

Reliable JPEG Forensics via Model Uncertainty

Detecting the training-test mismatch with Bayesian logistic regression

Benedikt Lorch, Anatol Maier, Christian Riess IT Security Infrastructures Lab Friedrich-Alexander University Erlangen-Nuremberg, Germany December 9, 2020

Train in controlled lab environment

Train in controlled lab environment

Test accuracy: 99%

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \sim random guessing

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \sim random guessing

- · Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \sim random guessing

- Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.

Current approaches to mitigating the training-test mismatch

1. Create more robust detectors with broad applicability (open challenge)

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: \sim random guessing

- Detectors do not naturally generalize to unseen JPEG settings
- ... and fail silently.

Current approaches to mitigating the training-test mismatch

- 1. Create more robust detectors with broad applicability (open challenge)
- 2. Create several detectors specialized to a narrow range of JPEG settings (not fool-proof)

Contribution: Detect training-test mismatch with Bayesian detector

Our proposal: Create reliable detectors that express uncertainty in unfamiliar situations

 \Rightarrow Quantify when to trust the model's predictions

Contribution: Detect training-test mismatch with Bayesian detector

Our proposal: Create reliable detectors that express uncertainty in unfamiliar situations

 \Rightarrow Quantify when to trust the model's predictions

Experiments

- Detect JPEG double compression based on first-digit features
- Uncertainty measure allows anticipating misclassifications when test image is not aligned with the training data
 - Mismatch in JPEG quality factors
 - Mismatch in quantization tables \leftarrow this talk
 - Mismatch in DCT implementation

A			В		
edible poisonous 0.0	0.5	1.0	edible poisonous 0.0	0.5	1.0
edible poisonous 0.0	0.5	1.0	edible poisonous 0.0	0.5	1.0

А В edible edible poisonous poisonous 0.0 0.5 1.0

1. No uncertainty: All experts agree

- 1. No uncertainty: All experts agree
- 2. Data uncertainty: All experts are uncertain

- 1. No uncertainty: All experts agree
- 2. Data uncertainty: All experts are uncertain
- Model uncertainty: Experts have different 3. opinions

Bayesian logistic regression

· Express uncertainty about decision boundary by modeling weights as probability distributions

- · Express uncertainty about decision boundary by modeling weights as probability distributions
- · Goal: Obtain predictive distribution over possible outcomes instead of single estimate

- Express uncertainty about decision boundary by modeling weights as probability distributions
- · Goal: Obtain predictive distribution over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

- · Express uncertainty about decision boundary by modeling weights as probability distributions
- · Goal: Obtain predictive distribution over possible outcomes instead of single estimate
- Mean of predictive distribution gives prediction, variance indicates uncertainty

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{x}_{ ext{train}}, \mathbf{y}_{ ext{train}}) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) \frac{p(\mathbf{w} \mid \mathbf{x}_{ ext{train}}, \mathbf{y}_{ ext{train}})}{d\mathbf{w}}$$

(1)

- · Express uncertainty about decision boundary by modeling weights as probability distributions
- · Goal: Obtain predictive distribution over possible outcomes instead of single estimate
- · Mean of predictive distribution gives prediction, variance indicates uncertainty

$$p(m{y}^* \mid m{x}^*, m{x}_{ ext{train}}, m{y}_{ ext{train}}) = \int p(m{y}^* \mid m{x}^*, m{w}) \, p(m{w} \mid m{x}_{ ext{train}}, m{y}_{ ext{train}}) \, dm{w}$$

with

p(y* | x*, w) - prediction of classifier with weights w

(1)

- · Express uncertainty about decision boundary by modeling weights as probability distributions
- · Goal: Obtain predictive distribution over possible outcomes instead of single estimate
- · Mean of predictive distribution gives prediction, variance indicates uncertainty

$$p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{x}_{ ext{train}}, \mathbf{y}_{ ext{train}}) = \int p(\mathbf{y}^* \mid \mathbf{x}^*, \mathbf{w}) \frac{p(\mathbf{w} \mid \mathbf{x}_{ ext{train}}, \mathbf{y}_{ ext{train}})}{d\mathbf{w}}$$

with

- $p(y^* | x^*, w)$ prediction of classifier with weights w
- $p(w | x_{train}, y_{train})$ posterior distribution over the weights after training data is seen

(1)

Toy example: Standard logistic regression

Toy example: Bayesian logistic regression

Toy example: Bayesian logistic regression

Experiments & Results

Minor discrepancy between training and test quantization tables cause misclassifications

Minor discrepancy between training and test quantization tables cause misclassifications

- Minor discrepancy between training and test quantization tables cause misclassifications
- Experiment: Randomly select *i* quantization table entries, adjust quantization factor by ± 1

- Minor discrepancy between training and test quantization tables cause misclassifications
- Experiment: Randomly select *i* quantization table entries, adjust quantization factor by ± 1

 \Rightarrow Bayesian detector anticipates misclassifications from quantization table mismatch

Conclusion

Benedikt Lorch | FAU Erlangen-Nuremberg | Reliable JPEG Forensics via Model Uncertainty | WIFS 2020

Conclusion: Reliable detectors from model uncertainty

- · Machine learning models are sensitive to training-test mismatches
- · Forensic methods are often faced with data from unknown origins
 - \Rightarrow Forensic methods must take care of training-test mismatch (instead of failing silently)

Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- · Forensic methods are often faced with data from unknown origins
 - ⇒ Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- · Quantify when to trust in the model's prediction
- Avoid misclassifications on unseen compression settings
- Applicable to neural networks but requires restrictive approximations

Conclusion: Reliable detectors from model uncertainty

- Machine learning models are sensitive to training-test mismatches
- · Forensic methods are often faced with data from unknown origins
 - \Rightarrow Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- · Quantify when to trust in the model's prediction
- · Avoid misclassifications on unseen compression settings
- · Applicable to neural networks but requires restrictive approximations

Long term goal

· Foster research on reliable, trustworthy learning-based methods

Benedikt Lorch | FAU Erlangen-Nuremberg | Reliable JPEG Forensics via Model Uncertainty | WIFS 2020

Conclusion: Reliable detectors from model uncertainty

- · Machine learning models are sensitive to training-test mismatches
- · Forensic methods are often faced with data from unknown origins
 - \Rightarrow Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty

- · Quantify when to trust in the model's prediction
- · Avoid misclassifications on unseen compression settings
- Applicable to neural networks but requires restrictive approximations

Long term goal

• Foster research on reliable, trustworthy learning-based methods

Thank you

References

- Tube icon adapted from environmental science icon
- Mushroom photos from Wikipedia [1, 2]