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The training-test mismatch in JPEG forensics

Train in controlled lab environment

Test accuracy: 99%

Test on images of unknown quality

Test accuracy: ∼ random guessing

• Detectors do not naturally generalize to unseen JPEG settings
• ... and fail silently.

Current approaches to mitigating the training-test mismatch

1. Create more robust detectors with broad applicability (open challenge)

2. Create several detectors specialized to a narrow range of JPEG settings (not fool-proof)
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Contribution: Detect training-test mismatch with Bayesian detector

Our proposal: Create reliable detectors that express uncertainty in unfamiliar situations

⇒ Quantify when to trust the model’s predictions

Experiments
• Detect JPEG double compression based on first-digit features
• Uncertainty measure allows anticipating misclassifications when test image is not aligned with

the training data
• Mismatch in JPEG quality factors
• Mismatch in quantization tables← this talk
• Mismatch in DCT implementation
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Data and model uncertainty

1. No uncertainty: All experts agree

2. Data uncertainty: All experts are uncertain

3. Model uncertainty: Experts have different
opinions
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Bayesian logistic regression
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Bayesian inference of predictive distribution

• Express uncertainty about decision boundary by modeling weights as probability distributions

• Goal: Obtain predictive distribution over possible outcomes instead of single estimate
• Mean of predictive distribution gives prediction, variance indicates uncertainty

p(y∗ | x∗, x train, y train) =

∫
p(y∗ | x∗,w) p(w | x train, y train) dw (1)

with
• p(y∗ | x∗,w) - prediction of classifier with weights w

• p(w | x train, y train) - posterior distribution over the weights after training data is seen
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Toy example: Standard logistic regression
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Toy example: Bayesian logistic regression
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Experiments & Results
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Application scenario: Mismatch in JPEG quantization tables

• Minor discrepancy between training and test quantization tables cause misclassifications

• Experiment: Randomly select i quantization table entries, adjust quantization factor by ±1

⇒ Bayesian detector anticipates misclassifications from quantization table mismatch
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Conclusion
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Conclusion: Reliable detectors from model uncertainty
• Machine learning models are sensitive to training-test mismatches
• Forensic methods are often faced with data from unknown origins

⇒ Forensic methods must take care of training-test mismatch (instead of failing silently)

Proposal: Bayesian detector indicates training-test mismatch via model uncertainty
• Quantify when to trust in the model’s prediction
• Avoid misclassifications on unseen compression settings
• Applicable to neural networks but requires restrictive approximations

Long term goal
• Foster research on reliable, trustworthy learning-based methods
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Thank you



References

• Tube icon adapted from environmental science icon
• Mushroom photos from Wikipedia [1, 2]

Benedikt Lorch | FAU Erlangen-Nuremberg | Reliable JPEG Forensics via Model Uncertainty | WIFS 2020 10

https://thenounproject.com/term/environmental-science/1458373/
https://commons.wikimedia.org/wiki/File:Agaricus_augustus_47964_cropped.jpg
https://en.wikipedia.org/wiki/Amanita_muscaria/media/File:Amanita_muscaria_Marriott_Falls_1.jpg

