

Can you enhance it?

Forensic Reconstruction of Severely Degraded License Plates

Benedikt Lorch¹, Shruti Agarwal², Hany Farid² ¹ Friedrich-Alexander University; Erlangen, Germany ² Dartmouth College; Hanover, NH, USA January 14, 2019

Can you read this?

Can you read this?

Turning the image enhancement problem on its head

Image in question

Turning the image enhancement problem on its head

Turning the image enhancement problem on its head

Conventional recognition¹

- 1. License plate detection
- 2. Character segmentation
- 3. Character recognition

¹M. Safraz, M. J. Ahmed, S. A. Ghazi, "Saudi Arabian license plate recognition system", in 2003 International Conference on Geometric Modeling and Graphics, Jul. 2003.

Related work

Correlation by Hsieh et al.²

- Slide character templates across image
- Drawback: Requires knowledge of font style and character placement

²P.-L. Hsieh, Y.-M. Liang, H.Y. M. Liao, "Recognition of blurred license plate images", in 2010 IEEE International Workshop on Information Forensics and Security, Dec. 2010.

Related work

CNN-based recognition by Agarwal et al.³

- · Recognize the first and last three characters separately
- Drawback: Assumes six-character license plates

³S. Agarwal, D. Tran, L. Torresani, H. Farid, "Deciphering severely degraded license plates", *Electronic Imaging*, Jan. 2017.

Goal

Proposed method

• Work with variable number of characters (5 to 7)

Performance evaluation

- Fill license number label with null character ">" up to length seven
- · Assign integer score out of a maximum of seven points

True	Predicted	Top-1 accuracy
ABC123	ABC123◊	7/7 (100%)
ABC123	ABC12↔	6/7 (86%)
ABC123	ABC1234	6/7 (86%)
ABC123	AXXXX3	3/7 (43%)
ABC123	XABC123	0/7 (0%)

- · Report Levenshtein distance to take shifted recognition into account
- Address similar characters, e.g., "O" and "0", "I" and "1", by Top-5 accuracy

Implementation as CNN architecture I

· VGG-like architecture with seven output layers consisting of 37 units each

Synthetic data rendering

- Optimizing 55M parameters requires a lot of training data
- Generate synthetic training images based on measurements from real-world license plates

Synthetic-I training image examples

• Vary characters, gap position, font, font size, character placement, contrast, background

Degradation levels

Synthetic-I results on 1,000 real-world images

Top-1 accuracies

Example: "CDS7001"

Synthetic-I results on 1,000 real-world images

Confusion chart

Improving synthetic data rendering

- Place distracting object
- Add embossing effect
- Add frame and drop shadow
- · Colorize background, font, and frame and blend with natural images

Synthetic-II results on 1,000 real-world images

Example: "CDS7001"

Real-world images from Plateshack

Real-world: Fine-tuning on Plateshack images

• Train on synthetic images, fine-tune all layers on Plateshack images with reduced learning rate

Real-world: Fine-tuning on Plateshack images

• Train on synthetic images, fine-tune all layers on Plateshack images with reduced learning rate

Example: "CDS7001"

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

Idea: Highlight important regions for recognition by sliding occluding patch across image

License number "EKA548", resolution 25 pixels, SNR 7 dB

Conclusion

- Even from low-resolution images we can extract useful information
- CNN outperforms humans at low-resolution and high amounts of noise
- · Performance increases with more realistic training data

Limitations

- Bad performance on special license plate configurations
- · CNN not robust to unknown degradations, e.g., motion blur

Outlook

- Include more types of degradation
- · Better training data generation, e.g., using GANs
- Train combined denoising and recognition CNN end-to-end

github.com/btlorch/license-plates

Image sources

- https://9gag.com/gag/23853/enhance-that-license-plate
- http://plateshack.com/y2k/