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ABSTRACT
With the ubiquity of social networks, images have become crucial
in todays exchange of information. Most of these images are taken
by smartphones. For forensic approaches relying on fixed image
formation pipelines, the capabilities of smartphones using computa-
tional photography pose new challenges. But these new capabilities
also offer opportunities for forensic analysis. A growing amount of
commodity devices are able to capture 3-D information using vari-
ous technologies such as stereo imaging or structured light. Modern
smartphones commonly save such 3-D information as depth maps
alongside regular images.

In this work, we propose to use characteristic artifacts of depth
reconstruction algorithms as trace for forensic analysis. The pro-
posed method is able to infer the source algorithm of stereo recon-
structions with an accuracy of up to 97%. We further demonstrate
the applicability of the method to collected smartphone data. It is
able to discriminate patches from different sources with an AUC of
up to 0.88 and can be used for splicing localization in depth maps.

Index Terms— image forensics, source identification, forgery
detection, depth, smartphone

1. INTRODUCTION

Images play a major role in todays communication and constitute
an important source of information. Particularly the widespread use
of smartphones enables to instantly capture high quality images and
to share them across social networks. At the same time, powerful
image editing tools and new manipulation methods, such as “deep-
fakes”, reduce trust in image authenticity. As a result, methods for
image authentication and manipulation detection become even more
relevant. An overview of such methods can be found in text books
on image forensics, e.g., [1, 2]. Recent works successfully propose
deep-learning methods for forensic tasks [3, 4, 5, 6, 7, 8].

Some forensic methods explicitly target smartphone images [9,
10, 11, 12], but the increasing use of smartphone cameras [13] poses
new challenges to traditional forensic approaches. In smartphones,
images are increasingly formed from a variable software-stack and
computational photography. Recent smartphones for example merge
bursts of RAW images to increase resolution or to enable low-light
photography of high quality [14]. But such new imaging capabilities
can also lead to completely new traces for a forensic analyst.
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Fig. 1. Image from an Apple iPhone 7+ in portrait mode. Left,
the main image with bokeh effect is shown. The unblurred image
(middle) and depth image (right) are saved within the image file for
further processing and can be extracted for forensic purposes.

One of these capabilities is to capture 3-D information, which is
for example used for face identification or to simulate bokeh effects
in portrait photography. Modern smartphones commonly save this
3-D information as so called depth maps within the same file as the
RGB image for further processing. Figure 1 shows an example of a
RGB image and its corresponding depth map, where scene depth is
encoded as intensity. This additional data, available through a “side-
channel”, offers a great opportunity for forensic applications. To our
knowledge, the only other work that forensically targets depth data
analyzes temporal noise in depth video streams from cameras that
are similar to Microsoft’s Kinect [15].

Depth information can be captured by various technologies such
as stereo imaging, structured light or time-of-flight. Each approach
has its individual advantages and limitations, and in particular intro-
duces modality-specific characteristic artifacts into the depth image.
From a forensic perspective, these artifacts are highly interesting
traces that allow to link a depth image to a depth-calculation algo-
rithm. Furthermore, making depth data subject to forensic analysis
raises the effort for a manipulator, who is then forced to additionally
doctor the depth image in a consistent way.

In this work, we propose to use depth maps from modern smart-
phones for camera fingerprinting and splicing detection. We train
deep-learning models on the outputs of a variety of stereo recon-
struction algorithms. These models can then be transferred to a
dataset of smartphone images. To this end, a small smartphone
dataset for fine-tuning and final evaluations is collected. The data
and methods are described in detail in Sec. 2. The results and ap-
plication of the method to splicing detection are presented in Sec. 3.
We conclude the work in Sec. 4.

2. METHOD

The proposed method links patches of depth maps to their source
algorithm and determines whether two patches stem from the same
algorithm. First, in Sec. 2.1, we describe the deep-learning archi-
tecture and training of the network. In Sec. 2.2, we describe data
collection, generation and its characteristics.
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Fig. 2. Overview of the proposed method for algorithm fingerprint-
ing (top) and patch discrimination (bottom).

2.1. Algorithm Fingerprinting and Patch Discrimination

We make the assumption that different modalities or algorithms
for depth reconstruction produce characteristic, distinguishable ar-
tifacts. We propose a deep-learning method to infer the source
algorithm of a depth map based on these differences. Similar to
related methods [5, 7, 8], we work on patches, but only use depth
maps as input. An overview of the method is shown in Fig. 2 on top.

We use images from different depth reconstruction algorithms.
Random patches are extracted from these images to predict the re-
construction algorithm. Each training batch is balanced, such that
each class contributes the same number of patches. To expedite the
training, multiple patches from within the same image are extracted
per batch. The random extraction of patches can be seen as data aug-
mentation, and additionally the patches are randomly flipped hori-
zontally and vertically. The input depth data is scaled from value
range [0, 255] to [−1, 1]. Completely flat patches, where all pixels
have a constant value, are discarded.

A Convolutional Neural Network (CNN) as feature extractor,
followed by a top part of several fully-connected layers (cf. Sec. 3.1)
for classification is trained on these patches. The output layer con-
sists of C neurons, where C is the number of the available recon-
struction algorithms to distinguish. This layer uses a softmax activa-
tion function,

pi = S(z)i =
ezi∑C
j=1 e

zj
, (1)

where zi are the node activations for i in [1 . . . C]. The softmax
output p can be interpreted as class probabilities. For training, we
use a categorical cross-entropy loss function

L(y, p) = −
C∑

i=1

yi log(pi) , (2)

where the ground-truth label y is encoded as one-hot vector.
We use this fingerprinting network also within a Siamese archi-

tecture (Fig. 2 (bottom)) to distinguish whether two patches originate
from the same algorithm and for splicing detection. The input to the
Siamese network consists of a pair of patches. The same underly-
ing CNN is used as a feature extractor. The resulting features are
concatenated and classified by a subsequent part of fully-connected
layers (cf. Sec 3.1). For the binary decision whether both patches
originate from the same algorithm, a single output node is followed
by a sigmoid activation function

k = σ(z) =
1

(1 + e−z)
. (3)
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Fig. 3. The depth maps are reconstructed with twelve different al-
gorithms, given the same RGB stereo pairs of the Kitti 3-D Object
Detection dataset [16] as input (image contrast is enhanced for the
purpose of visualization).

The network is trained by minimizing the binary cross-entropy loss

Lb(y, k) = −(y log(k) + (1− y) log(1− k)) . (4)

The new top layers are randomly initialized for training. We first
leave the CNN weights fixed and train only the top layers. In a sec-
ond step, end-to-end learning can be used. Each training batch is
balanced to contain the same amount of pairs from the same and
different depth algorithms.

2.2. Data

Stereo reconstruction: We generate depth maps with different al-
gorithms on 7481 RGB stereo pairs of the Kitti 3-D Object De-
tection dataset [16]. Distinguishing these algorithms serves as a
proxy task for training, in order to later distinguish different devices.
This dataset has the additional advantages of perfectly aligned im-
age content across algorithm classes and full control over the pro-
cessing pipeline. Depth maps are reconstructed with twelve differ-
ent algorithms. Six algorithms use standard stereo reconstruction
methods in OpenCV and Matlab. Here, bm and sgbm denote block
matching and semi-global matching in OpenCV, and bm matlab and
sgm matlab their Matlab counterparts. In OpenCV, we also postpro-
cess samples with a Weighted Least Squares disparity map filter, de-
noted as wls bm and wls sgbm. Additionally, we create depth maps
with three state-of-the-art deep-learning methods for stereo match-
ing, namely PSMNet [17], hd3 [18], and GwcNet [19]. We also use
three single-image depth reconstructions, namely monoDepth [20],
monoDepth2 [21], and denseDepth [22]. Examples for six methods
are shown in Fig. 3. All depth images are stored as 8-bit PNG images
such that closer scene elements have larger depth map intensities.

Smartphone data: The smartphone depth maps are typically
stored in the same image file as the color image. More specifically,
Android devices store depth data within JPEG files as XMP meta-
data [23]. Apple devices use the High Efficiency Image File Format
(HEIF), which directly supports addition of auxiliary images such as
alpha channels or depth maps [24]. Figure 1 shows an example im-



Fig. 4. Example images of the four scenes of the collected smart-
phone dataset.

age from an Apple iPhone 7+ in portrait mode. The unblurred RGB
image and depth map have been extracted from the same HEIC file.

We collect a small dataset with five different smartphones that
provide depth data, namely an Apple iPhone X, Apple iPhone 7+,
Google Pixel 3a, Motorola Moto X4, and Motorola Moto G6+. To
that end, we set up four scenes and take five images per phone and
scene. The scenes are shown in Fig. 4. During acquisition, the scene
illumination is fixed. All phones are set to operate in portrait mode.
Due to differences in the camera models, e.g., in focal lengths, the
images between two devices cannot be exactly aligned. We hence
capture scenes that only approximately show the same content. All
depth maps are grayscale images, and directly extracted from the
original files saved on the smartphones. Some smartphones assign
larger intensities to scene points at larger distances. Depth map in-
tensities from such devices are mirrored, such that closer scene ele-
ments always have larger intensities. The images are stored without
further modification in JPEG format with quality 100. Some con-
ditions in the collected dataset remain uncontrolled, as the internal
processing pipelines are unknown and technical details such as res-
olution, stereo baseline or focal length vary across devices.

3. RESULTS

Details on the specific network architectures and their training are
provided in Sec. 3.1. Algorithm fingerprinting on generated depth
maps is evaluated in Sec. 3.2. The application to smartphone data
and splicing detection is evaluated in Sec. 3.3.

3.1. Architecture and Training

The proposed model is trained on CNN architectures that proofed
successful for related forensic tasks [6, 8, 5, 25]. More specifically,
we consider four architectures that are referred to as Xception [26],
ResNet-50 [27], MislNet [28] and MesoNet [25]. For Xception
and ResNet-50, the top layers are Dense(1024), Dropout(0.5),
Dense(512), Dropout(0.5), Dense(C) with ReLU activations. For
MislNet and MesoNet, the original top layers by [28] and [25] are
used. Global averaging is added between the CNN and the top layers
to enable varying patch sizes.

For patch discrimination and splicing detection, all models use
our proposed top layers but with a single output node. All models are
trained with the Adam [29] optimizer, for the same number of epochs
and with patches of size 128 × 128. The data is split into training,
validation, and test data as described below. For all experiments, the
checkpoint with lowest validation error is chosen for evaluation.

3.2. Evaluation with Generated Data

For algorithm fingerprinting, the 7481 images from the Kitti dataset
are split into 5404, 954, and 1123 images for training, validation,
and test. On the test images, we classify the center patch per class.
The average classification accuracy is shown in the middle column

Table 1. Results for algorithm fingerprinting and patch discrimina-
tion. Evaluation on generated data with different network variants.

Architecture Fingerprinting
Accuracy

Discrimination
AUC

Xception [26] 0.97 0.997
ResNet-50 [27] 0.91 0.989
MislNet [28] 0.90 0.983
MesoNet [25] 0.62 0.958
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Fig. 5. Confusion matrix for algorithm fingerprinting with Xception
architecture.

of Tab. 1. Xcpetion CNN performs best with a remarkable accu-
racy of 0.97. Detailed classification accuracies per class are shown
by the confusion matrix in Fig. 5. Here, confusion predominantly
occurs between very similar algorithms such as GwcNet [19] and
PSMNet [17], which is consistent with our assumptions. ResNet-
50 and MislNet perform slightly worse with accuracies of 0.91 and
0.90. MesoNet only achieves an accuracy of 0.62. Upon closer ex-
amination, we found that MesoNet also confuses qualitatively sim-
ilar classes. These results show that depth maps reliably fingerprint
depth computation algorithms.

For patch discrimination, the trained network is integrated into
a Siamese architecture. We only report results for retraining the new
top layers, as additional end-to-end training did not further improve
results. For evaluation, 13464 patch pairs are randomly chosen, so
that 50% of the pairs comprise patches from the same algorithm,
and the other 50% from different algorithms. The area under curve
(AUC) of the receiver operating characteristic (ROC) curve are re-
ported in the right column of Tab. 1. Consistent with the fingerprint-
ing results, Xception performs best with an excellent AUC of 0.997.
Overall, all networks perform very well with AUC values between
0.958 and 0.989.

3.3. Application to Smartphone Data

We use the smartphone data (cf. Sec 2.2) for patch discrimination.
First, the models are evaluated without further training to test the
generalization of the features learned from generated data. Then,
we perform few-shot fine-tuning of the networks, by retraining the
models with five images from a single scene of the dataset, shown in
Fig. 4 (right). Three images per device are used for training, and two
for validation. The images of the remaining three scenes are used as
test data. For evaluation, we generate 3600 random samples from all
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Fig. 6. The method can directly be applied to the task of splicing detection. The example depth map splices are created out of different
smartphone sources. The heatmaps are generated analyzing just the depth maps with the fine-tuned Xception variant.

Table 2. AUC for ROC curve of discriminating patches from smart-
phone depth maps with different network variants.

Architecture No fine-
tuning

Fine-tuning
top part

Fine-tuning
end-to-end

Xception [26] 0.578 0.579 0.883
ResNet-50 [27] 0.635 0.607 0.828
MislNet [28] 0.585 0.705 0.841
MesoNet [25] 0.598 0.602 0.707

devices. As before, half of the samples comprise patch pairs from
the same device and the other half from different devices. The AUC
values of the ROC curves are reported in Tab. 2. The experiment re-
veals a moderate generalization to the smartphone dataset with AUC
values of up to 0.635 without further training. Retraining only the
top layers has little impact on the performance, as shown in column
three of Tab. 2. Interestingly, only MislNet improves its performance
significantly to an AUC of 0.705. This architecture was specifically
designed to extract high frequency features. By fine-tuning end-to-
end, the performance of all models improves considerably to AUC
values of up to 0.883, as shown in column four of Tab. 2. We ana-
lyze the performance in more detail, following the same evaluation
scheme, but with samples from specific pairs of devices. The re-
sulting ROC curves are shown in Fig. 7. The model cannot iden-
tify specific exemplars of the same device or reliably discriminate
patches from smartphones of the same manufacturers. This is ex-
pected, since the depth reconstruction pipeline of these devices can
be assumed to be quite similar, and we train on few images. Over-
all, the experiments indicate that the generalization of the models
trained on generated data to smartphone data is limited, but they are
well suited for fine-tuning with little data.

The method can directly be applied to splicing detection. We
manually create example splices for a qualitative evaluation. For
each splice, an object is selected and copied from the depth map of
one device to the depth map of a different device without further
editing. Additionally, we create examples, where the depth of the
spliced object is manually adjusted by adding an offset to better fit
the target, which is a likely step in creating a plausible spliced depth
map. The RGB image is spliced for visualization only, as the method
works on just the depth data. To analyze a depth map, patches of size
128× 128 are extracted with a stride of 32. Each patch is compared
against all others. The resulting predictions are averaged, yielding
one prediction for each patch position. The final heatmaps are gen-
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Fig. 7. ROC curves for evaluating samples of specific pairs of de-
vices with the Xception variant.

erated by scaling the predictions per patch position to image size.
The examples and resulting heatmaps for spliced and original depth
maps are shown in Fig. 6. The results demonstrate the performance
of localizing splices in depth maps as a practical application of the
proposed approach. Even further editing of the splice by adjusting
depth values appears to have little impact on performance.

4. CONCLUSIONS

We propose to include depth maps into forensic analysis. Depth
maps are commonly stored by smartphones as metadata of RGB im-
ages in common image file formats. We show that the artifacts from
different modalities and different depth reconstruction algorithms
can be a valuable forensic trace. First, we show the feasibility of
using these artifacts for fingerprinting of depth maps from different
algorithms. The proposed system achieves a fingerprinting accuracy
of up to 97% given single depth patches. Further, we extend the sys-
tem to a Siamese architecture. This network identifies patches from
the same algorithm with a ROC AUC of up to 0.997. This model is
successfully transferred to smartphone data, achieving AUC values
of 0.883 using only a few images for training. The method can be
directly applied to the task of splicing detection.

The use of auxiliary data such as depth maps is highly interest-
ing as a “side-channel” for forensic analysis, forcing a manipulator
to also consistently alter the depth maps. The impressive perfor-
mance with generated data suggests that further improvements on
smartphone images are possible. Future work will include larger
scale training data and more extensive experiments. Additionally,
we aim to investigate other uses of depth data for forensic analysis.
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