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Turning the image enhancement problem on its head
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Conventional recognition1

1. License plate detection

2. Character segmentation

3. Character recognition

1M. Safraz, M. J. Ahmed, S. A. Ghazi, “Saudi Arabian license plate recognition system”, in 2003 International Conference on Geometric
Modeling and Graphics, Jul. 2003.
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Related work

Correlation by Hsieh et al.2

• Slide character templates across image
• Drawback: Requires knowledge of font style and character placement

2P.-L. Hsieh, Y.-M. Liang, H.Y. M. Liao, “Recognition of blurred license plate images”, in 2010 IEEE International Workshop on Information
Forensics and Security, Dec. 2010.
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Related work

CNN-based recognition by Agarwal et al.3

• Recognize the first and last three characters separately
• Drawback: Assumes six-character license plates

3S. Agarwal, D. Tran, L. Torresani, H. Farid, “Deciphering severely degraded license plates”, Electronic Imaging, Jan. 2017.
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Goal

Proposed method
• Work with variable number of characters (5 to 7)

•
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Performance evaluation

• Fill license number label with null character “�” up to length seven
• Assign integer score out of a maximum of seven points

True Predicted Top-1 accuracy

ABC123� ABC123� 7/7 (100%)

ABC123� ABC12�� 6/7 (86%)

ABC123� ABC1234 6/7 (86%)

ABC123� AXXXX3� 3/7 (43%)

ABC123� XABC123 0/7 (0%)

• Report Levenshtein distance to take shifted recognition into account
• Address similar characters, e.g., “O” and “0”, “I” and “1”, by Top-5 accuracy
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Implementation as CNN architecture I

• VGG-like architecture with seven output layers consisting of 37 units each

A B 9 �. . .

Char 1 output

A B 9 �. . .

Char 7 output

. . .
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Synthetic data rendering

• Optimizing 55M parameters requires a lot of training data
• Generate synthetic training images based on measurements from

real-world license plates

Vertical offset

Horizontal offset

Punctuation mark width

Char width

Char height

Horizontal char padding
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Synthetic-I training image examples

• Vary characters, gap position, font, font size, character placement,
contrast, background
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Degradation levels
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Synthetic-I results on 1,000 real-world images

Top-1 accuracies
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Chance performance: 1/37 ≈ 2.7%
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Example: “CDS7001”
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Synthetic-I results on 1,000 real-world images

Confusion chart
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Improving synthetic data rendering

• Place distracting object
• Add embossing effect
• Add frame and drop shadow
• Colorize background, font, and frame and blend with natural images
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Synthetic-II results on 1,000 real-world images
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(a) Top-1 accuracies
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(b) Difference in Top-1 accuracy compared
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Real-world images from Plateshack
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Real-world: Fine-tuning on Plateshack images

• Train on synthetic images, fine-tune all layers on Plateshack images with
reduced learning rate
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Which image parts are important?

Idea: Highlight important regions for recognition by sliding occluding patch
across image

What is the probability that the first character is “E”?
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Which image parts are important?

Idea: Highlight important regions for recognition by sliding occluding patch
across image

License number “EKA548”, resolution 25 pixels, SNR 7 dB

True character probability
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Most likely chararacter
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Conclusion

• Even from low-resolution images we can extract useful information
• CNN outperforms humans at low-resolution and high amounts of noise
• Performance increases with more realistic training data

Limitations
• Bad performance on special license plate configurations
• CNN not robust to unknown degradations, e.g., motion blur

Outlook
• Include more types of degradation
• Better training data generation, e.g., using GANs
• Train combined denoising and recognition CNN end-to-end
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github.com/btlorch/license-plates



Image sources

• https://9gag.com/gag/23853/enhance-that-license-plate
• http://plateshack.com/y2k/
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