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Abstract

A common problem in forensic investigations is the identification of the source of multimedia data, i.e., determining the
model, make or individual device that recorded media content. In contrast to methods based on sensor noise, source
linkage based on header information of media items allows for easy automation. Such header information involves
metadata like EXIF tags and the parameterization of the JPEG algorithm. While traditional digital cameras typically
had a fixed software stack that makes it straightforward to fingerprint a device, modern mobile devices vary considerably
in their software stack over time. We perform a large-scale study of JPEG header information from Apple smartphones
to investigate the effect of this development on the possibility to perform source identification. Our analysis shows that
identification of the concrete hardware is much harder for smartphones than it is for traditional cameras. However,
identification of software stack, particularly the operating system version and selected apps, is well feasible.
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1. Introduction

One important goal of digital multimedia forensics [5,
19] is to reconstruct the provenance of an image or video,
i.e., to narrow down the circumstances under which the
image or video was originally recorded or subsequently
processed. In this field, a lot of research activity has been
devoted to the analysis of the actual (pixel) content of the
multimedia object. A seminal paper by Lukáš et al. [16]
showed that slight manufacturing inaccuracies of the sensor
cells allow to calculate a device-specific sensor fingerprint
by extracting the fixed pattern noise of an image. This
fingerprint can subsequently be used to identify the camera
that was used to take a particular picture. A substantial
body of follow-up work has successfully confirmed and
refined these findings [9, 10, 15, 21]. However, source
identification based on sensor noise requires large volumes
of image data and particular expertise in signal processing
to choose appropriate statistical methods and interpret
the results. These methods therefore require time and are
restricted to experts operating in forensic laboratories.

Next to having high confidence in source identification,
in practice it is often equally important to quickly and
automatically establish medium confidence leads to guide
an investigation. For example, when acquiring pictures
from Internet sites such as Flickr, investigators are often
not interested in the particular camera that took an image
but to quickly curb the set of possible devices. This is espe-
cially relevant for pictures taken by personal devices such
as smartphones, since the exclusion of particular devices
immediately narrows down the set of suspected individu-
als. This can be done by using metadata from the image

container. It is well known, that such metadata can be
relatively easily modified, for example social media sites
regularly change the specifics of the syntactic representa-
tion of a media item [17, 6]. Therefore, image metadata is
often overlooked since it is considered to have (almost) no
probative value.

In this paper we argue that this is not necessarily the
case and show that, especially and particularly for images
taken by smartphone cameras, image metadata, like EXIF
tags, and parametrization of the employed JPEG encod-
ing algorithm can be used to quickly and automatically
establish reliable source identification.

1.1. Related Work

Compared to the large body of work on content-based
methods, evidence taken from the media metadata received
surprisingly little attention in the past. In general, two
types of such metadata exist: (1) information on the image
encoding like quantization tables in JPEG, and (2) gen-
eral information in the media container. Those general
information include the widely known EXIF data. On top,
also other segments in the file container can exist, that
are not necessarily standardized by EXIF, like copyright
information or colorprofiles.

Several works investigated JPEG metadata for source
identification: Ng [17] studied the change in quantization
tables of JPEG images by facebook. Giudice et al. [6]
and Castiglione et al. [3] studied a similar problem, but
in a slightly wider scope, including resizing, compression,
renaming and metadata alterations on several social media
sites. Caldelli et al. [2] investigated artifacts from double
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JPEG compression through Facebook, Twitter and Flickr
to identify devices.

Focusing on traditional digital cameras from manufac-
turers like Canon, Sony or Nikon, the large-scale study by
Kee et al. [13] proposed to use encoding parameters as a
set of features to determine the acquisition device of an
image. More specifically, image dimensions, quantization
and Huffman tables were combined into a highly indicative
and stable digital camera fingerprint. Similarly, the the
sequence of JPEG data structures in the JPEG header was
proposed by Gloe [7] as a novel and reliable cue on the
JPEG encoder.

Further, Gloe et al. [8] investigated the header informa-
tion of PNG images, and showed that converting an image
from JPEG to PNG does not necessary erase all metadata.
Which metadata is left depends on the tool converting the
image.

In summary, source identification based on image meta-
data has been shown to work using automated classifiers.
However, since digital cameras typically come with a fixed
firmware that is not subject to any updates, it is unclear
whether these findings extend to images taken by smart-
phones with their regular software and operating system
updates.

1.2. Contributions

In this paper, we investigate the factors that influence
metadata- and JPEG-encoder- based source identification
of images taken by smartphone cameras. Due to its wide
prevalence, we focus on images taken by Apple’s iPhone
devices.

Since its introduction, the iPhone has undergone several
major developments in terms of hardware (e.g., iPhone 4 to
today’s iPhone X) and its operating system iOS. Further-
more, the applications with which users can take pictures
on their iPhone are numerous. All these factors potentially
influence image metadata and routines how an image is
saved to disk. Compared to the ecosystem of traditional
cameras, the variety of circumstances for image metadata
grows considerably. As a result, source device identifica-
tion is also considerably more complicated as in the case of
traditional digital cameras. This is illustrated in Figure 1:
The classical distinction of source identification granularity
(type, make, model, device) [14] which holds for traditional
cameras is disrupted by the varieties of the software stack
which typically weakly correlates with the camera model.
The software stack therefore represents an additional di-
mension for camera identification not known before. We
show that JPEG header information, can be the used for
successfully positioning an image in this dimension, i.e.,
associating an image to a particular version of the software
stack.

Both factors together make it very challenging to use
the media container to determine the origin of data that
was distributed over social media. Nevertheless, for the
broader scope of forensic activities, social media is often-
times intentionally not involved. For example, consider a
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Figure 1: The traditional (horizontal) granularity levels of forensic
source identification must be extended by an additional dimension
representing the software stack (in particular the operating system
and the imaging app) for smartphones.

bank that hands out small loans based on copies of salary
statements of the past three months. In this case, it is
reasonable to assume that a user directly takes pictures
of these salary statements with a smartphone, and then
electronically submits these pictures to the company. In
this case, an automated metadata analysis, combined with
smartphone fingerprinting, can be one component in a
fraud protection software module. Another scenario may
involve a metadata-based data clustering for police agencies
after seizure of a smartphone or computer from a suspect.

In this work, we perform an in-depth analysis of JPEG
container data. To limit the scope of the study, we focus
on mobile devices from Apple, namely smartphones and
tablets. Several earlier works focused on metadata-based
fingerprinting of digital cameras [13, 7, 14]. We show that
the rich and dynamic software environment on smartphones
allows for a much greater variety of device-specific metadata
configurations. Particularly impactful are the version of
the operating system, but oftentimes also the specific apps
that are used to acquire a picture.

More concretely, our contributions are twofold:

1. We collected a dataset for large scale evaluation on the
robustness of metadata and compression parameters
of smartphone images, with am attention on Apple
devices. The dataset was downloaded from the picture
sharing website Flickr, and after filtering and parsing,
the dataset contained more than 200 000 images, of
which 64 230 were from Apple devices.

2. We show that, due to the variety of the software stack,
the classificstion of the concrete hardware is harder for
the case of smartphones than for traditional cameras.
On the above dataset, we perform experiments with
an automated classifier to determine the provenance
of an image. Using only the number of used EXIF
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headers and the value of the JPEG quantization ta-
bles as features, we show that several specific apps or
operating system versions can be distinguished with
high reliability.

1.3. Roadmap

This paper is organized as follows: The background on
JPEG metadata is given in Sect. 2. The design of our study,
the dataset and the applied methodology are presented in
Sect. 3. Results from this data, and an evaluation of
the automated classification are presented in Sect. 4. We
conclude this work in Sect. 5.

2. Background

To lay out the methodology of the present study, we
first give some background on the components of a JPEG
file.

2.1. Composition of a JPEG File

A JPEG-Image consists of multiple parts. The JPEG
standard itself only defines the encoder and decoder of the
pixel data [18]. The file format, which is in the focus of this
study, was first defined in the “JPEG Interchange Format”
(JIF). This standard specifies the container in which the
encoded image is stored. However, JIF is rarely used, but
instead the later developed “JPEG File Interchange Format”
(JFIF) is used [11]. JFIF specifies several more details and
is therefore easier to implement than JIF. In parallel to
JFIF, also the “Exchangable Image File Format” (EXIF)
was developed [4]. Those two standards are nowadays the
most widely used file formats for handling JPEG-encoded
images.

Overall, the specification for JPEG encoding only en-
sures that all information is contained to successfully de-
compress the file. However, the exact choice of parameters,
metadata, and the order of operations is left to the software
implementation, and can therefore be used for fingerprint-
ing a software stack.

2.2. JPEG Encoding

JPEG compression transforms a raw RGB bitmap into
a binary stream. First, the colors are transformed from
RGB space to YCbCr space, with the ultimate goal of
compressing the color channels Cb and Cr stronger than
the perceptually more important luminosity channel Y. It
is interesting to note that JIF allows free choice of the color
space, while JFIF and EXIF explicitly require YCbCr [18,
22]. After optional downsampling of the channels, non-
overlapping blocks of 8 × 8 pixel are transformed into
frequency domain with the Discrete Cosine Transform. The
resulting 64 coefficients of a block are quantized using a
64-element table of quantization coefficients, which leads to
a loss in image structure. Typically, the perceptually more
important low-frequency components are quantized less
strongly than the visually less important higher frequency

components. The JPEG quality factor can be seen as a
scaling factor to the quantization coefficients, where lower
quality implies higher quantization factors. The quantized
data is then further compressed using Huffman encoding
to obtain the final bitstream.

The recommended baseline encoding scheme sequen-
tially encodes the 8× 8 blocks from left to right and top to
bottom of the image [11]. Notable variations are extended
sequential, lossless, and progressive scanning [18, 20]. Pro-
gressive scanning first encodes the lower frequency com-
ponents of the whole image, then the higher frequency
components. This allows a low-detail preview of the image
without transmitting or decoding it completely.

2.3. Images Files

The JFIF and EXIF standards for the image container
build on JIF. A JIF file can be split into parts. One such
part can for example be a quantization table, or a Huffman
table. Each part starts with a specific marker. JIF also
allows for so-called application markers (APPn), where
JFIF uses APP0, and EXIF APP1. APPn markers can
be populated with entries in form of key-value pairs. The
values can be human-readable strings, or more complex
structures like binary data. The APP0 segment defines
pixel densities and pixel ratios, and an optional thumbnail
of the actual image can be placed here. In APP1, the EXIF
standard enables cameras to save further information about
the image in so called EXIF-Tags. EXIF-Tags cover a huge
range of optional information, many of them related to
photographic settings of the camera when and where the
image was taken. The information are subdivided in image
file directories (IFDs).

Other metadata can also be stored in the file header.
Extensible Metadata Platform (XMP) is also written in
APP1 of the JIF File1. The Information Interchange Model
by the International Press Telecommunications Council
(IPTC-IIM-Standard, or just IPTC2) is saved in APP13.
XMP and IPTC allow to provide additional information
like keywords, copyright information or an editing history
of the image. In APP2, an additional ICC color profile can
be defined, to faithfully reproduce the colors in the image3.

3. Study Design and Dataset

We now describe the design of our study and the col-
lected dataset. First, the considered JPEG header features
are presented in Sect. 3.1. Then, we present the approach
to data collection from Flickr in Sect. 3.2. Finally, we
describe the used machine learning approach for source
attribution in Sect. 3.3.

1XMP: https://www.adobe.com/devnet/xmp.html
2IPTC-IIM-Standard: http://iptc.org/standards/iim/
3ICC: https://docs.oracle.com/javase/6/docs/api/javax/

imageio/metadata/doc-files/jpeg_metadata.html
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3.1. JPEG Header Features for this Study

We perform this study on two families of features,
namely the number of entries in the image file directo-
ries (IFDs) and the JPEG quantization tables. We also
investigated the Huffman tables, but did not find them
indicative for fingerprinting.

For this study, we consider the IFDs “ExifIFD”, “IFD0”,
“IFD1”, and “GPS”. We also include the special directories
’ICC Profile’ and ’MakerNotes’. These are not part of the
EXIF standard, but we observed that these are nevertheless
oftentimes set. For each of these directories the number of
key-value-pairs are counted resulting in a discrete number
greater or equal to zero. The exact content of the key-value
pairs in each of these IFDs is beyond the scope of this study,
to avoid a tedious and potentially error-prone distinction
of variant and invariant features. As will be shown later,
the number of entries is already a quite robust feature for
fingerprinting.

For the JPEG quantization tables, we only use the Y
and Cb tables. This is based on the observation that in
almost all JPEG implementations, the Cr and Cb tables
are configured to be identical. To determine unique pairs
of quantization tables, we concatenate these two tables and
hash their 2 · 64 values. One pair of quantization tables
can therefore be represented by one alphanumeric number,
which we call QC-Table.

Kee et al. [13] used in their earlier work also the Huff-
man tables for fingerprinting. Although an encoder could
in principle compute a Huffman table for each image in-
dividually, it is our observation that most encoders prefer
to use a fixed Huffman table, which could in that study
be used for fingerprinting. However, in a preliminary ex-
periment, we found that on our database, the Huffman
tables were in the vast majority of cases identical, which
is why we omitted this cue. For similar reasons, we also
omitted the sequence of JPEG syntax elements that have
been proposed in earlier work by Gloe [7].

3.2. Data Collection

The dataset for this study is acquired from Flickr. Via
the API, we queried about one million images. One such
query returns additional information on the respective
image, which is evaluated before downloading the image
itself. We used similar filter rules that were also applied
in the study by Kee et al. [13], which aim at performing a
first keyword validation whether the image underwent any
processing before uploading to Flickr. That is, we checked
if metadata for the images was present at all, and whether
the values for make and model are set in the EXIF data. If
modification date and creation date are not closely together,
or the creation date is missing, the image was also rejected.
Additionally, we only considered images where we could
successfully parse the date and time format. Examples
of rejected date strings are representations that contained
non-ASCII characters or apparently malformed strings
like "2008:1127:27 10:53:". Additionally, we limited
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Figure 2: Temporal distribution of images by manufacturer over a
period of eleven years in our database. Graphs marked with a ‘x’
represent manufacturers of mobile phones and tablets, graphs with a
‘.’ represent manufacturers of digital cameras. Overall, images from
mobile devices are increasing. Identified Apple devices contributed
a significant share of the images already between the years 2009 to
2016.

the data collection to images that were recorded between
2008 and 2018. It is worth noting that the date strings of
a small number of images was found to lie in the future,
e.g., with a year larger than 2018. Those images were
also rejected, but these examples illustrate that not all
date labels in the database may be perfectly accurate.
Furthermore, we followed Kee et al. [13] in blacklisting
several known image processing software packages that can
be found in the EXIF data under ”EXIF:Software”, which
we considered an indication that the image underwent
additional processing. We downloaded all images that
passed these checks, such that the actual database consists
of 432 305 images. Additionally, we also recorded the owner
of the upload so we can later filter images by users. That
way, we identified 216 852 unique users in our dataset.

Whenever we need to associate an image to a creation
date, we use the EXIF field “DateTimeOriginal”. This
entry is the foundation for studying the evolution of JPEG
header information over time. Using this entry, we study
the distribution of source devices in the dataset. A plot,
based on our dataset, for the relative distribution of images
from eight camera hardware manufacturers over time is
shown in Figure 2. Smartphones recently became popular.
Overall, it shows that smartphones are increasingly used as
imaging devices in the Flickr community. Especially Apple
got a much bigger share in images uploaded to Flickr in
recent years. Other camera manufacturers like Kodak and
Nikon seem to have less active users uploading images to
Flickr. The numbers also indicate that most (∼ 70%) of
images on Flickr today seem to be recorded with cameras of
only three manufacturers (‘Apple’, ‘Canon’, and ‘Nikon’).
Thus, we selected for this study the data from apple devices
to study header information on a smartphone platform.

3.3. Header Association via Machine Learning

We aim at linking an image to a particular model,
make, or to a particular software from the header infor-
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mation. To encompass this, we select a subset of the
database where “EXIF:Model”, “EXIF:Make”, and, if
needed, “EXIF:Software” are set. We aim to use this infor-
mation as ground truth for the classification. In general,
we have no guarantee that this information, as downloaded
with the images, is accurate. For example, it might be that
an image has been edited with several software tools, but
only one tool (not necessarily the last one) left information
in the EXIF:Software field. To remove apparent wrong
labels from the dataset, we performed several further filter-
ing by image size. However, we are aware of the possibility
that even the most careful data preparation will likely con-
tain some noise in the label from internet-retrieved data
as it is used in our database. In that sense, the reported
results form are a conservative lower bound compared to a
perfectly cleanly labeled set of data.

Note that model, make, and software can in general
not be expected to map uniquely to a set of metadata
and quantization matrices. For example, switching GPS
tracking on and off can modify the metadata, or changing
the quality settings between taking two pictures changes the
quantization tables. Furthermore, it is also possible that
the same set of metadata and quantization matrices can
be found for various camera models, make, or for different
softwares.

These ambiguities make it difficult to use lookup tables
for source attribution as it has been done, e.g., in previous
work by Kee et al. [13]. Instead, we use a machine learning
approach to perform this task. The classification is done
with a random forest. The features are the features stated
in the previous section, i.e., the numbers of entries per
directory and the quantization tables.

During training, the random forest generates an ensem-
ble of decision trees. Each internal node of the tree learns a
split on the feature space. The full tree thus performs a se-
quence of splits from the root node to the leaf nodes. Class
membership is then determined by the relative frequency of
classes in the leaf nodes. Randomness is introduced in two
ways. First, not each tree obtains the full set of training
samples but only a subset. Second, when finding a split,
not all feature dimensions are presented in that node. This
procedure is known to yield a robust classifier that is able
to deal with outliers and noise, as it can be expected in
our dataset [1, 12]. The Gini impurity criterion is used to
select a feature for performing a split in a node [12]. In
all experiments with random forests, 100 trees were fully
grown. We use 90% of the data for training, and 10% of
the data in a separate test set for evaluation.

4. Evaluation

The evaluation consists of four parts. First, we perform
a general analysis of the distribution of the header informa-
tion of Apple smartphones over time in Sect. 4.1. Then, we
investigate how well this header information can be linked
to a smartphone hardware model in Sect. 4.2. This task is
comparable to a previous study on digital cameras by Kee
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Figure 3: Canon EOS 450D distribution of EXIF metadata over time.
The metadata distribution is highly stable over eight years.

et al. [13], but it can be seen that the smartphone JPEG
headers provide only weak cues to the actual hardware. In
Sect. 4.3, we repeat this experiment, but aim for classifying
the version of the smartphone operating system instead.
It turns out that the header information provide a much
better cue on the smartphone software than the hardware.
Finally, we show in Sect. 4.4 results for selected applica-
tions that left traces in the EXIF:Software tag, indicating
that some apps leave their own individual traces that can
be very reliably detected.

4.1. Temporal Evolution of Metadata Information

We first examine how the EXIF metadata information
changes over time. This is visualized in Figure 3 for Canon
EOS 450D cameras, i.e., a traditional digital camera, and in
Figure 4 for the smartphone iPhone 4S from Apple. Both
figures are subdivided into five columns that represent
the EXIF directories “ExifIFD”, “IFDO”, “IFD1”, “GPS”
and “MakerNotes”. On the x-axis, the years from 2011 to
2018 are shown. On the y-axis, the number of entries per
directory are shown. The heat map visualizes the relative
frequency of the number of entries per directory, normalized
for each of the years.

It can be seen in Figure 3 that the distribution of entries
in the Canon EOS 450D camera are indeed constant over
time, which certainly benefits source identification. For
example, consistently more than 70% of images contained 31
attributes in the directory “ExifIFD“. The directories IFD1
and MakerNotes exhibit a bimodal distribution: either 6
or 0 attributes are observed in IFD1, and either 32 or 0
attributes are observed in MakerNotes. No GPS values
were found, since the Canon EOS 450D does not contain a
GPS tracker.

In contrast to that, the number of entries per directory
greatly vary for the iPhone 4S in Figure 4. For example,
the number of entries in ExifIFD decreases in the year 2013
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Figure 4: Apple iPhone 4S distribution of EXIF metadata over
time. The metadata distribution varies greatly with different software
versions.

from 25 to 24 values. In 2014 it increases to 31 attributes,
and in 2015 to a total of 32 vales. MarkerNotes shows a
similar behavior. Added to the header in 2014, the number
of entries rises until 2016 from 6 to 8 values. IFD0 and
IFD1 show in all years distributions of the numbers of
entries instead of a unique number. Overall, these numbers
suggest that it might be considerably more difficult to
associate the header information to the hardware platform
of a smartphone.

The distribution of iPhone 4S EXIF entries over time
can be explained by the operating system version. The
EXIF data by images taken with Apple smartphones also
reveals the iOS Version of the device when an image was
taken. In Figure 5, we represent the same data as previously
in Figure 4. However, the difference is that now the x-
axis shows the iOS version instead of the time in years.
Both figures are similar, but the distribution is much more
aligned with the iOS version, which can be seen from the
considerably more pronounced peaks in the distribution.

To further illustrate the relationship between hardware
platform, operating system, and metadata information, we
list the most frequent value of each EXIF directory per
iOS version for a selection of hardware models in Table 1.
It can be seen that the number of EXIF entries is mostly
constant for one iOS version, i.e., between two horizontal
lines. Exceptions, where two or more hardware platforms
have differing numbers of EXIF entries for one iOS version
are printed in bold face. Overall, this table indicates that
the iOS version has significantly more impact on the distri-
bution of EXIF values than the actual hardware platform.
If at all, the directory of MakerNotes seems to be the most
indicative for a Model given a specific iOS Version.

We also examined compression parameters, specifically
quantization tables across iOS versions. We refer to the
concatenated pair of quantization tables as pairs of QC-
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Figure 5: Apple iPhone 4S distribution of entries per metadata
directory over different iOS versions. The metadata distribution is
very well aligned with the version changes of the operating system.
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Figure 6: Distribution of pairs of QC-Tables over iOS-Versions. Left:
iPhone 4S, right: iPhone 5.

Tables. Figure 6 shows the distribution of pairs of QC-
Tables over iOS versions for an iPhone 4S (left) and an
iPhone 5 (right). On the y-axis, the 10 most frequent pairs
of QC-Tables are shown, and the columns are normalized to
sum up to 1. The distribution shows that more than 80% of
the images can be described with only two QC-Table-Pairs
per iOS version.

To summarize these observations, Apple devices of-
tentimes updates their imaging routines, which leads to
variations in the metadata. Regular digital cameras do not
undergo such variations. The change in metadata corre-
lates with the deployment of a new major version of the
operating system. Image metadata is changed more often
than compression matrices. In fact, we only found one
major change in the compression matrices, namely between
iOS 7 and iOS 8. Different hardware platforms that run
the same operating system appear to contain (up to small
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ExifIFD IFD0 IFD1 GPS MakerNotes
iOS Model

5 iPhone 4 24 11 6 9 0
iPhone 4S 25 11 6 9 0

6 iPhone 4 24 11 6 9 0
iPhone 4S 24 11 6 9 0
iPhone 5 24 11 0 9 0

7 iPad Air 31 11 6 9 6
iPhone 4 31 11 6 9 6
iPhone 4S 31 11 6 9 6
iPhone 5 31 11 6 0 6

8 iPad Air 32 11 6 14 8
iPad Air 2 32 11 6 14 8
iPhone 4S 32 11 6 14 7
iPhone 5 32 11 6 14 7
iPhone 6 32 11 6 14 10

9 iPad Air 32 11 6 15 9
iPad Air 2 32 11 6 15 11
iPhone 4S 32 11 6 15 8
iPhone 5 32 11 6 15 8
iPhone 6 32 11 6 15 11
iPhone SE 32 11 6 15 11

10 iPad Air 32 11 6 15 9
iPad Air 2 32 11 6 15 11
iPhone 5 32 11 6 15 8
iPhone 6 32 11 6 15 11
iPhone 7 32 11 6 15 14
iPhone SE 32 11 6 15 11

11 iPhone 6 32 11 6 15 13
iPhone 7 32 11 0 15 18
iPhone 8 32 11 0 15 18
iPhone SE 32 11 6 15 14
iPhone X 32 11 0 15 18

12 iPhone X 32 11 0 15 22

Table 1: Most frequent number of EXIF entries per directory per iOS
version and Model. In bold are cells, that have a varying number of
values. Per user and iOS Version, only one sample was evaluated,
and at least 30 samples per configuration (iOS/Model) had to be
present. See text for details.

differences) the same metadata information.

4.2. Classification of Hardware Models

The findings from the previous section indicate that de-
termining the smartphone hardware model from the header
information is much more difficult than for traditional dig-
ital cameras. However, to establish a numerical baseline
for source identification, we examine this task.

To this end, we train a random forest classifier to iden-
tify seven different iPhone models, ranging from the rela-
tively old iPhone 4S, marketed in 2011, to the iPhone X,
marketed in 2017. The dataset is randomly subsampled
to contain an identical number of smartphone models for
each class, and to have each feature be at least contained
30 times in each subclass, which leads to a total of 236
images per model. The resulting dataset is split into 90%
training data and 10% test data.

iPhone 4S 5 5s 6 6s 7 Plus X
model

4S 119 54 3 1 2 0 0
5 111 169 12 4 1 0 0
5s 4 10 73 51 12 1 0
6 1 0 70 99 49 2 0
6s 0 1 73 80 163 2 1
7 Plus 1 2 3 2 10 184 17
X 0 0 2 0 0 48 218

Table 2: Classification of iPhone Models via EXIF directories. The
overall accuracy is 0.61933.

iPhone 4S 5 5s 6 6s 7 Plus X
model

4S 137 89 16 3 1 1 5
5 8 14 9 7 2 6 4
5s 0 3 3 2 1 0 2
6 49 74 137 147 9 25 47
6s 42 54 73 72 212 162 97
7 Plus 0 1 0 0 2 2 2
X 6 7 3 11 15 46 84

Table 3: Classification of iPhone Models via quantization matrices.
The overall accuracy is 0.35402.

Table 2 shows the confusion matrix for this experiment,
where the hypotheses of the classification are along the
rows and the true labels are in the columns. An accuracy of
61.9% is achieved. The main diagonal is highly populated
which shows correct classifications. First and second minor
diagonals also show relatively high values. This indicates
that the classification of iPhone models based on metadata
directories mainly confuses adjacent models.

The same experiment for predicting models is performed
with the quantization tables as input features. The remain-
ing experimental setup is identical to the previous experi-
ment. In this case, 242 samples per class are obtained. The
results are shown in Table 3. The accuracy is considerably
lower than for the classification with metadata, at 35.4%.
The random forest decides for one of the two adjacent
models “iPhone 6” or “iPhone 6s” in approximately two
thirds of the cases, which is a major contributor to the low
accuracy. Nevertheless, the accuracy is still above random
guessing, which is 14.3% for 7 equally distributed classes.

In a third experiment, we merge metadata and quanti-
zation features into one long feature vector. Table 4 shows
the results for classification with random forest. We obtain
235 images per class, the remaining experimental setup
is identical to the previous experiment. The accuracy is
65.6%, which is the better than the results for the indi-
vidual feature vectors. Combining both features lead to a
reduction in the confusion on the second minor diagonal.

4.3. Classification of Operating Systems

Since variations in image signatures are more related to
the operating system on Apple than on the hardware model,
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iPhone 4S 5 5s 6 6s 7 Plus X
model

4S 118 52 5 2 0 1 0
5 111 172 9 5 0 0 0
5s 3 7 99 96 10 0 0
6 2 2 68 97 18 1 0
6s 0 2 52 34 204 9 3
7 Plus 1 0 2 1 3 178 20
X 0 0 0 0 0 46 212

Table 4: Classification of iPhone Model via EXIF directories and
quantization matrices. The overall accuracy is 0.65653.

iOS 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

4.0 166 11 11 0 0 0 0 0
5.0 0 95 19 0 0 0 0 0
6.0 5 64 141 0 0 0 0 0
7.0 0 1 0 163 2 1 1 0
8.0 0 0 0 5 151 4 3 1
9.0 0 0 0 3 6 120 50 7
10.0 0 0 0 0 9 34 112 11
11.0 0 0 0 0 3 12 5 152

Table 5: Classification of iOS versions via EXIF directories. The
overall accuracy is 0.80409.

we predict now operating systems from header information.
The experimental protocol is identical to the previous

experiments. The only difference is that the dataset is
balanced on the iOS version, which leads to 171 images
per class. The data corpus includes all versions from iOS 4
(released in 2010) to iOS 11 (released in 2017). First, only
features from the metadata directories are used. These
results are shown in Table 5. The accuracy is with 80.4%
higher than any predictions for models. Confusions with
other iOS versions mainly occur between version 5 and 6,
and between versions 9 and 10.

The same experiment is repeated when using quanti-
zation tables as features for predicting the iOS version.
Interestingly, this task is apparently quite difficult, with
an accuracy of only 33.7%. Most of the confusions occur
between neighbored versions. The change of quantization
tables between iOS 7 and iOS 8 can be clearly seen from
the confusion matrix in Table 6.

iOS 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

4.0 156 111 91 139 8 3 5 5
5.0 5 2 3 1 2 0 0 0
6.0 11 48 65 20 2 1 0 1
7.0 0 2 1 7 4 2 0 0
8.0 1 9 13 5 149 132 87 94
9.0 0 1 0 0 0 0 0 0
10.0 0 0 0 0 0 28 68 53
11.0 0 0 0 1 8 7 13 20

Table 6: Classification of iOS version via quantization matrices. The
overall accuracy is 0.33742.

iOS 4.0 5.0 6.0 7.0 8.0 9.0 10.0 11.0

4.0 158 8 11 0 0 0 0 0
5.0 4 91 23 0 0 0 0 0
6.0 6 69 134 0 0 0 0 0
7.0 0 0 0 165 1 0 0 0
8.0 0 0 0 3 157 5 1 2
9.0 0 0 0 0 2 117 37 5
10.0 0 0 0 0 4 34 120 4
11.0 0 0 0 0 4 13 10 157

Table 7: Classification of iOS version via EXIF directories and quan-
tization matrices. The overall accuracy is 0.81710.
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Figure 7: App identification via quantization matrices. From top to
bottom, common quantization matrices are shown that co-occurred
with the EXIF:Software tag set to Camera+ (left) and Snapseed
(right). In three of the six cases, these quantization matrices were
fairly unique to the respective app (orange) and only rarely found in
images with other EXIF:Software tags (blue).

Combining features from metadata and compression
parameters to predict the iOS Version yields the highest
accuracy with 81.7%. In Table 7 the main diagonal is
populated with large numbers. Misclassifications happen
only in very old or new iOS versions.

4.4. Uniqueness of Smartphone Apps

Several apps left an entry in the “EXIF:Software” field,
which allows to investigate the case how well it is possible
to fingerprint specific apps.

To perform this experiment, we collect all quantization
matrices that are found for one specific app and sort them
by their relative frequency. In a second step, we search for
the same quantization matrices in images where another
EXIF:Software tag is set. That way, it becomes possible to
quantify how well one of the app’s quantization matrices
can be used to fingerprint the app.
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Figure 8: App identification via quantization matrices. From top to
bottom, common quantization matrices are shown that co-occurred
with the EXIF:Software tag set to Instagram (left) and Flickr (right).
In the shown cases, the app’s quantization matrices (orange) are not
reliably distinguishable from to images with the same quantization
matrix but other EXIF:Software tags (blue).

Figure 7 shows results for the apps Camera+ on the
left, and Snapseed on the right. In the two columns are
three commonly found quantization matrices shown that co-
occurred with these apps. In orange, we show the number
of images that we found for the respective app, and in blue,
we show images from different apps that share the same
quantization matrices. It can be seen, that for Camera+
(left), the first and third quantization matrices are fairly
unique. For Snapseed, the first quantization matrix is fairly
unique. These are two examples for apps that can be well
fingerprinted solemnly from the quantization matrices.

Figure 8 shows two failure cases of this experiment, here
for Instagram (left) and Flickr (right). In both cases, the
used quantization matrices are fairly indistinct compared
to the quantization matrices of other apps, such that no
reliable fingerprint can be established.

5. Conclusions

We investigated possibilities of associating JPEG header
information with images from contemporary smartphones.
In contrast to prior studies on images from traditional
digital cameras, smartphones are rich software platforms
that are regularly modified by software updates. In addition
to that, the smartphone user has the choice among many
apps for acquiring images.

Both factors together modify the objective of header
fingerprinting of image data: the actual hardware platform
loses its significance, and instead the fingerprint points

towards the software version of the device, or the app that
was used to capture the image.

We demonstrate this in four steps. We present a dataset
collected from Flickr that consists of more than 200 000
images. On this dataset, we first show that EXIF metadata
of smartphones changes over time on Apple devices. We
then show that this change is less connected to the actual
Apple hardware, but more closely connected to the change
of version in the iPhone operating system iOS. These find-
ings are underlined by training automated classifiers, which
show to be much more successful in determining iOS ver-
sions than hardware platforms. In addition to that, we also
show on the concrete example of Camera+ and Snapseed,
that some apps use JPEG quantization matrices that are
fairly unique to these apps, and that can hence potentially
be used to link an image to a specific source app.
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