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Abstract—Many methods in image forensics are sensitive to
varying amounts of JPEG compression. To mitigate this issue, it
is either possible to a) build detectors that better generalize to
unknown JPEG settings, or to b) train multiple detectors, where
each is specialized to a narrow range of JPEG qualities. While
the first approach is currently an open challenge, the second
approach may silently fail, even for only slight mismatches in
training and testing distributions. To alleviate this challenge, we
propose a forensic detector that is able to express uncertainty in
its predictions. This allows detecting test samples for which the
training distribution is not representative. More specifically, we
propose Bayesian logistic regression as an instance of an infinite
ensemble of classifiers. The ensemble agrees in its predictions
from test samples similar to the training data but its predictions
diverge for unknown test samples. The applicability of the
proposed method is evaluated on the task of detecting JPEG
double compression. The detector achieves high performance
on two goals simultaneously: It accurately detects double-JPEG
compression, and it accurately indicates when the test data is not
covered by the training data. We assert that the proposed method
can assist a forensic analyst in assessing detector reliability and
in anticipating failure cases for specific inputs.

I. INTRODUCTION

Multimedia forensics aims to provide tools to verify the
origin and authenticity of multimedia content. These tools
target different user groups with varying requirements rang-
ing from businesses and journalists to criminal investigators.
While social media companies need tools that work at scale,
criminal investigations require reliable and interpretable tools
to produce evidence that is admissible in court. To this end,
a broad range of analytical models has been developed where
assumptions and error bounds can be stated explicitly.

While rigorous analytical models are certainly preferable,
many traces are notoriously hard to describe and isolate,
given the lack of knowledge about hardware manufacturing
and the abundance of possible processing operations that an
image may have undergone. When analytical derivations are
infeasible, researchers resort to constructing statistical models
from large sets of examples. While machine learning outper-
forms simple rule-based classifiers, learning-based classifiers
tend to overfit to the type of data they were trained on, i.e.,
the training distribution. When presented with an example
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of different characteristics, so called out-of-distribution ex-
amples, the output of the machine learning model becomes
somewhat arbitrary. This problem is known as the training-
test mismatch [1], [2]. Machine learning models can therefore
only be applied to samples that fit to the training distribution.

Given an image to analyze, usually little is known about
the origin and processing history of that example. Therefore,
it is not trivial to ensure that the training data of a pre-trained
detector is representative for the test example. While much
research is being devoted to better generalization to unseen
scenarios, for example by training on more diverse inputs,
most methods are still challenged by out-of-distribution data
where they silently fail.

In this work, we explore methods to safeguard forensic de-
tectors from unfamiliar inputs. The proposed method informs
the forensic analyst when the input does not match the training
distribution, and provides an estimate for the model’s degree
of uncertainty. This uncertainty estimate can indicate whether
(and to what extent) to trust the predictions of a detector. This
work intents to facilitate creating trust in machine learning-
based forensics and to develop more reliable detectors.

The specific subject of this work is JPEG forensics. Varying
JPEG compression settings are a notorious challenge for
statistics-based forensic algorithms. An often-proposed solu-
tion is to create a specific detector for each particular JPEG
quality factor [3], [4], [5]. While this strategy may be able
to reduce the training-test mismatch, we will demonstrate that
this strategy is not foolproof. As a remedy, we propose using
predictive uncertainty for explicitly indicating a training-test
mismatch. To estimate predictive uncertainty, we use Bayesian
logistic regression as a specific instance of an infinite ensemble
of classifiers. Its applicability and usefulness is shown for
the detection of double-JPEG compression using first-digit
features [6]. These analytically tractable features allow us to
thoroughly study the classifier and its predictive uncertainty.
The contributions of this work are:

• We demonstrate that an unknown input may easily break
state-of-the-art defenses against the training-test mis-
match, namely selecting the best-matching detector and
creating an input-specific training set.

• We show the benefits of predictive variance for measuring
uncertainty in the detection of double JPEG compression.

• We show that Bayesian logistic regression with standard
first-digit features reliably detects several pathologic fail-
ure cases in JPEG analysis, including unknown JPEG
settings and unknown JPEG implementations.



II. RELATED WORK

A. JPEG Double Compression

Traces of multiple JPEG compressions have always been
a subject of interest in the forensics community. A common
assumption is that original images are compressed once inside
the camera. Traces from subsequent JPEG compressions indi-
cate additional processing, which may be a first cue towards
detecting modifications to the image content. Most work
on detecting double JPEG compression can be categorized
into whether the DCT grids of successive compressions are
shifted or aligned. Notable approaches to detecting non-
aligned double compression include blocking artifacts [7]
and the periodicity of DCT coefficients [8]. Periodic artifacts
and discontinuities in the DCT coefficients have also been
exploited to detect aligned JPEG double compression [9], [10].
Another telltale sign indicating multiple compressions is the
distribution of the first digits of the DCT coefficients. First
digits from single-compressed images follow a distribution
described by Benford’s law. Multiple compressions change
this distribution, which indicates double compression [11] and
allows inferring the quantization step of the first compres-
sion [6]. First-digit features can also be used to estimate the
number of consecutive JPEG compressions [12] and to localize
image tampering [13]. In this work, we evaluate the proposed
classifier on this standard set of first-digit features due to its
simplicity but note that our approach is applicable to any
feature set.

B. Novelty Detection

Many forensic algorithms are formulated as novelty detec-
tion tasks to avoid overly limiting assumptions on the type of
image manipulation. These approaches model specific image
properties either implicitly [14] or explicitly [15]. Genuine
images can be validated by these properties, but manipulated
content is assumed to appear “anomalous”, and can be detected
as such. From a technical perspective, novelty detection de-
termines whether a new observation notably differs from the
training data. While several works observe their methods to
be sensitive to a mismatch between training and test data [1],
[2], only few works address this issue. Related work on open-
set camera-model identification used one-class SVMs [15],
[16] or binary SVMs [17] to contend with unknown camera
models. One-and-a-half class SVMs have also been used to
detect image manipulations in an adversarial environment [18].

Many safety-critical applications require knowledge of erro-
neous predictions. Therefore, the machine learning community
developed principled approaches to assessing uncertainty in
the prediction of a model. Recent work used classifier en-
sembles to identify out-of-distribution examples [19], [20].
These works follow the idea that the ensemble largely agrees
in its predictions from in-distribution samples, but diverges
for unseen examples. Recent efforts combine neural networks
with Bayesian methods that allow training an infinite ensemble
of classifiers and provide a principled way to reason about
predictive uncertainty [21]. In a Bayesian neural network,

each parameter is represented by a probability distribution that
captures uncertainty about the parameters. Despite promising
results on detecting out-of-distribution examples [22], [23], it
is still a challenge to apply Bayesian neural networks to large
data sets, mainly due to expensive hyper-parameter tuning
and the requirement of using restrictive approximations [24].
In this work, we study Bayesian logistic regression, which
is a simpler instance of the Bayesian framework. While
this method is less powerful than Bayesian neural networks,
we aim to demonstrate the benefits of modeling parameters
as probability distributions, analyze the impact of the prior
distribution, and outline a shortcoming of this method.

III. BAYESIAN LOGISTIC REGRESSION

We discuss the general background on Bayesian logistic
regression here, more details can be found in [25].

Logistic regression models a linear decision boundary with
scalar weights that are found via maximum likelihood. For a
M -dimensional input x, the output of the linear model is

y(x,w) = σ(wTx) , (1)

where σ denotes the logistic sigmoid function and w
represents the M -dimensional parameter vector.

The posterior probability that x belongs to class C1 can
be formulated as the expectation with respect to the posterior
distribution over the weights, i.e.,

p(C1|x) = Eδ(w) [y(x,w)] =

∫
y(x, w̃)δ(w̃ −w)dw̃ . (2)

The model is parameterized by scalar values. Hence, the
posterior distribution is given by the Dirac delta distribution
δ(w), thus p(C1|x) = y(x,w). As a consequence, this model
obtains a so-called point estimate that does not represent or
indicate uncertainty in its prediction.

Conversely, in the Bayesian formulation, each weight is
represented by a probability distribution. During training, the
posterior distribution over the weights p(w|D) is sought. It
captures how probable each parameter configuration is, given
the training data D = {(xn, tn)}Nn=1. As the prior distribution
we assume a zero-mean Gaussian with covariance matrix S0:

p(w|S0) = N (w|0,S0) . (3)

The posterior distribution over the weights is given by the
Bayes theorem:

p(w|D) =
p(D|w)p(w|S0)

p(D|S0)
. (4)

In this binary classification problem, the likelihood can be
written in terms of a Bernoulli distribution

p(D|w) =

N∏
n=1

y(xn,w)tn(1− y(xn,w))1−tn . (5)

The normalization over the evidence p(D|S0) in Eqn. 4
ensures that the posterior is a valid probability distribution,
which, unfortunately, is analytically intractable. We therefore
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Fig. 1. Bayesian logistic regression on a 2-D toy example with regularization parameter β = 2. Left: Predictive mean for the posterior probability. Middle:
Predictive variance. The predictive variance is low in regions where several draws from the posterior distribution result in similar predictions. It increases
when several models disagree. Right: 20 decision boundaries drawn from the posterior (solid red) and 20 draws from the prior distribution (dotted blue).
Aligning the prior along the data may appear counter-intuitive, but helps to spread the variety of posteriors (see text for details).

resort to a variational framework [26] that approximates
the logistic likelihood function p(D|w) by a lower bound
h(D|w,η). This bound is conjugate to the Gaussian prior, at
the cost of one additional parameter ηn per training example
that controls the tightness of the approximation:

p(D|w)p(w|S0) ≥ h(D|w,η)p(w|S0) . (6)

Because the Gaussian prior and the lower bound on the
likelihood are conjugate, their product forms a Gaussian
distribution q(w), which is straightforward to normalize. As
a result, the variational posterior q(w) approximates the in-
tractable posterior distribution p(w|D). The covariance of the
variational posterior still depends on the variational parameters
η, which can be optimized with the expectation maximiza-
tion (EM) algorithm as in [26]. After random initialization of
the variational parameters, the E-step calculates the mean and
covariance of the variational weight posterior. In the M-step,
the expected complete-data log likelihood is maximized w.r.t.
the variational parameters using the current estimate of q(w):

η = arg max
η

Eq(w) [lnh(D|w,η)p(w|S0)] . (7)

We run the EM algorithm for a maximum of 1 000 iterations
or until the parameters converge to stable estimates.

Having obtained a variational approximation q(w) to the
weight posterior, the predictive distribution for an unseen
example x∗ can be computed by marginalizing over w:

p(C1|x∗) =

∫
y(x∗,w)p(w|D)dw ≈

∫
y(x∗,w)q(w)dw.

(8)
Because the integral in Eqn. 8 cannot be solved analytically,

we use Monte Carlo sampling to estimate the mean and the
variance of the predictive distribution. The mean is

p(C1|x∗) ≈ 1

T

T∑
t=1

y(x∗,w(t)) (9)

where w(t) ∼ q(w) is drawn from the variational posterior
and T denotes the number of Monte Carlo draws.

Figure 1 demonstrates a 2-D toy example for a binary
classification task. On the left, the contour lines show the
posterior probability for the positive class C1. The predictive
variance is shown in the middle, which encodes the disagree-
ment or uncertainty of the models when drawing from the
weight posterior. The plot on the right shows 20 draws from
the weight posterior (solid red lines) and the prior distribu-
tion (dotted blue lines). At first glance, it may be counter-
intuitive to pass the prior through the data (blue). However,
we empirically found that this increases the diversity of the
posterior decision boundaries (red), which implicitly increases
the sensitivity to outliers. In regions with training data, draws
from the posterior distribution yield similar predictions and
hence a low predictive variance. Regions without training data
yield different predictions and hence high predictive variance.

This toy example also hints at a possible failure case of
the proposed method: The predictive variance has a blind spot
“behind” the samples of a class. Here, the predictive variance
is very close to 0, such that outliers cannot be found.

IV. EVALUATION

To our knowledge, there is no work directly related to our
method. However, the k-nearest-neighbors (kNN) classifier can
potentially directly synthesize an uncertainty measure. Another
alternative might be an SVM-based classification framework
that selects a specialized classifier for each test sample.

The kNN classifier predicts the class label for a test example
via a majority vote of the k = 5 nearest training examples.
To measure uncertainty, we calculate a sample’s average
Euclidean distance to its k closest training examples: This
distance can be expected to be low for in-distribution test
samples, and higher for out-of-distribution test samples.

Additionally, we evaluate a combined classification frame-
work (CCF) composed of two one-class and one two-class
SVMs, following a similar proposal for open-set camera model
identification [15]. For a pair of compression parameters, one
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Fig. 2. Predictive variance for β = 10−3 (left) and β = 106 (right). A
lower prior precision allows the model to adapt more freely to the training
data, while an over-regularized model is unable to adjust to the training data.

one-class SVM is trained on the single-compressed images,
and another on the double-compressed images. The two-class
SVM is discriminatively trained on both inputs. A sample is
determined as single- or double-compressed if it is detected by
exactly one of the one-class SVMs. If both one-class SVMs
detect it, the two-class SVM decides between both classes. A
test sample is rejected if it is not recognized by both the one-
class SVMs. The one-class SVMs use radial basis functions,
and their tightness parameter ν = 0.001 is determined with
a grid search. The two-class SVM uses a linear kernel with
regularizer C = 1.0. As uncertainty score we use the binary
decision whether a test example is recognized as an inlier or
outlier.

The proposed Bayesian logistic regression with variational
approximation (VLR) is evaluated with two choices of prior
distributions. Both priors are zero-mean normal distributions,
specified in terms of their precision matrix. The first variant,
VLRiso, is isotropic with precision α, i.e., S−1

0 = αI , where
I is the M -dimensional identity matrix. The second variant,
VLRfull, uses a full precision matrix that is set to the training
data covariance Σ, i.e. S−1

0 = βΣ + εI . We add a small
constant of ε = 1e−5 to the diagonal entries to ensure that the
resulting S−1

0 is positive definite. Setting the prior precision
matrix to the data covariance encourages the model to explore
more diverse decision boundaries, as shown in Fig. 1.

The hyper-parameters α and β control the regularization
strength of the prior, which is shown in Fig. 2 for the toy
example: On the left, smaller values for β allow the posterior
distribution to flexibly adapt to the training data, but large
areas in the features space exhibit only low uncertainty. On
the right, if the prior precision is set too high, the resulting
over-regularized model cannot properly fit the training data. In
our experiments, we set α = 10−5 and β = 103. The behavior
of the prior precision is also subject to an ablation study in
Sec. IV-D. While testing, we use T = 100 Monte Carlo draws
to estimate the predictive mean and variance.

A. Experimental Setup

We evaluate the proposed method on the RAISE 1k dataset
consisting of 1 000 images in uncompressed TIFF format [27].
For a given pair of quality factors (QF1, QF2), we cre-
ate a single-compressed version using QF2 and a double-
compressed version with QF1 for the first and QF2 for the

TABLE I
IN-DISTRIBUTION ACCURACY AND DETECTION OF OUT-OF-DISTRIBUTION

CASES

Method In-distribution
accuracy

QF2 mismatch
AUC

QF1 mismatch
AUC

kNN 0.93 ± 0.00 1.00 ± 0.00 0.85 ± 0.00
CCF 0.92 ± 0.01 0.97 ± 0.01 0.73 ± 0.01
VLRiso 0.97 ± 0.00 0.97 ± 0.01 0.79 ± 0.03
VLRfull 0.97 ± 0.00 1.00 ± 0.00 0.91 ± 0.00

second compression. All images are compressed using libjpeg.
We evaluate quality factors between 50 and 95 in steps of 5.

First-digit features are extracted from the compressed im-
ages as described earlier [13]. More specifically, the first nine
AC bands in zig-zag scan order are used. For each frequency
band, the number of occurrences of each of the nine possible
digits in the first position is counted. The resulting histogram is
normalized to sum up to one. While previous work only used
27 out of the resulting 81 feature dimensions, we intentionally
keep all 81 dimensions to detect when some of the feature
dimensions assume values that were not seen during training.

B. Evaluation Protocol

The 1 000 images are split into 500 images for training
and 500 for testing. For a given pair of quality factors (QF1,
QF2) we train the detector with 1 000 samples formed by
the single- and double-compressed versions of the training
images. As a pre-processing step, the training data is cen-
tered. We evaluate the detector’s classification accuracy on
the 1 000 test samples formed by the single- and double-
compressed version of the test set. Additionally, we evaluate
the detector’s ability to distinguish between test examples
that are aligned with the training data (in-distribution) and
test examples that were compressed using different quality
factors (out-of-distribution). The out-of-distribution examples
use the same 500 images as the in-distribution test set. All
three methods for comparison provide an uncertainty/novelty
detection score to assess predictive uncertainty. The detector’s
ability to distinguish between in- and out-of-distribution ex-
amples is determined as follows: We compare the predictive
uncertainties of the in-distribution test examples and the out-
of-distribution test examples, and report the area under the
curve (AUC) of the receiver-operator-characteristics (ROC) as
a threshold-independent metric. Unless mentioned otherwise,
all quantitative experiments are repeated ten times with ran-
domized train-test splits and the results are averaged over these
ten runs.

C. Detection of Out-of-Distribution Samples

Table I shows a comparison of kNN and CCF with the
proposed method in terms of classification accuracy with
in-distribution examples and out-of-distribution AUC. The
classification accuracy is averaged over 90 scenarios of quality
factor pairs (QF1, QF2), excluding cases where QF1 =
QF2. All methods achieve an average accuracy of 92% or
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Fig. 3. Left: In-distribution accuracy. Right: Detection of unknown values
for QF2. With increasing regularization parameter β, in-distribution accuracy
is reduced but the detectability of out-of-distribution examples increases.

more, the proposed method VLRfull works best. Upon closer
examination, CCF falsely rejects some in-distribution input
examples, and kNN performs inferior when QF2 < QF1. All
methods encounter difficulties for some specific choices of
QF2 when QF1 = 95, since in this case only one out of the
nine frequency bands used has a quantization factor other than
1 (namely, 2), which makes it extremely difficult to distinguish
single- and double-compressed images.

The second column in Tab. I shows the AUC for cases when
the training set uses QF2train and test data uses a different
QF2test. The AUCs are averaged over the 900 different choices
for QF1, QF2train, and QF2test. All methods attain an AUC of
0.97 or more. The exact AUC for kNN is 0.997859, while
VLRfull even achieves 0.999336.

The third column shows the AUC for cases where the
training set uses QF1train and the test data uses a different
QF1test. Again, the AUCs are averaged over 900 different
scenarios. All methods encounter difficulties when QF1test is
95 or when QF1test = QF2.

Our proposed method with full covariance prior outperforms
the isotropic covariance prior in the detection of training-test
mismatches. This shows that initializing the prior close to the
data indeed caused the posterior distribution to further spread
out, thereby increasing its sensitivity to outlier samples.

D. Ablation Study

Figure 3 illustrates the impact of the hyper-parameter β for
controlling the amount of regularization. On the left, the in-
distribution accuracy is shown. On the right, the detection of
unknown values for QF2 is shown. As expected, lower values
for β result in higher accuracy but reduced detectability of
unknown examples. As β increases, the accuracy decreases
but unknown examples can be identified more readily.

Figure 4 shows the in-distribution accuracy and recognition
of out-of-distribution examples from smaller images. Here,
we center-crop all images to a given resolution and extract
first-digit features. The resulting features are expected to be
more noisy. While kNN and our method achieve a comparable
detection score for out-of-distribution examples on the full-
resolution images, VLRfull outperforms kNN with subwin-
dows, down to only 32 × 32 pixels. For smaller windows all
methods expose difficulties where QF2 < QF1.
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Fig. 4. Left: In-distribution accuracy. Right: Detection of unknown values for
QF2. The proposed VLRfull also performs best when only information from
as little as 32× 32 pixels is available.

E. Failure Cases for Images of Unknown Origin

We show the benefits of our method with two practically rel-
evant cases that are difficult to tackle with existing approaches.

1) Mismatch in JPEG Quantization Tables: A standard ap-
proach to mitigating detection penalties from image compres-
sion is to train several detectors on different ranges of JPEG
qualities. Given an image to analyze, the most suitable pre-
trained detector is determined. This is done by estimating the
quality factor from the quantization table or by directly using
the detector with minimum distance between the quantization
tables for the training set and the test image. Unfortunately,
this strategy can fail, as demonstrated below.

VLRfull is trained to distinguish single- and double-
compressed images with QF1 = 55 and QF2 = 60. The
test images are identical, except that single AC quantization
factors differ by ±1, randomly selected among the first 9
AC quantization factors. Figure 5 (left) shows the accuracy
from 500 such test images in dependence of the number
of changed quantization factors. As expected, the accuracy
decreases when more entries of the quantization table are
modified. The error bars denote the standard deviation over
ten runs. Compared to our method, a linear SVM is more
robust for a limited number of unseen quantization factors,
but also quickly drops to guessing chance if five or more AC
quantization factors are unseen. Hence, the detector with the
smallest least-squares distance to the quantization table may
still fail. Detection performance may drop to guessing chance,
even if the differences between seen and unseen quantization
tables are very small.

Figure 5 (right) shows that the predictive variance can detect
such subtle failure cases. The predictive variance increases
with more changes to the quantization table, from 0.004 to
already 0.120 for only a single deviating quantization factor.

2) Mismatch in JPEG Encoders: Also differences in the
JPEG encoders of the training and test data may introduce
failure cases, even if the same quantization tables are used.
To show this, the training images are compressed with the
integer DCT, which is the default in libjpeg. The 500 test
images use the same quantization table, but are compressed
with libjpeg’s fast integer DCT. For some pairs of quality
factors, our detector misclassified a considerable percentage
of the fast DCT test images. For example, for QF1 = 75 and
QF2 = 90, the detection accuracy drops to 0.53.
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Fig. 5. Left: Accuracies drop with increasing number of ±1 deviations in AC
quantization factors. Right: The predictive variance detects this mismatch.

The exact amount of this performance drop may vary with
different classifiers. In any case, the predictive variance can
detect this issue. Figure 6 shows the accuracy on the test
images where the predictive variance is below a threshold
τ . Accuracy decreases with higher predictive variance, which
shows that the predictive variance can indicate the alignment
of test and training data, and by extension the degree of trust
that can be put into such a forensic detector.

V. CONCLUSIONS

We have shown that a Bayesian detector can achieve high
accuracy in distinguishing single- and double-compressed im-
ages, and at the same time reliably identify out-of-distribution
input. We studied the properties of this approach on an
analytically tractable feature set (first-digit features) and an
analytically tractable classifier (Bayesian logistic regression).

The proposed method detects out-of-distribution inputs in
a wider range of scenarios than the kNN classifier, which is
conceptually simpler, but less flexible. The proposed method
also outperforms the more complicated cascaded SVM-based
predictors while also being mathematically more elegant.

Promising results are shown for two difficult tasks in applied
forensics, namely the detection of training-test mismatches
for slightly different JPEG quantization tables and slightly
different JPEG library implementations.
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