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Abstract

High quality face editing in videos is a growing concern
and spreads distrust in video content. However, upon closer
examination, many face editing algorithms exhibit artifacts
that resemble classical computer vision issues that stem
from face tracking and editing. As a consequence, we won-
der how difficult it is to expose artificial faces from current
generators? To this end, we review current facial editing
methods and several characteristic artifacts from their pro-
cessing pipelines. We also show that relatively simple visual
artifacts can be already quite effective in exposing such ma-
nipulations, including Deepfakes and Face2Face. Since the
methods are based on visual features, they are easily expli-
cable also to non-technical experts. The methods are easy
to implement and offer capabilities for rapid adjustment to
new manipulation types with little data available. Despite
their simplicity, the methods are able to achieve AUC values
of up to 0.866.

1. Introduction
In the past two years, algorithms for automated face edit-

ing like Face2Face and Deepfakes went through the public
media [36, 16]. In particular, questions whether “We can
(from now on) trust any video at all?” and “How can I, as
a normal citizen, detect Deepfakes?” were regularly raised
by journalists. While we would like to expressedly abstain
from the sometimes alarmistic tone in these questions, it
falls within the field of image and video forensics to pro-
vide technical answers for detecting the state of the art in
automated video editing or generation of faces.

The main research progress in the creation of artificial
faces is performed in the computer graphics and computer
vision communities. Particular focus of this research is to
create visually plausible video content. Impressive progress
has recently been made, as is shown in Fig. 1. This fig-
ure shows three example faces. From left to right, these
faces are an artificial image from ProGAN [18], a real pho-
tograph, and an artificial image from Glow [21]. It is rea-
sonable to acknowledge that even a well-trained viewer has

Figure 1. Only one image shows an actual person. The images on
the left (ProGAN [18]) and right (Glow [21]) are generated. The
image in the middle is a crop from the CelebA dataset [27].

difficulties to distinguish artificial from real faces.
However, having such automated tools is just one com-

ponent in creating a manipulation. The goal of a malicious
manipulation is to convey a (semantic) message with the
video that is not communicated in the original material.
This imposes constraints on the manipulator, e.g., to arrange
specific people in a specific scene, such that the visual mes-
sage fits the overall story of the manipulator. Additionally,
the material has to be consistent with side information that
may be available to the viewer or an independent analyst.
From a technical perspective, this requires highly robust
methods for video editing: it is reasonable to assume that
a manipulator has only few candidate scenes in which he or
she can convey the intended message, and the method for
editing a face has to create a visually plausible result in that
particular situation.

In this work, we survey landmark works in automatic
video generation. While current computer vision and com-
puter graphic works clearly exhibit excellent results in rel-
atively free scenarios, we argue that most of these methods
have limitations if applied in specific, pre-defined scenar-
ios that may be relevant to a manipulator. This leads to
characteristic artifacts in the generated content. The good
news is, from the perspective of the forensic analyst, that
it does not necessarily require sophisticated tools to detect
such artifacts. We demonstrate this by several visual fea-
tures that focus on the eyes, teeth, facial contours. In the
future, we expect these visual features to be diminished in
novel computer vision algorithms, such that probably only
statistical forensics tools have a reasonable chance to de-



tect facial manipulations. However, until sufficiently gen-
eral statistical video forensics methods are developed, these
visual features can also serve as an easy-to-implement, well
feasible bridge technology to detect current manipulations.

This paper is organized as follows. In Sec. 1.1, we re-
view related work in image forensics. In Sec. 2, we present
a selection of methods for automated generation and edit-
ing of faces. In Sec. 3, we discuss artifacts that might arise
from common challenges of these methods. Experiments
and results with visual features are presented in Sec. 4. The
findings are discussed and concluded in Sec. 5.

1.1. Related Work

Traditional methods in image forensics search either for
physical or statistical image artifacts to validate the content
of an image. An overview of such methods can be found,
e.g., in recent surveys or books [32, 10]. Examples for
physics-based methods are inconsistencies in lighting [19]
or reflections [17, 29]. Recent statistical methods form sta-
tistical fingerprints on the residuals of an image to detect
manipulations [11, 6, 7], validate noise priors from meta-
data [14], or learn specific manipulation traces, such as re-
coloring [3] or recompression [28].

With the availability of the face swap app, forensics re-
searcher investigated specific solutions to detect such ma-
nipulations. For example, Zhang et al. proposed a bag
of words classifier [40], and Zhou et al. proposed a two-
stream neural network for this task [41]. Other recent meth-
ods aim to distinguish computer generated from natural im-
ages [31, 5]. These methods for example rely on a con-
volutional neural network (CNN) or the detection of small
fluctuations caused by the human pulse to tell the content
apart. For the detection of faces completely generated by
deep-learning methods Tariq et al. [35] propose a CNN and
Li et al. [24] use statistical differences in color components
to distinguish the images. Detectors for Deepfakes mostly
rely on deep-learning. For example, the work by Rössler et
al. [33] proposes a large dataset containg Face2Face ma-
nipulations and the detection based on CNNs. Afchar et
al. [1] propose two CNNs trained on scene content instead
of noise to detect Deepfake and Face2Face manipulations.
Li et al. [25] propose to expose fake faces by detecting eye-
blinking which according to the authors tends to be missing
in Deepfake videos. Güera and Delp [13] propose a recur-
rent neural network incorporating temporal information to
detect Deepfake videos. Another approach by Li et al. [26]
proposes to train a CNN to detect warping artifacts for the
detection of Deepfake videos.

2. Manipulation Methods
Research on generation and manipulation of images and

videos gained considerable momentum with the advent of
deep-learning. The current progress in the field is so quick

that a complete overview is beyond the scope of this work.
Instead, we highlight example methods that we consider
highly relevant in the context of image forensics.

2.1. Generated Faces

Generative adversarial networks (GAN) and variational
autoencoders (VAE) [22] are a powerful tool for generating
image content [12]. However, early implementations pro-
duce images of low resolution that oftentimes exhibit blur,
which allows to easily identify them as generated. Kar-
ras et al. [18] overcame this limitation by demonstrating the
generation of high-resolution images of up to 1024 × 1024
pixels in the so-called ProGAN. The images are generated
by progressively growing the generator and discriminator
of the model. The results show convincing faces generated
from random numbers. Another way of generating such im-
ages are flow-based generative models [8, 9]. Kingma and
Dhariwal [21] propose a flow-based method able to gen-
erate convincing faces at a resolution of 256 × 256 pixels
by incorporating invertible 1 × 1 convolutions in the so-
called Glow network. Other methods generate images from
labels as input and are able to produce impressive results.
Isola et al. [15] propose a general-purpose solution for such
image-to-image translation problems, but the resulting im-
ages have a relatively low resolution. The method is im-
proved by Wang et al. [39] by incorporating multi-scale
generators and discriminators. The results have a resolu-
tion of up to 2048 × 1024 pixels. Wang et al. [38] further
extend this method to video-to-video translation problems
with impressive results.

2.2. Manipulation of Facial Attributes

Another popular research topic is the manipulation of
certain facial attributes or the reenactment of faces. The
method Face2Face by Thies et al. [37] is able to transfer
facial expressions from a source to a target video in real-
time. The method relies on fitting a 3-D morphable face
model and estimating illumination which is approximated
by spherical harmonic coefficients. The final result is ren-
dered into the target video. A state-of-the-art method that
uses similar methods can be found in [42]. Newer methods
mostly rely on deep-learning models. The method proposed
by Kim et al. [20] extends these approaches by allowing to
manipulate the 3-D head position, head rotation, face ex-
pression, eye gaze, and eye blinking using a generative neu-
ral network. The method by Bansal et al. [2] is able to trans-
fer video content from one domain to another, which can be
applied to face-to-face scenarios. Some methods focus on
changing certain facial attributes such as hair-color or age
in single images. The method by Choi et al. [4] combines
multiple domains into a single model. The method is there-
fore able to alter multiple attributes and facial expressions
with one model. The method by Pumarola et al. [30] is able



to animate facial expressions in a convincing manner, given
a single input image.

2.3. Deepfakes

Face swapping is the replacement of one face with an-
other. This type of manipulation is commonly offered by
smartphone apps. The generation of such data and its possi-
ble detection is covered by Zhou et al. [41]. Deepfakes are
in principle a convincing face swap for videos. The face in
a video is replaced by a different one, while the remaining
original scene content and the original facial expressions are
preserved. Examples of such manipulations are shown in
Fig. 8. Such content can be created with two auto-encoders
which are trained for the two faces. The weights for the
encoders are shared, whereas each decoder is trained indi-
vidually. This enables the use of both decoders with the
encoder. The generation of Deepfake videos is explained in
more detail in related work that aims to detect such manipu-
lations [1, 13]. However, the state of the available tools and
methods is dynamic. The methods are not strictly defined
and might not necessarily be scientifically covered as there
are multiple projects1 2 driven by community development.
Since the methods are made publicly available with step-
by-step instructions, they are usable by a wide audience and
manipulated videos with impressive results are shared in so-
cial media.

3. Manipulation Artifacts
The results of methods as described in Sec. 2 are impres-

sive, and research progress makes it visually increasingly
difficult to see differences to real images. Nevertheless,
some visual artifacts can still be identified, which is shown
for a selection of example manipulation methods. The ar-
tifacts are categorized into different types of long-standing
computer vision problems that are still not fully solved.

3.1. Global Consistency

Generative methods from Sec. 2.1 can be used to
smoothly interpolate between given faces using the latent
space of the underlying trained models. They can also be
applied to generate new faces from random numbers. Two
examples of such “hallucinated” faces are shown in Fig. 1.
When the methods are used to interpolate between faces,
the data points for generation are meaningful and the results
usually plausible. For the generation of new faces, the data
points supporting the interpolation of the image are random
and not necessarily meaningful. While the results can gen-
erally be described as a qualitatively harmonious mixture of
different faces, they seem to lack global consistency. A lot
of samples can be observed to have a high variance in color

1https://github.com/iperov/DeepFaceLab
2https://github.com/shaoanlu/faceswap-GAN

Figure 2. Samples of different methods displaying difference be-
tween color of the left and right eye. (Top to bottom: [18], [21],
image taken from [39])

Figure 3. Example from FaceForensics [33] showing shading arti-
facts arising from illumination estimation and imprecise geometry
of the nose.

between the left and right eye. Examples taken from three
different methods are shown in Fig. 2. The phenomenon of
differently colored irises is called heterochromia and is in
reality rare for humans [34]. The severeness of this artifact
in generated faces varies and not all samples are necessarily
affected.

3.2. Illumination Estimation

For re-rendering a face with different attributes, the in-
cident illumination has to be transfered from the original
image to the forgery. For methods such as Face2Face [37]
the process of estimating geometry, estimating illumination
and rendering is explicitly modeled. In deep-learning based
methods, this model is usually implicitly learned from the
data. A wrong or imprecise estimation of the incident illu-
mination will lead to related artifacts.

Diffuse reflection is usually convincingly reproduced.
Especially for manipulations that are generated with deep-
learning techniques, we were not able to spot related ar-
tifacts. In some cases of Face2Face manipulations, shad-
ing artifacts can be spotted. The artifacts usually appear in
the area of the nose, where one side is rendered too dark.
An example of this artifact with a comparison to the orig-
inal image is shown in Fig. 3. We hypothesize that these
artifacts may be caused by the limited illumination model
of Face2Face, which does not take interreflections into ac-
count.

https://github.com/iperov/DeepFaceLab
https://github.com/shaoanlu/faceswap-GAN


Figure 4. Deepfake examples showing missing reflection details in
eyes. Samples from the dataset proposed in Sec. 4.1.

Figure 5. Examples from FaceForensics [33] showing artifacts
from imprecise geometry estimation.

Specular reflection in faces is most noticable in the eyes.
A lot of samples generated by Deepfake techniques show
unconvincing specular reflections. Reflections in the eyes
are either missing or appear simplified as a white blob. This
artifact leads to an overall dull appearance of the eyes. Ex-
amples with comparisons to the unaltered content are shown
in Fig. 4.

3.3. Geometry Estimation

Facial geometry has to be estimated to generate the
manipulations. Analogously to the case of illumination,
Face2Face models the geometry estimation explicitly by fit-
ting a morphable model to images. Deep-learning based
techniques implicitly learn the underlying model from data.

For the Face2Face data, we can spot artifacts arising
from an imprecise estimation of the underlying geometry.
The original image is overlaid with a face mask. If the ge-
ometry estimation is not perfect, artifacts along the bound-
ary of the mask appear. This often becomes apparent in the
area of the nose (Fig. 3), around the occlusion border of the
face, and the eyebrows. Such artifacts are shown in Fig. 5.
The imprecise geometry leads to blending artifacts, which
appear as strong edges or high-contrast spots. Additionally,
partly occluded face parts such as strands of hair, are not
modeled correctly and can lead to “holes” as shown in the
image to the right in Fig. 5. On Deepfake samples that are
currently circulating in social media, we can frequently spot
that some geometry is missing. Specifically, teeth are often
not modeled at all. This is clearly visible in a lot of videos
where teeth appear as a single white blob instead of individ-
ual teeth. An example is shown in Fig. 6.

Figure 6. Missing geometry in Deepfakes. Teeth are generated as
a structureless white blob. Samples from the dataset in Sec. 4.1.

4. Classification Based on Visual Artifacts
The visual appearance of artifacts is not always as ob-

vious as in the shown examples. However, we show that
relatively simple features can be used to model these ob-
servations. These features can be used to detect generated
or manipulated faces. Specifically, we propose algorithms
to detect completely generated faces, Deepfakes which are
currently circulating in social media and images manipu-
lated by Face2Face. In this Section, we first describe the
generation of the required data and the methods to build de-
scriptors for automated detection. Finally, we present an
evaluation of the proposed methods.

4.1. Datasets

Evaluation is performed on a dataset of generated faces,
on collected Deepfakes and on images showing Face2Face
manipulations.

Figure 7. Example crops of the test dataset for generated faces.
Top to bottom: CelebA [27], ProGAN [18], Glow [21].

Generated Faces. We collect a dataset for the classifica-
tion of generated faces. For faces of real persons, we extract
face crops from the CelebA dataset [27]. To generate sam-
ples which qualitatively match the results of the generation
methods, we only extract crops with a height of at least 400
pixels. Additionally, we only take faces into account that



are classified as frontal and with high confidence. For gen-
erated faces, we extract face crops from the provided sam-
ples3 of ProGAN [18]. The generated images of the method
have a resolution of 1024 × 1024 pixels. A face detector
is applied to crop the images to the face region, removing
the background. After cropping, the image height varies be-
tween 446 and 642 pixels. We extract 2000 samples for the
real and generated class as training and development data
and 1000 samples for each class as testing data. As addi-
tional test data and to evaluate generalization to a differ-
ent method, we generate 1000 random faces with the demo
code4 of Glow [21]. The generated images have a resolu-
tion of 256 × 256 pixels. After cropping, the height varies
between 124 and 180 pixels. Some example images con-
tained in the test data are shown in Fig.7. For classification,
we denote generated faces as the positive class, and original
faces as the negative class.

Deepfakes. We create a dataset to represent forgeries of
the quality in which they can currently be found in so-
cial media. To that end, we collect Deepfake videos on
YouTube. To simplify the dataset generation and to align
scene content between classes, we select videos showing
side-by-side comparisons between altered and unaltered
material. We download four collection videos5 contain-
ing multiple scenes and three videos6 containing a single
scene each. Although the videos show side-by-side com-
parisons, the origin and prior processing of the individual
source videos is unknown. Dependent on availability, we
download the videos as 1080p or 720p mp4 files. To pre-
sort the samples, the videos are split into a real and fake side
and single frames are extracted. For each frame, the faces
are detected and cropped. The mouth and eyes are classi-
fied as opened or closed based on a simple check of ratios
between nearby facial landmarks of the face detector. Only
frames with eyes and mouth classified as open are used, as
these potentially show the artifacts described in Sec. 3. The
pre-sorted samples are examined manually to delete obvi-
ous detection failures and overly blurry scene parts. Due
to differences in face detection and classification of the eye
and mouth regions, there is no strict one-to-one relation be-
tween frames of the fake and real class. The data is split into
different scenes to avoid similar frames in the train and test
set. The number of frames per scene in each class varies.
The training data contains frames of 16 different scenes,
the test data of four. Example images of the four scenes
contained in the test set are shown in Fig. 8. The dataset
contains a total of 5330 samples. The number of samples

3https://github.com/tkarras/progressive_
growing_of_gans

4https://github.com/openai/glow
5https://www.youtube.com/Life2Coding
6https://www.youtube.com/derpfakes

Table 1. Number of samples in the proposed Deepfake dataset.

Set Fake Real
Train 2070 2440
Test 375 445

Figure 8. Scenes of the proposed Deepfake test data.

per class for each set are shown in Tab. 1. Additionally, we
evaluate on the dataset proposed by Afchar et al. [1], which
was created in a similar way but without using side-by-side
comparisons and pre-classified mouth and eye regions.

Face2Face. For evaluation on Face2Face manipulations,
we extract samples from the publicly available FaceForen-
sics dataset [33]. We limit our evaluations to the so called
“self-reenactment” examples. For this case, Face2Face is
applied to re-render the input videos without further manip-
ulating the facial expressions. The dataset already provides
the video frames cropped to the face region. We randomly
select 10000 frames of the training data for each the original
and altered class and 5000 samples each class of the testing
data.

4.2. Detection Pipelines

We propose a set of straightforward features for detect-
ing generated faces, Deepfakes, and Face2Face images.

Generated Faces. Differences in eye color are used to de-
tect generated faces. To extract color features of each eye,
we use commonly available computer vision methods. Fa-
cial landmarks are detected for each input image. After de-
tection, the images are cropped to the face region and re-
sized to 768 pixels in height, such that all samples are pro-
cessed at a fixed resolution. Iris pixels need to be detected
to compute eye color features. The iris usually has a high
contrast to the sclera. For segmentation, we try to detect
the iris as a circle inside of the landmarks for the eye. To
that end, Canny edge detection and a Hough Circle Trans-
formation are applied. The segmentation is further refined
by thresholding on dark pixels that likely belong to the pupil
and on bright pixels that likely stem from reflections or an
inaccurate segmentation. An example segmentation result

https://github.com/tkarras/progressive_growing_of_gans
https://github.com/tkarras/progressive_growing_of_gans
https://github.com/openai/glow
https://www.youtube.com/Life2Coding
https://www.youtube.com/derpfakes


Figure 9. Example result of the iris segmentation.

with the main steps of the pipeline is shown in Fig. 9. Two
consistency checks help to identify failure cases in the iris
detection: the distance of the center of the iris and the cen-
ter of the eye (according to the landmarks) should be similar
for the left and right eye. Additionally, both irises are ex-
pected to have similar radii. To improve the confidence in
segmentation, samples violating these assumptions are dis-
carded. This also helps to sort out implausible samples and
failure cases of the generated faces.

We define multiple features to characterize the dissim-
ilarity in color of the left and right eye. First, the colors
are transformed into HSV color space and averaged for the
segmented pixels of the left and right eye. The differences
between the averaged H,S,V values of the left eye lH , lS ,
lV and right eye rH , rS , rV are computed as

DistH = min(|lH − rH | , 360− |lH − rH |)
DistS = |lS − rS |
DistV = |lV − rV |
DistHSV = DistH +DistS +DistV . (1)

Additionally, normalized 64-bin histograms of the RGB
values are computed for each iris. For each color channel,
the correlation between the left and right eye is calculated
individually, resulting in the features CorrelR, CorrelG,
CorrelB . For classification without the need of any train-
ing data, the HSV distance DistHSV can be used directly.
To further improve classification performance, we combine
the described features into a six-dimensional feature vector

F = (DistH ,DistS ,DistV ,CorrelR,CorrelG,CorrelB) .
(2)

These features are passed to a bagged version of a k-nearest-
neighbor classifier with k = 20 using Euclidean distances.

Deepfakes. We exploit missing reflections, and missing
details in the eye and teeth areas for Deepfake detection. We
again detect facial landmarks and crop the input image to
the facial region. To accomodate varying resolutions of the
input data, all data is resized to 256 pixels in height. The eye
region is segmented by considering the pixels in the convex
hull of the associated landmarks. To segment the teeth, the
image is converted to grayscale. The pixels contained in
the convex hull of the mouth landmarks are clustered into a
bright and dark cluster by K-Means clustering. All pixels in
the bright cluster are considered as belonging to teeth. The
sample is discarded if less than 1% of mouth pixels is classi-
fied as teeth. Examples of the processed crops and resulting

Figure 10. Example of face crops and segmentations as used in the
processing pipeline for the Deepfake data.

Figure 11. Example of face crops and segmentations as used in the
processing pipeline for the Face2Face data.

segmentation are shown in Fig. 10. We choose the texture
energy approach [23] by Laws to generate features that de-
scribe the complexity of the texture. The texture features
are computed by 16 fixed 5×5 convolution masks designed
to extract specific texture characteristics. As proposed by
Laws [23], the local average of each pixel is subtracted with
a kernel size of 15× 15 before calculating the energy maps.
The 16 energy maps resulting from filtering with the fixed
kernels are averaged with a 10 × 10 kernel, and symmetric
pairs are combined. This results in nine texture features per
pixel. To generate feature vectors for each sample, we aver-
age the nine features for all pixels within the eyes, teeth and
the whole image, respectively. These descriptors are clas-
sified with two different models. We fit a logistic regres-
sion model as an exemplary “off-the-shelf” classifier. As a
higher capacity model we train a small neural network with
low requirements regarding training time and hyperparam-
eter tuning. The neural network is fully connected, contains
three layers with 64 nodes and ReLU activation functions.
It is trained with an ADAM solver and regularized by a L2

penalty with an alpha value of 0.1. We train the classifiers
on just the eye feature vector, just the teeth feature vector, a
16-dimensional feature vector containing the eye and teeth
features, and on the feature vector extracted from the full
face crop.

Face2Face. For the Face2Face data we leverage the same
classifiers as described for Deepfakes, but different fea-
tures. Instead of segmenting eyes and teeth we calculate
the features for the face border and nose tip. Again, the
segmentation is simply done by using detected facial land-
marks. The face border is extracted by generating the con-
vex hull around all landmarks and taking a ten pixel wide
area around the edge. The nose is segmented by taking the
convex hull around associated landmarks. An example of
the segmentation is shown in Fig. 11. The computations
of the features, the classifiers and their hyper-parameters
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(b) Faces generated by Glow

Figure 12. Classification of test data with high confidence in iris
segmentation.

Table 2. ROC curve AUC values for the classification of the test
data as proposed in Sec. 4.1.

Data AUC (k-NN) AUC (Color) P N
ProGAN 0.852 0.814 424 580

Glow 0.843 0.752 716 580
ProGAN 0.802 0.764 1000 1000

Glow 0.796 0.704 1000 1000

are as described before. We train the classifiers on just the
nose feature vector, just the face border feature vector, a
16-dimensional feature vector containing both, and on the
feature vector extracted from the full face crop.

4.3. Classification Results

The proposed features are evaluated on the test data for
all three types of manipulations.

Generated Faces. We generate two receiver operating
characteristic (ROC) curves. Once directly for the differ-
ence in color DistHSV , and once for the probability re-
turned by the trained k-nearest-neighbor classifier. We re-
fer to these classifiers as “Color” and “k-NN”, respectively.
Figure 12 shows the ROC curves for the classification of
the test data. Only images with high confidence in iris seg-
mentation were evaluated for the curves in Fig. 12. The
area under the curve (AUC) values and number of evalu-
ated positive and negative samples are shown in Tab. 2. The
best result, with an AUC of 0.852, is achieved by the k-NN
classifier for the ProGAN test data with high confidence in
segmentation. Classification using the difference in color
DistHSV directly without the use of any training data at all
leads to an AUC of up to 0.814. Row three and four of Tab. 2
display the AUC values for classifying the test sets with-
out discarding any samples. The performance only wors-
ens slightly, indicating a high robustness to segmentation
faults. Overall performance varies between 0.764-0.852 for
the ProGAN data and 0.704-0.843 for the Glow data.
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Figure 13. Classification of the proposed Deepfake test data with
different features and classifiers.

Table 3. ROC curve AUC values for the classification of the Deep-
fake test data as proposed in Sec. 4.1.

Classifier Eyes Teeth Eyes&Teeth Crop
MLP - AUC 0.820 0.625 0.851 0.568

LogReg - AUC 0.775 0.625 0.784 0.402

Deepfakes. 342 fake and 367 real Deepfake samples are
processed after discarding some samples for missing seg-
mentations. Figure 13 shows the resulting ROC curves
of the proposed classifiers. All AUC values are shown in
Tab. 3. We refer to the neural network classifier as MLP and
the logistic regression model as LogReg. The results show
that the classifiers are able to distinguish a large amount of
samples. Classification only on the features generated from
teeth performs relatively poorly, with an AUC of 0.625 for
both classifiers. The features extracted from the eye region
lead to much better performances of 0.820 and 0.784. The
best result with an AUC of 0.851 is achieved by the neural
network using the combined feature vector. The results for
using the features for the whole crop are close to guessing
or even slightly negative for the logistic regression. This is
a good indication that the eye and teeth features are in fact
meaningful and the results are not caused by differences be-
tween the images of the real and fake class.

We also evaluate the classifiers on the dataset by
Afchar et al. [1]. Re-training is necessary, as there might
be an overlap between the training and testing scenes used
in the datasets. 588 fakes and 910 unaltered test samples
remain after discarding samples where neither mouth nor
eyes are classified as opened or segmentation is missing.
The AUC values for classifying the test data are shown in
Tab. 4. The results for this data are comparable to the pro-
posed dataset. However, the specific segmentation seems to
be less important. Even classifying the texture features for
the whole crops leads to an AUC of up to 0.815.

Face2Face. The FaceForensics dataset [33] is used to fur-
ther evaluate the applicability of the proposed texture fea-
tures. The resulting ROC curves of the classifiers are shown



Table 4. ROC curve AUC values for the classification of the test
data proposed in [1].

Classifier Eyes Teeth Eyes&Teeth Crop
MLP - AUC 0.838 0.727 0.830 0.815

LogReg - AUC 0.832 0.727 0.779 0.692
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Figure 14. Classification of the FaceForensics test data with differ-
ent features and classifiers.

Table 5. ROC curve AUC values for the classification of Face-
Forensics test data.

Classifier Nose Face Border Both Crop
MLP - AUC 0.722 0.738 0.823 0.654

LogReg - AUC 0.710 0.843 0.866 0.770

in Fig. 14. All AUC values are shown in Tab. 5. The clas-
sifier based on the logistic regression model performs best,
with values of up to 0.866 for the combined features. For
the Face2Face samples, the less specific features extracted
from the whole face crop lead to an AUC of 0.770. This
indicates that the difference in texture can be observed on
the whole face, and is not as depended on the segmentation
of particular hot spots as the Deepfake data.

5. Conclusion
The proposed algorithms follow a simple recipe. Images

emerging from new manipulation techniques are searched
for visual artifacts arising from known to be hard problems
to solve, like geometry or illumination estimation. Based
on this insight, we can build simple handcrafted features to
characterize such artifacts which can subsequently be clas-
sified by well established methods. Since the features de-
scribe specific artifacts, classification models, such as logis-
tic regression or small neural networks with a small parame-
ter space can suffice for the task. This can be a great advan-
tage compared to methods leveraging large deep-learning
models, as there are much lower requirements for training
data and time. Subsequently, this enables fast prototyping
and a certain agility in reacting to new or quickly chang-
ing manipulation methods such as Deepfakes. Since the
methods rely on scene content and work with fixed reso-

lutions they are robust to varying compression and input
sizes, which we find in data as described in Sec. 4. An
additional advantage of detecting and classifying visual ar-
tifacts is the easy interpretation and comprehensibility of
such cues, which helps in communicating results but also in
better understanding the added value of other methods by
establishing a visual baseline.

The presented classification results are somewhat worse
than results reported by Afchar et al. [1] or Rössler et
al. [33] that leverage complex CNN models and large train-
ing datasets. Nevertheless, the proposed pipelines achieve
surprisingly good results, despite their simplicity, with AUC
values of up to 0.866. For the classification of fully gener-
ated faces as discussed in Sec. 4.1, the proposed method
even achieves an AUC performance of up to 0.814 without
the need for any training data at all.

It is important to note that the presented methods are
only applicable to images meeting certain prerequisites (e.g.
open eyes, visible teeth). Additionally, the results are de-
pendent on the specific test data. For example, mismatches
in the eye color can probably be corrected by a manipulator
in post-processing. Data such as the Deepfakes collected
“in-the-wild” have a high amount of ambiguity, as the un-
derlying methods and models are uncertain. This is shown
in the comparison between the proposed data and the data
provided by Afchar et al. [1]. The Deepfakes data collected
for this work is best classified by the highly specific eye
and mouth region, whereas our classifier can distinguish the
DeepFakes provided by Afchar et al. with similar results
when the whole region around the face is used.

Generally, we consider the proposed approach as a
bridge technology helping to understand to what extend
current face manipulations can be exposed visually. With
further advances in manipulation methods, as for example
shown by Kim et al. [20], we expect visual cues to become
weaker indicators of manipulations. To prepare for this de-
velopment, there is clearly a need in further developing sta-
tistical methods to take over the detection of visually even
more consistent manipulations.
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