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ABSTRACT
The JPEG compression format provides a rich source of forensic
traces that include quantization artifacts, fingerprints of the con-
tainer format, and numerical particularities of JPEG compressors.
Such a diverse set of cues serves as the basis for a forensic examiner
to determine origin and authenticity of an image.

In this work, we present a novel artifact that can be used to
fingerprint the JPEG compression library. The artifact arises from
chroma subsampling in one of the most popular JPEG implementa-
tions. Due to integer rounding, every second column of the com-
pressed chroma channel appears on average slightly brighter than
its neighboring columns, which is whywe call the artifact a “chroma
wrinkle”. We theoretically derive the chroma wrinkle footprint in
DCT domain, and use this footprint for detecting chroma wrinkles.
The artifact is detected with more than 90% accuracy on images
of JPEG quality 75 and above. Our experiments indicate that the
artifact can also be used for manipulation localization, and that it
is robust to several global postprocessing operations.

CCS CONCEPTS
• Theory of computation→Data compression; •Computing
methodologies → Image processing; Image compression; •
Information systems→ Multimedia content creation.
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1 INTRODUCTION
The goal of digital image forensics is to develop tools for validating
origin and authenticity of digital images. These tools are typically
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intended for users in law enforcement, journalism, and private
corporations that use images as part of their business model. These
users operate on images with large variations in content and quality,
ranging from high-quality photographic source data in court to
downsampled and strongly compressed content in internet forums.
Such diverse requirements from these users can not be satisfied by
a single forensic tool. Thus, researchers developed a set of methods
with varying specializations. An overview on existing methods can
be found in textbooks on image forensics, e.g., [10, 21].

Among these works, a family of methods focuses on the analysis
of JPEG compression artifacts, because JPEG is probably the most
widely used storage format for images from consumer devices. It
achieves much of its storage efficiency by removing high-frequency
image content. This change of the image content is oftentimes
visually imperceptible, but it can nevertheless provide valuable
cues for forensic examiners.

Compression artifacts can be used for example to estimate the
compression history of an image, and in particular to distinguish
image areas that are compressed once from areas that are com-
pressed twice. To this end, many works distinguish whether the
JPEG blocks of the first and second compression are assumed to be
aligned [17, 20] or not aligned [3]. Both tasks can also be combined
into one approach, which either involves an exhaustive search over
the possible block alignments [4, 9, 24] or a statistical model with
a capacity that is sufficiently large to model the appearance of all
possible shifts [2]. It is even possible to analyze more than two sub-
sequent compression steps, if adequate assumptions are met. Block
convergence can be used to estimate how many times an image
has undergone JPEG compression [7, 15]. Pasquini et al. proposed
a method to identify up to three aligned JPEG compressions and
quality factors using Benford-Fourier coefficients [18].

JPEG artifacts can also be used specifically for manipulation
detection. For example, retouching or splicing may lead to incon-
sistent blocking artifacts [16, 23].

Closely related is also the extensive literature on steganalytic
methods for images, which search for very subtle signal embeddings
in JPEG images. For example, Fridrich and Kodovský proposed the
“rich models” [11] as a statistical descriptor for classification of
unnatural image content, and extended this approach to the DCT
domain of JPEG images [14]. Similar features capturing intrablock
and interblock correlations between DCT coefficients were shown
to be effective for steganalysis and image forensics tasks [8, 13].

Recently, researchers started to investigate differences in imple-
mentations of JPEG libraries. The goal of these works is to extract
a library fingerprint. Such a cue provides insights on the software
platform and configuration of the system, which helps associating
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an image to a source. Additionally, such a cue can indicate manip-
ulations if it can be recovered on a sufficiently small local image
region. For example, Agarwal and Farid characterize different JPEG
implementations by their integer rounding operators during quanti-
zation [1]. The choice between floor and ceiling operators manifests
itself as a single darker or brighter pixel in each 8 × 8 pixel block,
which they call “dimples”. Bonettini et al. recompress an input im-
age with a known compressor in order to characterize differences
in JPEG implementations [5]. This descriptor differentiates between
JPEG images compressed with Photoshop and the Python Imaging
Library (PIL) even if the same quantization matrix is used.

In this work, we report about a new artifact from the JPEG library
implementation libjpeg. The artifact occurs as a high-frequency
periodic pattern in chroma subsampling, and hence we call this ar-
tifact chroma wrinkles. It can best be observed in high-quality JPEG
images, where least of the high-frequency content is cut off. We
propose a straightforward detector that correlates a template of the
artifact with the coefficients of the discrete cosine transform (DCT)
of the image. We evaluate the detector’s robustness to typical post-
processing operations including double compression. The presence
or absence of the artifact can provide a hint which software library
was used in the last compression step. Specific combinations of li-
braries even allow to deduce information about earlier compression
steps. As such, chroma wrinkles can be a useful tool to distinguish
images from different sources or processing histories. Additionally,
local inconsistencies in the chroma wrinkles can indicate image
manipulations. We demonstrate forgery localization for the case of
image inpainting and two cases of image splicing when either host
or donor, or when both contain the artifact.

The paper is organized as follows. In Sec. 2, we provide back-
ground information on differences in JPEG library implementations.
In Sec. 3, we present the origin of the chroma wrinkles, and a de-
tection algorithm. In Sec. 4, we evaluate the detector for a range of
different JPEG qualities, study the artifact under various postpro-
cessing operations, and investigate its prevalence in images from
mobile devices. The work is concluded in Sec. 5.

2 CHROMA SUBSAMPLING IN LIBJPEG
Many software packages use the JPEG implementation in libjpeg
or one of its forks for processing JPEG images. Notable forks of
libjpeg are libjpeg-turbo and mozjpeg, which optimize on com-
putational efficiency and file size, respectively.

All these implementations offer to subsample the chroma com-
ponents for higher compression rates. Downsampling is oftentimes
done by a factor of 2, where 4:2:2 denotes horizontal downsampling,
and 4:2:0 denotes horizontal and vertical downsampling.

JPEG implementations differ in the exact realization of the down-
sampler and its associated upsampler. We refer to the classical
scaling as simple scaling. Here, neighboring pixels are averaged
prior to the DCT on 8× 8 pixels. Upsampling is done by replicating
each pixel after the inverse DCT. A variant of this upsampler lin-
early interpolates chrominance pixels weighted by proximity [7].
This approach is called fancy upsampling.

From libjpeg v7 on, DCT scaling became the default scaling
operation. Here, a DCT is performed on the full 16×16 macro-block,
and only the 8 × 8 DCT coefficients corresponding to the lowest

1 METHODDEF(void) h2v2_downsample (...)
2 {
3 ...
4 inptr0 = input_data[inrow];
5 inptr1 = input_data[inrow+1];
6 bias = 1;
7 /* bias = 1,2,1,2,... for successive samples */
8 for (outcol = 0; outcol < output_cols; outcol++) {
9 *outptr++ = (JSAMPLE) (
10 (GETJSAMPLE(*inptr0)
11 + GETJSAMPLE(inptr0[1])
12 + GETJSAMPLE(*inptr1)
13 + GETJSAMPLE(inptr1[1])
14 + bias) >> 2);
15 bias ^= 3; /* 1=>2, 2=>1 */
16 inptr0 += 2; inptr1 += 2;
17 }
18 inrow += 2;
19 outrow++;
20 ...
21 }

Listing 1: Simple scaling is implemented in jcsample.c. The
bias calculation avoids a shift of intensity values, but intro-
duces a periodic pattern.

frequencies are stored. Upsampling is performed by zero-padding of
the missing DCT coefficients prior to the inverse DCT. Interestingly,
libjpeg-turbo did not adopt this change. In particular, the default
downsampler uses simple scaling and the default upsampler uses
fancy upsampling.

In this work, we demonstrate that simple scaling leaves behind a
detectable forensic trace. This trace allows to distinguish images
that are compressed with simple scaling from DCT scaling. Because
simple scaling is the default option in libjpeg-turbo, the artifact
is introduced by a number of software packages and operating
systems that use this library, for example Android, Ubuntu Linux,
and Debian.

3 ORIGIN AND DETECTION OF CHROMA
WRINKLES

In this section, we first show the origin of the chroma wrinkles
artifact in simple scaling. Then, we show its footprint in the DCT co-
efficients and propose for detection a template-matching algorithm
in DCT domain.

3.1 Artifact origin
In libjpeg and its variants, simple scaling is implemented in the
methods h2v2_downsample and h2v1_downsample for 4:2:0 and
4:2:2 subsampling, respectively. Chroma wrinkles are introduced in
both variants, but due to space constraints, we only show the case
for 4:2:0 subsampling. 4:2:0 simple subsampling averages 2×2 pixels
by calculating the sum and performing a division by 4 via two bit
shifts. This bit-shifting operation always rounds to the next lower
integer. To counter a potential loss of intensity, a scalar bias is added.
The bias toggles between the values one and two in horizontal
direction, which normalizes the intensity range, but introduces a
periodic pattern. Listing 1 shows the location in the code of libjpeg
for 4:2:0 subsampling where the artifact is introduced. The bias is
added in line 14 of the listing, and toggled in line 15.



3.2 Artifact footprint in DCT domain
Suppose a 1-D signal f (x ) ∈ Z8 that is a sum of the image signal
s (x ) and chroma wrinklesw (x ), i.e.,

f (x ) = s (x ) +w (x ) . (1)

The linearity of the DCT yields the same relation in DCT domain,

DCT( f (x )) = DCT(s (x )) + DCT(w (x )) , (2)

which allows to isolate the DCT footprint of the chroma wrinkles
DCT(w (x )). Thus, we seek the DCT ofw (x ), which is

DCT(w (x )) = α (u)
N−1∑
x=0

w (x ) cos
(
π (2x + 1)u

2N

)
, (3)

where N = 8, 0 ≤ u ≤ 7, α (u) =
√

1/N for u = 0 and α (u) =
√

2/N otherwise, and w (x ) = [1, 2, 1, 2, 1, 2, 1, 2] as illustrated in
the previous subsection.

We rearrange the terms into pixels at odd and even positions,

DCT(w (x )) = α (u) (
∑

x=0,2,4,6
w (x ) cos

(
π (2x + 1)u

2N

)
+

∑
x=1,3,5,7

w (x ) cos
(
π (2x + 1)u

2N

)
) .

(4)

Sincew (0) = w (2) = w (4) = w (6) andw (1) = w (3) = w (5) = w (7),
w (x ) can be moved in front of the sums,

DCT(w (x )) = α (u) (w (0)[ cos(
u · π

16
) + cos(

5u · π
16

)+

cos(
9u · π

16
) + cos(

13u · π
16

)]+

w (1)[ cos(
3u · π

16
) + cos(

7u · π
16

)+

cos(
11u · π

16
) + cos(

15u · π
16

)])

(5)

For even values of u, the sums of cosines in the square brackets
are always 0, and hence DCT(w (x )) is 0. For odd values of u, non-
zero values are obtained. Thus, the solution for the AC coefficients
of Eqn. 5 is

DCT(w (x )) = (w (0) −w (1)) · [0.25, 0, 0.30, 0, 0.45, 0, 1.28] (6)
= [−0.25, 0,−0.30, 0,−0.45, 0,−1.28] . (7)

Consequently, the periodic bias translates to a periodic DCT pattern.
Extension to 2-D: The same consideration holds for the case of

a 2-D pixel grid. Let f (x ,y) ∈ Z8×8 denote a subsampled block of
pixels that contains wrinklesw (x ,y) ∈ Z8×8. Thewrinkles are again
additive to the image content s (x ,y), i.e., f (x ,y) = s (x ,y)+w (x ,y).
Chroma wrinkles only occur in horizontal direction, and wrinkles
from different rows are identical. Thus, we seek to transform a
signal of the form

w (x ,y) =



1 2 1 2 1 2 1 2
...
...
...
...
...
...
...
...

1 2 1 2 1 2 1 2



. (8)

We separate the 2-D DCT into one 1-D DCT in horizontal direction,
and another 1-D DCT in vertical direction. The horizontal trans-
formation leads for each row to the result of Eqn. 7. Transforming
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Figure 1: Average difference of DCT coefficients of the Cb
channel of two images compressed with simple scaling and
DCT scaling.

these identical rows in vertical direction only preserves the vertical
DC component. The resulting coefficients are

DCT(w (x ,y)) =



∗ −0.72 0 −0.85 0 −1.27 0 −3.62
0 0 0 0 0 0 0 0
...

...
...

...
...

...
...

...

0 0 0 0 0 0 0 0



. (9)

Thus, the periodic pattern of the bias in Sec. 3.1 translates to a
periodic pattern in the first row of a DCT block. Figure 1 shows an
experimental validation of this calculation. Here, we calculated the
average difference of DCT coefficients of two images compressed
with simple scaling and DCT scaling. The artifact occurs at hori-
zontal frequencies for the odd coefficients. The artifact strength
increases with frequency.

3.3 Detection
In practice, a chromawrinkle detector has to determine the presence
of the wrinklew (x ,y) in presence of the actual image signal s (x ,y).
We propose to test for the presence of chroma wrinkles directly in
DCT domain. To do so, we create an 8 × 8 template from the DCT
footprint of the chroma wrinkles in Eqn. 9.

To test an 8 × 8 image block д(x ,y) for chroma wrinkles, we
first retrieve its chroma DCT coefficients from the compressed
image. These coefficients are dequantized by multiplication with
their respective quantization factor. The DC component is also
removed, analogously to the template. The test itself is a zero-mean
normalized cross-correlation on the AC coefficients, namely

zncc(t (x ,y),д(x ,y)) =
1
63

∑
0≤x,y≤7
x,0∧y,0

t̄ (x ,y) · д̄(x ,y)

σtσд
, (10)

where t (x ,y) = DCT(w (x ,y)) denotes the template, t̄ (x ,y) and
д̄(x ,y) are mean-free versions of t (x ,y) and д(x ,y), and σt , σд
denote the standard deviations over t (x ,y) and д(x ,y), respectively.

A high correlation indicates that the block contains the artifact,
a low correlation indicates that the artifact is not present. The score
for a single image can be computed by averaging the scores over
all blocks. The decision threshold can either manually be set, or
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Figure 2: Accuracy to distinguish simple scaling and DCT
scaling with a linear SVM on block correlations. The detec-
tion accuracy decreases with lower JPEG quality factors.

determined from the data. We propose to use a simple yet effective
support vector machine (SVM) with linear decision boundary that
is trained on the matching scores for the Cb and Cr channels. It
is interesting to note that our decision boundary does not weight
correlations in the Cb and Cr channel equally. For the majority of
images, the correlation score in the Cb channel is higher than in
the Cr channel, which we hypothesize is due to differences in in-
camera processing for the red and blue channels.We also considered
correlating only a subset of the AC coefficients but found the full
63 AC coefficients to give the best results.

4 EVALUATION
All evaluations are performed on 1,491 RAW images from the Dres-
den database [12]. We convert the images to JPEG using dcraw
as well as cjpeg and djpeg from libjpeg v9a. Command line
switches allow to generate images both with DCT scaling and with
simple scaling. For fancy upsampling we use djpeg from libjpeg-
turbo v2.0.1. In all experiments, care was taken that the type of
subsampling is the only difference in the processing of the images.
All experiments are performed with 4:2:0 chroma subsampling, but
the same artifact is analogously part of 4:2:2 chroma subsampling.

4.1 Detection under varying JPEG quality
Chroma wrinkles are a high-frequency artifact, and as such sus-
ceptible to strong JPEG compression that discards high-frequency
content. To investigate the robustness of the proposed artifact, we
compress the RAW images with JPEG quality factors between 50
and 100, once using DCT scaling and once using simple scaling
(all other compression parameters are fixed). We distinguish both
scaling variants with SVMs, where one SVM is trained for each
quality factor. The training is performed separately for each quality
factor on 90% of the images using 10-fold cross-validation. Testing
is performed on the remaining images.

Figure 2 shows the obtained accuracies per quality factor. For
quality factors 100, 95, and 90 the accuracies range around 98%.
With decreasing JPEG quality, the classifier’s effectiveness drops.
For JPEG quality 75, accuracy is still above 90%, for JPEG quality
50, accuracy is at about 75%.

Table 1: Effect of recompression on chroma wrinkles. Re-
peated simple downsampling with intermediate DCT/fancy
upsampling enhances the artifact, while simple/fancy up-
sampling followed by DCT downsampling attenuates it. The
remaining variations barely affect the artifact.

1st compression Decomp. 2nd comp. Cb correlation
- - 0.081 ± 0.032

simple 0.080 ± 0.031
simple DCT 0.071 ± 0.028

simple 0.130 ± 0.038
DCT DCT 0.080 ± 0.031

simple 0.130 ± 0.029

simple

fancy DCT 0.041 ± 0.019

4.2 Interplay of up- and downsampling
In many practical cases, it is expected that an image has been com-
pressed at least twice. This compression likely occurs on different
systems, e.g., inside a camera and on a social media site. Let us
assume that the first compression uses simple scaling, which intro-
duces chromawrinkles. Then, we show that the wrinkle detecability
is affected by the combination of the decompressor and the second
compressor. To this end, we first compress the RAW images from
the Dresden database using simple scaling with quality 100. Then,
these images are decompressed using simple upsampling, DCT up-
sampling, or fancy upsampling and subsequently recompressed by
using either simple downsampling or DCT downsampling with qual-
ity 100. Table 1 lists the correlation scores and standard deviations
for these four combinations for the Cb channel (the Cr channel
behaves analogously). The results show that identical methods for
up- and downsampling do not affect the correlation. Correlations
are slightly attenuated with simple upsampling followed by DCT
downsampling. Fancy upsampling followed by DCT downsampling
further decreases the correlations. The correlations are increased
by DCT upsampling or fancy upsampling followed by simple down-
sampling, since this sequence enhances the wrinkles.

4.3 Resilience to global operations
We evaluate the persistence of chromawrinkles under four common
postprocessing operations, namely recompression, gamma adjust-
ment, additive noise, and image scaling. Finally, we discuss (without
evaluation) that image cropping does not impact detectability.

For each scenario, the 1,491 RAW images from the Dresden
database are first converted to JPEG with simple scaling and quality
100. We then apply DCT upsampling, perform the post-processing
operation in image space, and recompress the resulting image with
DCT scaling and quality factor 100. As shown in the previous section,
this compressor configuration does not impact the correlations, and
therefore allows to study the respective post-processing operations.

4.3.1 Recompression. We study JPEG compressionwith lower qual-
ity factors. To this end, we used a quality factor between 80 and
100 for the second compression. At quality factor 100, the average
correlation is 0.08 (cf. the fifth row of Tab. 1). Figure 3 (left) shows
that correlations quickly approach zero below JPEG quality 95.
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Figure 3: Correlation scores in Cb channel after applying
one of four common post-processing operations: JPEG com-
pression (quality factor), gamma correction (gamma), cor-
ruption by additive noise (SNR in dB), scaling (scale factor).

4.3.2 Gamma correction. The second plot in Fig. 3 shows that the
chroma wrinkles are barely affected by gamma adjustments in the
image within a wide range of gamma factors from 0.2 to 1.8.

4.3.3 Additive noise. The third plot in Fig. 3 shows that the chroma
wrinkles are relatively resilient to additive zero-mean Gaussian
noise. The correlations are clearly different from 0 for signal-to-
noise ratios (SNR) of 10 dB and above.

4.3.4 Image resizing. The rightmost plot in Fig. 3 shows the im-
pact of scaling on chroma wrinkles. We perform this evaluation by
scaling the image by a fixed scaling factor using bilinear interpo-
lation, store the image in JPEG format, uncompress it again, and
scale it back to the original resolution. It turns out that upsampling
barely affects the wrinkles, while downsampling is a quite destruc-
tive operation, which is in line with recent fundamental results on
resampled signals [19].

4.3.5 Image cropping. Cropping an image does not change de-
tectability of chroma wrinkles. If an odd number of columns is
cropped from the left boundary of the image, the sign of the chroma
wrinkle artifacts flip. Mathematically,w (0) andw (1) swap values
in Eqn. 6, which also flips the sign of the correlations, but the
magnitude of the correlation is unchanged.

4.4 Manipulation localization
Inconsistencies in the correlations of local image patches can be
used to detect areas that have been edited.We demonstrate this with
three examples in Fig. 4. In the top row of Fig. 4, the background
image is compressed with DCT scaling, while the inserted airplane
wreck is compressed with simple scaling. The ground truth mask
for the inserted area is shown in the middle. We calculate chroma
wrinkle correlations on patches of 128× 128 pixels, which gives the
Cb correlation map on the right. Although the correlations in the
inserted regions have an overall magnitude of only about 0.1, they
can be well distinguished from the background.

The middle row of Fig. 4 illustrates the case where both back-
ground and inserted image contain wrinkles, but the wrinkles in

Manipulated image Ground truth Localization mask
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Figure 4: Three examples for image manipulation localiza-
tion. Top: Image splicing localization when only the donor
image contains chroma wrinkles. The background land-
scape is compressed with DCT scaling and the donor uses
simple scaling. Middle: Image splicing localization where
both host and donor contain the artifact, however, the ar-
tifacts in the inserted region are desynchronized with the
host. Bottom: Inpaintaing localizationwhen the original im-
age contains the chroma wrinkles. The church tower image
is compressedwith simple scaling. The clock in the frontwas
removed in Photoshop using content-aware fill.

the inserted area are horizontally shifted by one pixel relative to
the background. As a consequence, background and inserted area
both show non-zero correlations. However, the signs of these cor-
relations are different, which indicates the spliced region.

The bottom row of Fig. 4 illustrates the case that the background
image contains wrinkles that are removed by local editing. More
specifically, a tower clock is removed using Photoshop’s content-
aware fill, and the result is saved again as JPEG image with quality
factor 100. To detect this relatively small area, we additionally
suppress the scene content by transforming the DCT coefficients
back into pixel domain, and apply a 3 × 3 Wiener filter. The noise
residual is transformed back into DCT coefficients for computing
the correlations. As shown in the localizationmask, themanipulated
area exhibits a correlation of zero.

Similar cases like the examples above can be created from several
library constellations. The widely used libjpeg-turbo introduces
the artifact by default, while recent versions of libjpeg do not.
High-quality compressions of mozjpeg and Adobe Photoshop do
not subsample the chroma channels, and therefore also do not intro-
duce chroma wrinkles in that case. Thus, image splicings between
images from mixed libraries or editing within libjpeg-turbo-
compressed images can exhibit such inconsistencies in chroma
wrinkles. However, further research is required to detect local in-
consistencies in chroma wrinkles “in the wild”. In particular, scene
content affects the analysis. We empirically found that noise resid-
uals from Wiener filtering oftentimes improve but sometimes also
weaken the detection.



4.5 Prevalence in mobile devices
We study 35mobile devices from the VISION dataset [22]. All images
with chroma subsampling steps other than 4:2:0 were excluded,
which left us with 10,867 original, 7,478 WhatsApp, and 15,130
Facebook images. Since the estimator is sensitive to compression,
we first estimate the quality factor from the image under analysis. To
this end, we use the quantization tables of libjpeg v9a in quality
steps of 5, and select the quantization table with the closest least
squares distance to the chroma table of the input image. We use that
quantization table to create a training set on the Dresden database,
and train a linear SVM. Among the 35 devices, we found two of them
to predominantly produce images with chroma wrinkles. These
smartphones are the Huawei EVA-L09 and the LG D290 with 99.7%
and 77.2% of the images, respectively. It is interesting to note that
some of the LG D290’s images seem to contain the artifacts and
others do not.

Additionally, the WhatsApp and Facebook images in the VISION
dataset were analyzed. As most WhatsApp images in the dataset
use the same quantization table, we generate training images with
that particular quantization table to more closely align training and
test images. WhatsApp images with other quantization tables are
excluded from the evaluation. We observe a surprisingly diverse
mixture of present and absent chroma wrinkles in this dataset. In
total, chroma wrinkles are detected on 71.8% of the WhatsApp and
63.6% of the Facebook images. We hypothesize that these results
are due to different processing pipelines within these platforms,
which has also been reported in dedicated works on social network
provenance [6]. While this property makes it difficult to use chroma
wrinkles for fingerprinting of social media data, it may be useful for
detecting local inconsistencies for spliced imageswhere background
and inserted images stem from within the same network.

5 CONCLUSIONS
We present a new periodic artifact that arises from chroma subsam-
pling in JPEG compression libraries. The artifact is a slight periodic
chroma variation in horizontal direction, which is why we call it
chroma wrinkle. We theoretically derive the footprint of chroma
wrinkles in DCT domain. This footprint serves as a template for de-
tecting the wrinkles, by correlating the template with dequantized
DCT blocks of an image.

Chroma wrinkles can serve as forensic cue on the software
library that was used to compress the image, most notably for
compression with the widely used libjpeg-turbo in its default
configuration. In principle, chroma wrinkles can also be used for
manipulation localization. In future work, it may be interesting
to investigate advanced denoising methods for detection of local
manipulations.
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