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Figure 1: FaceForensics++ is a dataset of facial forgeries that enables researchers to train deep-learning-based approaches
in a supervised fashion. The dataset contains manipulations created with four state-of-the-art methods, namely, Face2Face,
FaceSwap, DeepFakes, and NeuralTextures.

Abstract

The rapid progress in synthetic image generation and
manipulation has now come to a point where it raises signif-
icant concerns for the implications towards society. At best,
this leads to a loss of trust in digital content, but could po-
tentially cause further harm by spreading false information
or fake news. This paper examines the realism of state-of-
the-art image manipulations, and how difficult it is to detect
them, either automatically or by humans.

To standardize the evaluation of detection methods, we
propose an automated benchmark for facial manipulation
detection1. In particular, the benchmark is based on Deep-
Fakes [1], Face2Face [56], FaceSwap [2] and NeuralTex-
tures [54] as prominent representatives for facial manipula-
tions at random compression level and size. The benchmark
is publicly available2 and contains a hidden test set as well
as a database of over 1.8 million manipulated images. This
dataset is over an order of magnitude larger than compara-
ble, publicly available, forgery datasets. Based on this data,
we performed a thorough analysis of data-driven forgery
detectors. We show that the use of additional domain-
specific knowledge improves forgery detection to unprece-
dented accuracy, even in the presence of strong compres-
sion, and clearly outperforms human observers.

1. Introduction
Manipulation of visual content has now become ubiqui-

tous, and one of the most critical topics in our digital so-
ciety. For instance, DeepFakes [1] has shown how com-
puter graphics and visualization techniques can be used to
defame persons by replacing their face by the face of a dif-
ferent person. Faces are of special interest to current manip-
ulation methods for various reasons: firstly, the reconstruc-
tion and tracking of human faces is a well-examined field
in computer vision [64], which is the foundation of these
editing approaches. Secondly, faces play a central role in
human communication, as the face of a person can empha-
size a message or it can even convey a message in its own
right [27].

Current facial manipulation methods can be separated
into two categories: facial expression manipulation and fa-
cial identity manipulation (see Fig. 2). One of the most
prominent facial expression manipulation techniques is the
method of Thies et al. [56] called Face2Face. It enables the
transfer of facial expressions of one person to another per-
son in real time using only commodity hardware. Follow-up
work such as “Synthesizing Obama” [52] is able to animate
the face of a person based on an audio input sequence.

1. kaldir.vc.in.tum.de/faceforensics_benchmark
2. github.com/ondyari/FaceForensics
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Figure 2: Advances in the digitization of human faces have become the basis for modern facial image editing tools. The
editing tools can be split in two main categories: identity modification and expression modification. Aside from manually
editing the face using tools such as Photoshop, many automatic approaches have been proposed in the last few years. The most
prominent and widespread identity editing technique is face swapping, which has gained significant popularity as lightweight
systems are now capable of running on mobile phones. Additionally, facial reenactment techniques are now available, which
alter the expressions of a person by transferring the expressions of a source person to the target.

Identity manipulation is the second category of facial
forgeries. Instead of changing expressions, these methods
replace the face of a person with the face of another per-
son. This category is known as face swapping. It became
popular with wide-spread consumer-level applications like
Snapchat. DeepFakes also performs face swapping, but via
deep learning. While face swapping based on simple com-
puter graphics techniques can run in real time, DeepFakes
need to be trained for each pair of videos, which is a time-
consuming task.

In this work, we show that we can automatically and re-
liably detect such manipulations, and thereby outperform
human observers by a significant margin. We leverage re-
cent advances in deep learning, in particular, the ability to
learn extremely powerful image features with convolutional
neural networks (CNNs). We tackle the detection problem
by training a neural network in a supervised fashion. To
this end, we generate a large-scale dataset of manipulations
based on the classical computer graphics-based methods
Face2Face [56] and FaceSwap [2] as well as the learning-
based approaches DeepFakes [1] and NeuralTextures [54].

As the digital media forensics field lacks a benchmark
for forgery detection, we propose an automated benchmark
that considers the four manipulation methods in a realistic
scenario, i.e., with random compression and random
dimensions. Using this benchmark, we evaluate the current
state-of-the-art detection methods as well as our forgery
detection pipeline that considers the restricted field of facial
manipulation methods.

Our paper makes the following contributions:

• an automated benchmark for facial manipulation de-
tection under random compression for a standardized
comparison, including a human baseline,

• a novel large-scale dataset of manipulated facial im-
agery composed of more than 1.8 million images from

1,000 videos with pristine (i.e., real) sources and tar-
get ground truth to enable supervised learning,

• an extensive evaluation of state-of-the-art hand-crafted
and learned forgery detectors in various scenarios,

• a state-of-the-art forgery detection method tailored to
facial manipulations.

2. Related Work

The paper intersects several fields in computer vision and
digital multimedia forensics. We cover the most important
related papers in the following paragraphs.

Face Manipulation Methods: In the last two decades, in-
terest in virtual face manipulation has rapidly increased. A
comprehensive state-of-the-art report has been published by
Zollhöfer et al. [64]. In particular, Bregler et al. [12] pre-
sented an image-based approach called Video Rewrite to au-
tomatically create a new video of a person with generated
mouth movements. With Video Face Replacement [19],
Dale et al. presented one of the first automatic face swap
methods. Using single-camera videos, they reconstruct a
3D model of both faces and exploit the corresponding 3D
geometry to warp the source face to the target face. Gar-
rido et al. [28] presented a similar system that replaces the
face of an actor while preserving the original expressions.
VDub [29] uses high-quality 3D face capturing techniques
to photo-realistically alter the face of an actor to match the
mouth movements of a dubber. Thies et al. [55] demon-
strated the first real-time expression transfer for facial reen-
actment. Based on a consumer level RGB-D camera, they
reconstruct and track a 3D model of the source and the
target actor. The tracked deformations of the source face
are applied to the target face model. As a final step, they
blend the altered face on top of the original target video.
Face2Face, proposed by Thies et al. [56], is an advanced



real-time facial reenactment system, capable of altering fa-
cial movements in commodity video streams, e.g., videos
from the internet. They combine 3D model reconstruction
and image-based rendering techniques to generate their out-
put. The same principle can be also applied in Virtual Real-
ity in combination with eye-tracking and reenactment [57]
or be extended to the full body [58]. Kim et al. [38] learn
an image-to-image translation network to convert computer
graphic renderings of faces to real images. Instead of a pure
image-to-image translation network, NeuralTextures [54]
optimizes a neural texture in conjunction with a rendering
network to compute the reenactment result. In compari-
son to Deep Video Portraits [38], it shows sharper results,
especially, in the mouth region. Suwajanakorn et al. [52]
learned the mapping between audio and lip motions, while
their compositing approach builds on similar techniques to
Face2Face [56]. Averbuch-Elor et al. [7] present a reen-
actment method, Bringing Portraits to Life, which employs
2D warps to deform the image to match the expressions of a
source actor. They also compare to the Face2Face technique
and achieve similar quality.

Recently, several face image synthesis approaches us-
ing deep learning techniques have been proposed. Lu et
al. [45] provide an overview. Generative adversarial net-
works (GANs) are used to apply Face Aging [6], to gener-
ate new viewpoints [33], or to alter face attributes like skin
color [44]. Deep Feature Interpolation [59] shows impres-
sive results on altering face attributes like age, mustache,
smiling etc. Similar results of attribute interpolations are
achieved by Fader Networks [41]. Most of these deep learn-
ing based image synthesis techniques suffer from low image
resolutions. Recently, Karras et al. [36] have improved the
image quality using progressive growing of GANs, produc-
ing high-quality synthesis of faces.

Multimedia Forensics: Multimedia forensics aims to en-
sure authenticity, origin, and provenance of an image or
video without the help of an embedded security scheme.
Focusing on integrity, early methods are driven by hand-
crafted features that capture expected statistical or physics-
based artifacts that occur during image formation. Surveys
on these methods can be found in [25, 51]. More recent lit-
erature concentrates on CNN-based solutions, through both
supervised and unsupervised learning [9, 16, 11, 8, 34, 63].
For videos, the main body of work focuses on detecting ma-
nipulations that can be created with relatively low effort,
such as dropped or duplicated frames [60, 30, 43], varying
interpolation types [24], copy-move manipulations [10, 20],
or chroma-key compositions [46].

Several other works explicitly refer to detecting manip-
ulations related to faces, such as distinguishing computer
generated faces from natural ones [21, 14, 49], morphed
faces [48], face splicing [23, 22], face swapping [62, 37]

and DeepFakes [4, 42, 32]. For face manipulation detec-
tion, some approaches exploit specific artifacts arising from
the synthesis process, such as eye blinking [42], or color,
texture and shape cues [23, 22]. Other works are more gen-
eral and propose a deep network trained to capture the sub-
tle inconsistencies arising from low-level and/or high level
features [48, 62, 37, 4, 32]. These approaches show im-
pressive results, however robustness issues often remain un-
addressed, although they are of paramount importance for
practical applications. For example, operations like com-
pression and resizing are known for laundering manipula-
tion traces from the data. In real-world scenarios, these
basic operations are standard when images and videos are
for example uploaded to social media, which is one of the
most important application field for forensic analysis. To
this end, our dataset is designed to cover such realistic sce-
narios, i.e., videos from the wild, manipulated and com-
pressed with different quality levels (see Section 3). The
availability of such a large and varied dataset can help re-
searchers to benchmark their approaches and develop better
forgery detectors for facial imagery.

Forensic Analysis Datasets: Classical forensics datasets
have been created with significant manual effort under very
controlled conditions, to isolate specific properties of the
data like camera artifacts. While several datasets were
proposed that include image manipulations, only a few
of them also address the important case of video footage.
MICC F2000, for example, is an image copy-move manip-
ulation dataset consisting of a collection of 700 forged im-
ages from various sources [5]. The First IEEE Image Foren-
sics Challenge Dataset comprises a total of 1176 forged
images; the Wild Web Dataset [61] with 90 real cases
of manipulations coming from the web and the Realistic
Tampering dataset [40] including 220 forged images. A
database of 2010 FaceSwap- and SwapMe-generated im-
ages has been proposed by Zhou et al. [62]. Recently, Kor-
shunov and Marcel [39] constructed a dataset of 620 Deep-
fakes videos created from multiple videos for each of 43
subjects. The National Institute of Standards and Technol-
ogy (NIST) released the most extensive dataset for generic
image manipulation comprising about 50, 000 forged im-
ages (both local and global manipulations) and around 500
forged videos [31].

In contrast, we construct a database containing more than
1.8 million images from 4000 fake videos – an order of
magnitude more than existing datasets. We evaluate the im-
portance of such a large training corpus in Section 4.

3. Large-Scale Facial Forgery Database

A core contribution of this paper is our FaceForensics++
dataset extending the preliminary FaceForensics dataset
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Figure 3: Statistics of our sequences. VGA denotes 480p,
HD denotes 720p, and FHD denotes 1080p resolution of
our videos. The graph (c) shows the number of sequences
(y-axis) with given bounding box pixel height (x-axis).

[50]. This new large-scale dataset enables us to train a state-
of-the-art forgery detector for facial image manipulation in
a supervised fashion (see Section 4). To this end, we lever-
age four automated state-of-the-art face manipulation meth-
ods, which are applied to 1,000 pristine videos downloaded
from the Internet (see Fig. 3 for statistics). To imitate realis-
tic scenarios, we chose to collect videos in the wild, specif-
ically from YouTube. However, early experiments with all
manipulation methods showed that the target face had to
be nearly front-facing to prevent the manipulation methods
from failing or producing strong artifacts. Thus, we per-
form a manual screening of the resulting clips to ensure a
high-quality video selection and to avoid videos with face
occlusions. We selected 1,000 video sequences containing
509, 914 images which we use as our pristine data.

To generate a large scale manipulation database, we
adapted state-of-the-art video editing methods to work fully
automatically. In the following paragraphs, we briefly de-
scribe these methods.

For our dataset, we chose two computer graphics-based
approaches (Face2Face and FaceSwap) and two learning-
based approaches (DeepFakes and NeuralTextures). All
four methods require source and target actor video pairs as
input. The final output of each method is a video composed
of generated images. Besides the manipulation output, we
also compute ground truth masks that indicate whether a
pixel has been modified or not, which can be used to train
forgery localization methods. For more information and
hyper-parameters we refer to supplemental material.

FaceSwap FaceSwap is a graphics-based approach to
transfer the face region from a source video to a target
video. Based on sparse detected facial landmarks the face
region is extracted. Using these landmarks, the method fits a
3D template model using blendshapes. This model is back-
projected to the target image by minimizing the difference
between the projected shape and the localized landmarks
using the textures of the input image. Finally, the rendered
model is blended with the image and color correction is ap-
plied. We perform these steps for all pairs of source and

target frames until one video ends. The implementation is
computationally lightweight and can be efficiently run on
the CPU.

DeepFakes The term Deepfakes has widely become a
synonym for face replacement based on deep learning, but it
is also the name of a specific manipulation method that was
spread via online forums. To distinguish these, we denote
said method by DeepFakes in the following paper.

There are various public implementations of DeepFakes
available, most notably FakeApp [3] and the faceswap
github [1]. A face in a target sequence is replaced by a
face that has been observed in a source video or image col-
lection. The method is based on two autoencoders with a
shared encoder that are trained to reconstruct training im-
ages of the source and the target face, respectively. A face
detector is used to crop and to align the images. To create
a fake image, the trained encoder and decoder of the source
face are applied to the target face. The autoencoder output is
then blended with the rest of the image using Poisson image
editing [47].

For our dataset, we use the faceswap github implemen-
tation. We slightly modify the implementation by replacing
the manual training data selection with a fully automated
data loader. We used the default parameters to train the
video-pair models. Since the training of these models is
very time-consuming, we also publish the models as part of
the dataset. This facilitates generation of additional manip-
ulations of these persons with different post-processing.

Face2Face Face2Face [56] is a facial reenactment system
that transfers the expressions of a source video to a target
video while maintaining the identity of the target person.
The original implementation is based on two video input
streams, with manual keyframe selection. These frames are
used to generate a dense reconstruction of the face which
can be used to re-synthesize the face under different illumi-
nation and expressions. To process our video database, we
adapt the Face2Face approach to fully-automatically cre-
ate reenactment manipulations. We process each video in
a preprocessing pass; here, we use the first frames in order
to obtain a temporary face identity (i.e., a 3D model), and
track the expressions over the remaining frames. In order to
select the keyframes required by the approach, we automat-
ically select the frames with the left- and right-most angle
of the face. Based on this identity reconstruction, we track
the whole video to compute per frame the expression, rigid
pose, and lighting parameters as done in the original im-
plementation of Face2Face. We generate the reenactment
video outputs by transferring the source expression param-
eters of each frame (i.e., 76 Blendshape coefficients) to the
target video. More details of the reenactment process can
be found in the original paper [56].



NeuralTextures Thies et al. [54] show facial reenactment
as an example for their NeuralTextures-based rendering ap-
proach. It uses the original video data to learn a neu-
ral texture of the target person, including a rendering net-
work. This is trained with a photometric reconstruction
loss in combination with an adversarial loss. In our im-
plementation, we apply a patch-based GAN-loss as used
in Pix2Pix [35]. The NeuralTextures approach relies on
tracked geometry that is used during train and test times.
We use the tracking module of Face2Face to generate these
information. We only modify the facial expressions corre-
sponding to the mouth region, i.e., the eye region stays un-
changed (otherwise the rendering network would need con-
ditional input for the eye movement similar to Deep Video
Portraits [38]).

Postprocessing - Video Quality To create a realistic set-
ting for manipulated videos, we generate output videos with
different quality levels, similar to the video processing of
many social networks. Since raw videos are rarely found
on the internet, we compress the videos using the H.264
codec, which is widely used by social networks or video-
sharing websites. To generate high quality videos, we use a
light compression denoted by HQ (constant rate quantiza-
tion parameter equal to 23) which is visually nearly lossless.
Low quality videos (LQ ) are produced using a quantization
of 40.

4. Forgery Detection
We cast the forgery detection as a per-frame binary clas-

sification problem of the manipulated videos. The following
sections show the results of manual and automatic forgery
detection. For all experiments, we split the dataset into a
fixed training, validation, and test set, consisting of 720,
140, and 140 videos respectively. All evaluations are re-
ported using videos from the test set. For all graphs, we list
the exact numbers in the supplemental material.

4.1. Forgery Detection of Human Observers

To evaluate the performance of humans in the task of
forgery detection, we conducted a user study with 204 par-
ticipants consisting mostly of computer science university
students. This forms the baseline for the automated forgery
detection methods.

Layout of the User Study: After a short introduction to
the binary task, users are instructed to classify randomly se-
lected images from our test set. The selected images vary
in image quality as well as manipulation method; we used
a 50:50 split of pristine and fake images. Since the amount
time for inspection of an image may be important, and to
mimic scenario where a user only spends a limited amount

of time per image as is common on social media, we ran-
domly set a time limit of 2, 4 or 6 seconds after which we
hide the image. Afterwards, the users were asked whether
the displayed image is ‘real’ or ‘fake’. To ensure that the
users spend the available time on inspection, the question is
asked after the image has been displayed and not during the
observation time. We designed the study to only take a few
minutes per participant, showing 60 images per attendee,
which results in a collection of 12240 human decisions.

Evaluation: In Fig. 4, we show the results of our study
on all quality levels, showing a correlation between video
quality and the ability to detect fakes. With a lower video
quality, the human performance decreases in average from
68.7% to 58.7%. The graph shows the numbers averaged
across all time intervals since the different time constraints
did not result in significantly different observations.

Figure 4: Forgery detection results of our user study with
204 participants. The accuracy is dependent on the video
quality and results in a decreasing accuracy rate that is
68.69% in average on raw videos, 66.57% on high quality,
and 58.73% on low quality videos.

Note that the user study contained fake images of all four
manipulation methods and pristine images. In this setting,
Face2Face and NeuralTextures were particularly difficult to
detect by human observers, as they do not introduce a strong
semantic change, introducing only subtle visual artifacts in
contrast to the face replacement methods. NeuralTextures
texture seems particularly difficult to detect as human de-
tection accuracy is below random chance and only increases
in the challenging low quality task.

4.2. Automatic Forgery Detection Methods

Our forgery detection pipeline is depicted in Fig. 5.
Since our goal is to detect forgeries of facial imagery, we
use additional domain-specific information that we can ex-
tract from input sequences. To this end, we use the state-
of-the-art face tracking method by Thies et al. [56] to track
the face in the video and to extract the face region of the
image. We use a conservative crop (enlarged by a factor of
1.3) around the center of the tracked face, enclosing the re-
constructed face. This incorporation of domain knowledge



Figure 5: Our domain-specific forgery detection pipeline
for facial manipulations: the input image is processed by a
robust face tracking method; we use the information to ex-
tract the region of the image covered by the face; this region
is fed into a learned classification network that outputs the
prediction.

improves the overall performance of a forgery detector in
comparison to a naı̈ve approach that uses the whole image
as input (see Sec. 4.2.2). We evaluated various variants of
our approach by using different state-of-the-art classifica-
tion methods. We are considering learning-based methods
used in the forensic community for generic manipulation
detection [9, 16], computer-generated vs natural image de-
tection [49] and face tampering detection [4]. In addition,
we show that the classification based on XceptionNet [13]
outperforms all other variants in detecting fakes.

4.2.1 Detection based on Steganalysis Features:

We evaluate detection from steganalysis features, follow-
ing the method by Fridrich et al. [26] which employs hand-
crafted features. The features are co-occurrences on 4 pixels
patterns along the horizontal and vertical direction on the
high-pass images for a total feature length of 162. These
features are then used to train a linear Support Vector Ma-
chine (SVM) classifier. This technique was the winning
approach in the first IEEE Image Forensic Challenge [15].
We provide a 128 × 128 central crop-out of the face as in-
put to the method. While the hand-crafted method outper-
forms human accuracy on raw images by a large margin, it
struggles to cope with compression, which leads to an accu-
racy below human performance for low quality videos (see
Fig. 6 and Table 1).

4.2.2 Detection based on Learned Features:

For detection from learned features, we evaluate five net-
work architectures known from the literature to solve the
classification task:

(1) Cozzolino et al. [16] cast the hand-crafted Steganal-
ysis features from the previous section to a CNN-based net-
work. We fine-tune this network on our large scale dataset.

(2) We use our dataset to train the convolutional neu-
ral network proposed by Bayar and Stamm [9] that uses a
constrained convolutional layer followed by two convolu-
tional, two max-pooling and three fully-connected layers.
The constrained convolutional layer is specifically designed

Figure 6: Binary detection accuracy of all evaluated archi-
tectures on the different manipulation methods using face
tracking when trained on our different manipulation meth-
ods separately.

Figure 7: Binary precision values of our baselines when
trained on all four manipulation methods simulatenously.
See Table 1 for the average accuracy values. Aside from
the Full Image XceptionNet, we use the proposed pre-
extraction of the face region as input to the approaches.

to suppress the high-level content of the image. Similar to
the previous methods, we use a centered 128× 128 crop as
input.

(3) Rahmouni et al. [49] adopt different CNN architec-
tures with a global pooling layer that computes four statis-
tics (mean, variance, maximum and minimum). We con-
sider the Stats-2L network that had the best performance.

(4) MesoInception-4 [4] is a CNN-based network in-
spired by InceptionNet [53] to detect face tampering in
videos. The network has two inception modules and two
classic convolution layers interlaced with max-pooling lay-
ers. Afterwards, there are two fully-connected layers. In-



stead of the classic cross-entropy loss, the authors propose
the mean squared error between true and predicted labels.
We resize the face images to 256 × 256, the input of the
network.

(5) XceptionNet [13] is a traditional CNN trained on Im-
ageNet based on separable convolutions with residual con-
nections. We transfer it to our task by replacing the final
fully connected layer with two outputs. The other layers are
initialized with the ImageNet weights. To set up the newly
inserted fully connected layer, we fix all weights up to the fi-
nal layers and pre-train the network for 3 epochs. After this
step, we train the network for 15 more epochs and choose
the best performing model based on validation accuracy.

A detailed description of our training and hyper-
parameters can be found in the supplemental document.

Comparison of our Forgery Detection Variants: Fig. 6
shows the results of a binary forgery detection task using
all network architectures evaluated separately on all four
manipulation methods and at different video quality levels.
All approaches achieve very high performance on raw input
data. Performance drops for compressed videos, particu-
larly for hand-crafted features and for shallow CNN archi-
tectures [9, 16]. The neural networks are better at handling
these situations, with XceptionNet able to achieve com-
pelling results on weak compression while still maintaining
reasonable performance on low quality images, as it benefits
from its pre-training on ImageNet as well as larger network
capacity.

To compare the results of our user study to the perfor-
mance of our automatic detectors, we also tested the detec-
tion variants on a dataset containing images from all ma-
nipulation methods. Fig. 7 and Table 1 show the results on
the full dataset. Here, our automated detectors outperform
human performance by a large margin (cf. Fig. 4). We also
evaluate a naı̈ve forgery detector operating on the full im-
age (resized to the XceptionNet input) instead of using face
tracking information (see Fig. 7, rightmost column). Due
to the lack of domain-specific information, the XceptionNet
classifier has a significantly lower accuracy in this scenario.
To summarize, domain-specific information in combination
with a XceptionNet classifier shows the best performance
in each test. We use this network to further understand the
influence of the training corpus size and its ability to distin-
guish between the different manipulation methods.

Forgery Detection of GAN-based methods The experi-
ments show that all detection approaches achieve a lower
accuracy on the GAN-based NeuralTextures approach.
NeuralTextures is training a unique model for every ma-
nipulation which results in a higher variation of possible
artifacts. While DeepFakes is also training one model per
manipulation, it uses a fixed post-processing pipeline sim-

Compression Raw HQ LQ

[13] XceptionNet Full Image 82.01 74.78 70.52

[26] Steg. Features + SVM 97.63 70.97 55.98

[16] Cozzolino et al. 98.57 78.45 58.69

[9] Bayar and Stamm 98.74 82.97 66.84

[49] Rahmouni et al. 97.03 79.08 61.18

[4] MesoNet 95.23 83.10 70.47

[13] XceptionNet 99.26 95.73 81.00

Table 1: Binary detection accuracy of our baselines when
trained on all four manipulation methods. Besides the naı̈ve
full image XceptionNet, all methods are trained on a con-
servative crop (enlarged by a factor of 1.3) around the center
of the tracked face.

Figure 8: The detection performance of our approach us-
ing XceptionNet depends on the training corpus size. Espe-
cially, for low quality video data, a large database is needed.

ilar to the computer-based manipulation methods and thus
has consistent artifacts.

Evaluation of the Training Corpus Size: Fig. 8 shows
the importance of the training corpus size. To this end,
we trained the XceptionNet classifier with different train-
ing corpus sizes on all three video quality level separately.
The overall performance increases with the number of train-
ing images which is particularly important for low quality
video footage, as can be seen in the bottom of the figure.



5. Benchmark

In addition to our large-scale manipulation database, we
publish a competitive benchmark for facial forgery detec-
tion. To this end, we collected 1000 additional videos
and manipulated a subset of those in a similar fashion as
in Section 3 for each of our four manipulation methods.
As uploaded videos (e.g., to social networks) will be post-
processed in various ways, we obscure all selected videos
multiple times (e.g., by unknown re-sizing, compression
method and bit-rate) to ensure realistic conditions. This
processing is directly applied on raw videos. Finally, we
manually select a single challenging frame from each video
based on visual inspection. Specifically, we collect a set of
1000 images, each image randomly taken from either the
manipulation methods or the original footage. Note that we
do not necessarily have an equal split of pristine and fake
images nor an equal split of the used manipulation meth-
ods. The ground truth labels are hidden and are used on
our host server to evaluate the classification accuracy of the
submitted models. The automated benchmark allows sub-
missions every two weeks from a single submitter to prevent
overfitting (similar to existing benchmarks [18]).

As baselines, we evaluate the low quality versions of
our previously trained models on the benchmark and report
the numbers for each detection method separately (see Ta-
ble 2). Aside from the Full Image XceptionNet, we use
the proposed pre-extraction of the face region as input to
the approaches. The relative performance of the classifica-
tion models is similar to our database test set (see Table 1).
However, since the benchmark scenario deviates from the
training database, the overall performance of the models
is lower, especially for the pristine image detection preci-
sion; the major changes being the randomized quality level
as well as possible tracking errors during test. Since our
proposed method relies on face detections, we predict fake
as default in case of a tracking failure.

The benchmark is already publicly available to the com-
munity and we hope that it leads to a standardized compar-
ison of follow-up work.

6. Discussion & Conclusion

While current state-of-the-art facial image manipulation
methods exhibit visually stunning results, we demonstrate
that they can be detected by trained forgery detectors. It
is particularly encouraging that also the challenging case
of low-quality video can be tackled by learning-based ap-
proaches, where humans and hand-crafted features exhibit
difficulties. To train detectors using domain-specific knowl-
edge, we introduce a novel dataset of videos of manipulated
faces that exceeds all existing publicly available forensic
datasets by an order of magnitude.

In this paper, we focus on the influence of compression to

Accuracies DF F2F FS NT Real Total

Xcept. Full Image 74.55 75.91 70.87 73.33 51.00 62.40

Steg. Features 73.64 73.72 68.93 63.33 34.00 51.80

Cozzolino et al. 85.45 67.88 73.79 78.00 34.40 55.20

Rahmouni et al. 85.45 64.23 56.31 60.07 50.00 58.10

Bayar and Stamm 84.55 73.72 82.52 70.67 46.20 61.60

MesoNet 87.27 56.20 61.17 40.67 72.60 66.00

XceptionNet 96.36 86.86 90.29 80.67 52.40 70.10

Table 2: Results of the low quality trained model of each
detection method on our benchmark. We report precision
results for DeepFakes (DF), Face2Face (F2F), FaceSwap
(FS), NeuralTextures (NT), and pristine images (Real) as
well as the overall total accuracy.

the detectability of state-of-the-art manipulation methods,
proposing a standardized benchmark for follow-up work.
All image data, trained models, as well as our benchmark
are publicly available and are already used by other re-
searchers. In particular, transfer learning is of high inter-
est in the forensic community. As new manipulation meth-
ods appear by the day, methods must be developed that are
able to detect fakes with little to no training data. Our
database is already used for this forensic transfer learning
task, where knowledge of one source manipulation domain
is transferred to another target domain, as shown by Coz-
zolino et al [17]. We hope that the dataset and benchmark
become a stepping stone for future research in the field of
digital media forensics, and in particular with a focus on
facial forgeries.
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