probability for an image to be spliced.

2.4. Data Augmentation

During training the CNN, the data is augmented with geometric
transformations to increase the number of samples and with JPEG
compression and JPEG grid desynchronization to simulate degraded
image quality. All degradation factors are uniformly sampled from
their respective value range.

The geometric transformations include rotations and shearing in
the range [−30◦, 30◦], zoom with factors in the range [0.8, 1.2], and
horizontal flipping H with probability 0.5. With probability 0.5,
JPEG compression is applied with quality q in the range [qmin, 100],
followed by JPEG grid desynchronization via horizontal and vertical
shifts in the range of {−7, . . . , 7} pixels. Also with probability 0.5,
additive white Gaussian noise with σ = 0.02 is applied.

For training the Random Forest Classifier h, we only apply
JPEG compression and desynchronization for data augmentation.
With probability 0.5, both patches xj1 and xj2 of each pair are
compressed with the same randomly selected level q prior to feature
extraction f( · ;θ).

3. RESULTS

In this section, we first describe the datasets we use, then we describe
the experiments we conducted and discuss the results.

3.1. Datasets

For training the CNN, we use the two Datasets by Gehler et al. [28]
and by Cheng et al. [12]. These datasets contain MCCs in each
image, as shown in Figure 1 (left). We use the color-processed im-
ages instead of the RAW images, as our method requires that the
images have been processed by the camera pipelines. The dataset by
Gehler et al. [28] consists of 568 indoor and outdoor images from
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Fig. 2. Mean squared error for clean (“nat.”) and JPEG compressed
images for single CNN versus average over an ensemble of 4 CNNs.

2 cameras, from which 4 underexposed images are excluded. The
dataset by Cheng et al. [12] consists of 1853 indoor and outdoor
images from 9 different cameras. We use the tool CCFind [29] to
transfer the provided MCC coordinates from the RAW images to the
cropped JPG images. We exclude 126 images which are either over-
or underexposed, or for which the MCC extraction failed.

Both datasets combined yield 2291 images from 11 cameras.
The images are resized with constant aspect ratio to 1536 pixels in
the larger dimension. 10 images per camera are held out for val-
idation and testing. Hence, the CNN is trained on patches from
|IMCC
tr | = 2071 images, and the validation and test sets IMCC

val

and IMCC
te each comprise 110 images. Patches of 128 × 128 pix-

els are extracted with 64 pixels stride for the training and validation
images, and with 128 pixels stride for the test images. All patches
with MCCs are omitted. Prior to data augmentation, the training,
validation and test sets consist of about 630,000, 33,400 and 9,400
patches, respectively.

For training the Random Forest Classifier, we use |Itr| = 1, 100
images from 11 different smartphone cameras from the VISION
Dataset by Shullani et al. [30]. Here, the images are all resized to
1, 536× 1024 pixels prior to patch extraction.

The test images Ite for splicing detection are built from 342 im-
ages of 83 scenes of the Dresden Image Database [31] (see Sec. 3.4).

3.2. Training and Evaluation of the CNN

We train the CNN with the Adam optimizer [32] with an initial learn-
ing rate l = 103 and the parameters β1 = 0.9 and β2 = 0.999.
Whenever the loss on the validation data does not improve for 3
epochs, we reduce l by a factor of 10. We applied early stopping
once the validation loss does not significantly improve anymore.
That way, the model trained for 14 epochs to obtain a final validation
MSE loss of 1.018 · 10−3. Training takes approximately 11 hours
on an NVIDIA GeForce GTX 1080 GPU using Python and Keras.

We evaluate the CNN on the MCC test images IMCC
te for differ-

ent compression levels. In particular, we computed the mean squared
error on the clean images, and on the same images with JPEG com-
pressions of qualities 100 to 10 in steps of 10. The results are shown
in Fig. 2 for a estimates of a single CNN trained with qmin = 50,
and for median averaged estimates over an ensemble of 4 CNNs,
where 2 are trained with qmin = 50 and 2 with qmin = 10.

We note that the estimates are very robust with respect to JPEG
compression. Also, as each CNN in the ensemble is trained with
different randomly sampled batches, the median of their yields more
stable estimates. For this reason, unless otherwise stated, we conduct
all following experiments with that ensemble of CNNs.
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3.3. Closed-Set Patch Association

As a baseline, we perform a closed-set experiment to investigate the
descriptiveness of the learned color statistics for the image prove-
nance of a patch. To this end, each test image I ∈ IMCC

te is subdi-
vided into non-overlapping patches, and randomly split into training
and test set with a ratio of 0.7/0.3. Then, we train a Random For-
est classifier on this training set with the number of classes equal
to number of test images |IMCC

te | = 110. For evaluation, we clas-
sify the remaining test patches. The micro-averaged ROC curves are
reported in Figure 3 (left).

For uncompressed images, the AUC is 0.938, indicating that the
learned color statistics are indeed characteristic for the image prove-
nance of a patch. Additionally, for JPEG quality 10, the AUC is still
0.87, which indicates that the features are promising to also work on
low-quality data.

3.4. Open-Set Splicing Detection

To evaluate the learned color statistics in a forensically more real-
istic scenario, we created a completely separate test dataset Ite us-
ing the Dresden Image Database [31]. For each of the 83 scenes,
we randomly selected 4 images from different cameras, resized to
1024× 1536 pixels. Two of the images are used as pristine images.
From the two remaining images, we insert the left third of the image
area into one of the pristine images to obtain two splices. Since the
content of the scenes in the Dresden database is aligned, the image
content of the splices is highly consistent, which prevents the the
classifier to guess splices from varying image content.

We evaluate our method on the test dataset Ite with the image-
independent similarity measure from Sec. 2.3, using a Random For-
est with 500 trees pruned to a maximum depth of 20.

The training data Itr is created from 1,100 images of 11 smart-
phone cameras of different brands from the VISION database. We
sample patches of 128×128 pixels to obtain per database image 100
pairs from within the image, and 100 pairs from one patch within the
image, and the second patch from another image. Pairs are concate-
nated via Eqn. 6, yielding in total 220,000 combined features.

Results for this experiment are shown in Fig. 3 (middle). The
AUCs range from 0.74 for high quality images, to 0.69 for JPEG
quality 20, and 0.63 for JPEG quality 10, which underlines the ro-
bustness of the color features to compression. Qualitative examples
are shown in Fig. 4. In the top row, spliced images are shown, and
in the bottom row detection heat maps over the left (spliced) third
of the image. From left to right, the first two images exhibit high
manipulation probabilities, the second two images show much lower
probabilities.

Fig. 4. Qualitative results on four spliced images (top) and the re-
sulting heat maps on the left third of the image (bottom). The two
cases on the left show high splicing probabilities, the two cases on
the right are failure cases with low probabilities.

3.5. Comparison to Related Work

Comparisons to the recent work by Huh et al. [22] and Cozzolino et
al. [33] are shown in in Fig. 3 (right). Here, the AUCs over com-
pression levels are shown. We evaluated the method by Cozzolino et
al. in unsupervised (red) and supervised (green) mode, where we
provided in the latter case, the unmodified area of an image as ad-
ditional training input. In both cases, the proposed method outper-
forms the method by Cozzolino et al., which can be attributed to the
fact that much of the low-level statistics is removed upon resampling
and recompressing the training data. The method by Huh et al. (or-
ange) performs remarkably well, which we hypothesize is due to the
fact that the authors state that it learns a mixture of color artifacts,
and due to in parts inhomogeneous resampling of the test data (for
which our method has no training examples). However, the proposed
method (blue) outperforms Huh et al. for very low JPEG qualities,
which again shows the robustness of the proposed color cue.

4. CONCLUSIONS

We demonstrated that the color formation of an image can be used to
determine whether an image patch belongs to a source image. One
key idea of this approach is to use all patches from a Macbeth color
chart to train a specialized network for the extraction of color fea-
tures, which are subsequently used to compare patches in an image.
Our evaluation on resampled data shows that the proposed color cues
are highly robust to JPEG compression.

This is preliminary work, with a number of possibilities to fol-
low up. For example, in future work, we plan to incorporate addi-
tional prior knowledge on camera image formation into the feature
extraction. We also plan to perform the patch prediction on a mani-
fold in feature space using a Siamese network.
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[31] T. Gloe and R. Böhme, “The’dresden image database’for
benchmarking digital image forensics,” in Proceedings of the
2010 ACM Symposium on Applied Computing. ACM, 2010, pp.
1584–1590.

[32] D. P. Kingma and J. Ba, “Adam: A method for stochastic opti-
mization,” arXiv preprint arXiv:1412.6980, 2014.

[33] D. Cozzolino, G. Poggi, and L. Verdoliva, “Splicebuster: A
new blind image splicing detector,” in IEEE International
Workshop on Information Forensics and Security (WIFS), Nov.
2015.

https://arxiv.org/pdf/1805.04096.pdf
https://arxiv.org/pdf/1805.04096.pdf
http://issl.udayton.edu/index.php/research/ccfind/
http://issl.udayton.edu/index.php/research/ccfind/
https://doi.org/10.1186/s13635-017-0067-2
https://doi.org/10.1186/s13635-017-0067-2

	 Introduction and Related Work
	 Proposed Algorithm
	 Preliminaries
	 CNN-based Color Statistics Estimator
	 Image-level Consistency Assessment
	 Data Augmentation

	 Results
	 Datasets
	 Training and Evaluation of the CNN
	 Closed-Set Patch Association
	 Open-Set Splicing Detection
	 Comparison to Related Work

	 Conclusions
	 References

