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Abstract

Image provenance, i.e., information on the model and make of the device that was used to produce an image, is a helpful cue in
many digital investigations. Such information can, for example, help refute the hypothesis that an illegal photograph found on the
Internet was produced using the personal device of a suspect. Grouping images by provenance can be done in different ways. Based
on the encouraging insights from previous works, we consider the grouping of JPEG images by their file headers where previous
work performed image classification on a closed-set of devices. However, due to the ongoing development of new camera models
and the practical difficulty to keep a model database up-to-date, we propose to treat image provenance as an open-set classification
problem with the goal to predict the make of a previously unseen camera model. We show that such a prediction can performe
remarkably well, with median accuracies beyond 90% for each make. In a more challenging experiment with images that were
postprocessed, we achieve a median accuracy of about 55% and 75% for desktop software and for smartphone apps, respectively.
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1. Introduction

Off-the-shelf digital hard drives can nowadays store tera-
bytes of data. Oftentimes, a considerable portion of this space
is used for multimedia content, such as images and videos. In
a forensic investigation, it is not uncommon to examine hard
drives with thousands of images. An investigator is forced to
sift through this data if some of the images on the hard drive
are assumed to be connected to the case. Investigators therefore
need methods to quickly and reliably group these images into
helpful classes. Next to an assessment of image content, a hint
on the device with which the image was taken can be an impor-
tant lead in an investigation because hypotheses regarding the
connection between a particular image found on the web and a
perpretator’s device can be substantiated or refuted.

In the literature, several methods for determining image pro-
venance can be potentially useful for a forensic analyst to sort
the images on a hard drive into its various sources. The largest
part of this body of work analyzes specific pixel statistics in the
image that allow to associate it with a camera or a specific pro-
cessing chain. This approach has many advantages, most no-
tably the exceedingly high reliability of some pixel-level traces
like the photo-response non-uniformity (PRNU) (Lukás et al.,
2006). The core idea in PRNU is, that each camera sensor, has
a unique pattern of unavoidable imperfections, introduced at
the manufacturing process. These device identifying traces can
be averaged out across a sufficient amount of images from the
device with sophisticated signal processing algorithms. There-
fore, this approach also come at a cost, with respect to required
training data, and with the computational effort to analyze a
large number of images at pixel level. The approach does an
analysis on device level, and not model or make level which

also can restrict its applicability in real world scenarios.
A much cheaper approach to determining image provenance

is to sort images based on their header information. Since it has
often been claimed that header information is easy to manipu-
late and therefore not very reliable, this topic has largely been
overlooked in the multimedia forensics community, with only
few works on images (e.g., Kee et al. (2011); Gloe (2012); Mul-
lan et al. (2019)) and on video (e.g., Iuliani et al. (2019); Gloe
et al. (2014); Güera et al. (2019)). Header information has pre-
viously been shown to be highly discriminative on JPEG images
of consumer cameras (Kee et al., 2011), and some efforts have
been made towards images from smartphones (Mullan et al.,
2019). Since these methods do not decode the whole image,
but instead only read out the header information, they are ex-
tremely light-weight, and can be used to rapidly sort coarsely
huge amounts of files by camera model or make.

However, one practical issue with such header-based ap-
proaches is the maintenance of an accurate database about ex-
isting models, since current methods require to know a model
in advance in order to correctly sort the images. To main-
tain a clean model database aims at an extremely fast moving
target: every month, new smartphones, compact cameras and
DSLRs are presented to the public. Additionally, header infor-
mation might be set by smartphone apps, which form an even
faster changing, virtually unbounded search space for acquisi-
tion sources. Camera vendors typically write the camera model
and make in the EXIF data. In this case, a database can in prin-
ciple be updated during operation whenever a previously un-
seen camera model is found. However, such an automated ap-
proach may not be very reliable: we observed on our database
of images collected from the Internet that information on model
and make is oftentimes not present, either because it has been
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overwritten by processing software or it has been modified in
some other way. Hence, we hypothesize that it is close to im-
possible to maintain an up-to-date model database with reason-
able resources, that does not permanently classify new models
as outliers.

As a consequence, we propose to consider the task of foren-
sic source grouping from image headers as an open-set prob-
lem, and to develop strategies to perform source grouping in
presence of an incomplete dataset. We define the open set prob-
lem as associating a previously unseen model to a camera make.
To our knowledge, this question has not been addressed before
in the literature. In this work, we make first contributions in this
direction.

The study is performed on the widely used JPEG format.
We collected a realistic, only partially controlled dataset, from
the photo sharing web site Flickr. On this dataset, we present
three investigations:

1. A characterization of the variability of header informa-
tion on DLSR and compact cameras of two major manu-
facturers.

2. An experimental evaluation how well the make of a cam-
era can be predicted on images from models that were
unseen during training.

3. An experimental evaluation how well the make of a cam-
era can be predicted on images that were processed by
software other than the original camera software. This
software was also unseen during training.

The source grouping is performed with a random forest clas-
sifier on JPEG metadata and JPEG quantization matrices. Our
results show that new models in many cases share common pa-
rameters with known models. They also show that smartphone
apps oftentimes do not significantly change the header infor-
mation, while desktop software oftentimes does. We hope that
these contributions foster further research into more sophisti-
cated machine learning models for open-set header grouping.

The paper is organized as follows. In Sec. 2, we review re-
lated work on image provenance. The proposed method, the
features and the data collection are presented in Sec. 3. Sec. 4
investigates the variability of header information. We start with
an empirical study to show intra-make and inter-make differ-
ences. This is followed by experiments to predict makes from
unknown models. Subsequently we complete the methodology
section with a study on classification of makes from images that
were postprocessed, either via apps or via desktop-based soft-
ware. Finally, in Sec. 5 we conclude.

2. Related Literature

Various aspects for the detection of image provenance have
been investigated. A specific subtask is source identification,
where the goal is to detect the acquisition device, make, or
model of a picture. For example, McKay et al. (2008) propose
an early learning-based method to distinguish camera images,
scanner images, and computer generated images, and also to
predict make and model of the acquisition device. This method

uses a Support Vector Machine on handcrafted features like
noise statistics and distributions of color coefficients.

The classification of a camera model has also been studied
in several other works that use neural network classifiers, for ex-
ample Bayar and Stamm (2017a,b, 2018); Bondi et al. (2017);
Júnior et al. (2019). This task was also subject of the “Foren-
sic Camera Model Identification Challenge” at the IEEE Signal
Processing Cup 2018 (Stamm et al., 2018).

Another family of methods for source identification targets
at identifying even a specific device. The most successful ap-
proach to linking an image to a unique capturing device uses
Photo-Response Non-Uniformity (PRNU), reported in Lukás
et al. (2006). This approach leverages a sensor property, namely
that each camera sensor has unique manufacturing imperfec-
tions. These imperfections lead in each pixel to a subtle sys-
tematic deviation in the intensity response. A reference finger-
print for a camera can be calculated from a reasonably large set
of source images, and then be correlated to an unknown target
image. This method is highly accurate, as reported in many
works, e.g., Goljan et al. (2009). However, the need for a ref-
erence fingerprint also limits its applicability in some practical
tasks, since the fingerprint computation requires a sufficiently
large amount of training images.

Despite impressive results, pixel-based methods are not free
of challenges. Multiple image compressions and downsampling
are notorious failure cases that easily destroy the subtle pixel-
level statistics. Also, higher-level abstractions of pixel-based
association, such as blind source clustering, are computation-
ally extremely costly (Marra et al., 2017). Furthermore, modern
smartphones oftentimes produce computational images. Such
computational images subject the sensor data to strong process-
ing. For example, Wronski et al. (2019) present Google’s ap-
proach to computational imaging, where the pixel response is
only very loosely related to the actual sensor reading. The im-
pact of these computations on sensor fingerprinting is to our
knowledge largely unexplored in the domain of source identifi-
cation.

Header information may also be impacted by additional pro-
cessing, and social networks like facebook almost completely
replace any existing header information. Nevertheless, many
software packages preserve some or all of the header informa-
tion, and oftentimes leave additional characteristic traces that
allow to fingerprint software packages. For example, the work
by Gloe (2012) investigates the structure of the containers in a
JPEG file to reveal characteristic traces. Gloe et al. (2013) show
that also PNG files can expose characteristic meta information.
Mullan et al. (2019) show on images from Apple smartphones
that characteristic header changes after software updates can be
used to fingerprint software versions. Classification of camera
models is very lightweight, and can easily be scaled to a large
number of camera models. It is, however, somewhat less spe-
cific than pixel-based cues for model identification. Kee et al.
(2011) investigate how unique headers are to a specific model
of DSLR and compact cameras. This work reports that 69.1%
of the collected image headers are unique to one specific model.
12.8% of headers are shared between two models. In the worst
cases, 14 camera models share identical headers.
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The open set problem for source identification received only
little attention. To our knowledge, there exist only a few pixel-
based methods that introduce a rejection class for unknown
models, e.g., Bondi et al. (2017); Bayar and Stamm (2018);
Júnior et al. (2019). We believe that a specific reformulation of
the open set problem can make it feasible on header data: we
consider source identification as a hierarchical task, where one
make offers many models on the market. Since it is unlikely that
the software stack is fundamentally different from other models
of that make, we hypothesize that the make can be successfully
predicted although the model itself is unknown.

3. Tackling the Open-Set Problem: The Make-Model-Device
Hierarchy

The open-set problem poses the question how an image
from a previously unseen camera model can be associated with
known training data. Considering header data, it may be the
case that the model and make are simply part of the EXIF data.
However, this information can be unreliable, as these identify-
ing strings appear in a surprisingly rich multitude of different
spelling and capitalization variants, or may be missing or over-
written altogether by processing software. Hence, the goal of
this work is to associate header data under the assumption that
the EXIF information on make and model is unreliable, and
thus we treat camera association as an open-set problem. To
tackle the challenge of different string variants, we apply a nor-
malization to unify makes, models and software versions.

To make this open-set problem feasible, we propose to con-
sider the camera model as one element in a hierarchy of iden-
tifying camera properties. A previously unseen camera model
may still resemble some similarities with cameras of the same
make, assuming that the manufacturer reuses some software
and/or hardware components across models. Hence, although
the make is a less precise cue than the model, we hypothesize
that such a prediction is feasible.

Following Mullan et al. (2019), a more formalized presenta-
tion of the hierarchy of identifying camera properties is shown
in Fig. 1. It consists of an upper and a lower part. The upper
part shows different granularity scales for camera association
on hardware level, the lower part on software level.

In this hierarchy, hardware granularity ranges from the type
of image, e.g., a camera photograph versus a digital scan over
the manufacturer like Apple and the model, such as an iPhone,
to a particular device. Existing pixel-based methods typically
address the two most specific cases, either to identify specific
devices such as PRNU, like Lukás et al. (2006); Goljan et al.
(2009), or camera models, e.g., Bayar and Stamm (2017a, 2018);
Bondi et al. (2017). Software granularity is mostly important
with smartphones or other Internet-connected devices. Here,
the operating system typically provides the API for capturing
and encoding images, but individual photo capturing or man-
agement apps may decide not to apply specific individual pro-
cessing on the acquired images. The main difference to the
hardware stack is that software can change through updates,
which may also manifest in the processing and encoding of im-
ages.

Type Make Model Device

Hardware

Software

Hardware Identification Granularity

· iPhone 7

· iPhone 8

· iPhone X

· Scanner

· Camera

· CGI

· Canon

· Apple

· Nikon

· d1234

· d9876

· d1010

· OS

· App

· . . . · . . . · . . . · . . .

· iOS 10

· iOS 11

· iOS 12

· . . .

· Instagram

· Snapseed

· native App

· . . .

creates

post-

· Photoshop

· Lightroom

· Paint.NET

· . . .

processes

Software Identification Granularity

Model

Model in-
dependent

specific

Figure 1: Identification granularity along hardware and software (Mullan et al.,
2019). Expanded for potential post-processing, also after the image has been
loaded from the device, for example to a desktop machine, running Photoshop.

In this work, we investigate how well previously unseen
models can be associated to its make, using image header in-
formation. This study performs in three steps. First, we show
examples for the variability of header information. Second, we
show how well unseen models can be associated to a make.
Third, we again consider association of unseen models to make,
but this time with the additional difficulty that the image under-
went processing from PC software and apps.

The methods for these experiments are presented in the re-
mainder of this Section. The data acquisition is presented in
Sec. 3.1. The proposed feature set is presented in Sec. 3.2, and
the used classifier in Sec. 3.3.

3.1. Data Acquistion and Preparation

We follow reported practices in the literature for collecting
header information (e.g. Kee et al. (2011); Mullan et al. (2019)).
In detail, we collected 2,833,349 images and their associated
user names from the website Flickr. The images were uploaded
between 2008 and 2019. All images that are not in valid JPEG
format are discarded. In contrast to previous work, we did not
discard images with header information that indicates the use of
editing or viewing software, since such common modifications
are part of the open set problem in this work.

Header information is directly extracted from an image. The
make in the EXIF:Make tag is manually normalized. For exam-
ple, entries like “SAMSUNG”, “Samsung techwin co., ltd”, and
“SAMSUNG TECHWIN” are unified to “Samsung” via regu-
lar expressions. These entries are used as ground truth in our
experiments. Also models in the EXIF:Model tag are manu-
ally normalized wherever there are duplicates known to us. For
example, the Canon model “EOS 800D” is also distributed as
“EOS Rebel T7i” and “EOS Kiss X9i”. We remove models and
makes with empty strings, evidently malformed names (“cA-
non”), and contradictory entries (e.g., model “iPhone” from
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Canon
Frequency

value at key ”Exif:Software”

NaN 286173
Digital Photo Professional 14772
Picasa 11250
Adobe Photoshop CS3 Windows 9030
Adobe Photoshop CS5 Windows 8682

Nikon
Frequency

value in key ”Exif:Software”

Ver.1.00 60633
Ver.1.01 33435
Ver.1.10 11057
Ver.1.02 9306
Ver.1.03 7580

Table 1: Most common EXIF:Software tags for Canon (top) and Nikon (bot.).

make “Canon”). These entries are used in our experiment to
split the data into camera models.

The treatment of the EXIF:Software tag is slightly more
complicated. Some camera manufacturers like Nikon use this
field to indicate their firmware version. Also, many packages
for image processing like Photoshop write their name into the
field EXIF:Software. For example, Tab. 1 shows the most fre-
quent entries in EXIF:Software for Canon images on top and
Nikon images on the bottom. In most cases, Canon cameras do
not set the field EXIF:Software, indicated by NaN in the table.
For Nikon, the most frequent values are the firmware version
strings. In our data preparation, we are considering commonly
occurring camera labels as “unedited” images, and labels from
image processing packages as “edited”. To this end, image pro-
cessing tags are also normalized down to the major version we
found, e.g., “Adobe Photoshop CS6 (Windows)” and “Adobe
Photoshop CS6 (Macintosh)” are considered identical.

Please note that even after careful data cleansing, this pub-
licly sourced data almost inevitably still contains erroneous en-
tries. Hence, the reported results are likely a lower bound for
results on a perfectly clean, fully controlled dataset. Neverthe-
less, we consider this form of data collection as a use case that is
close to practical conditions. We provide scripts that allow the
download of the dataset from their respective URLs at https:
//faui1-gitlab.cs.fau.de/mullanptr/flickr_data.

3.2. Studied Feature Set

The JPEG compression standard defines how to compress
the image to the final byte stream (Wallace, 1992; Pennebaker
and Mitchell, 1992). This byte stream needs to be put in a file
container. The “JPEG Interchange File Format” (JFIF) (Hamil-
ton, 1992) is the commonly used file container format for JPEG.
It specifies additional details on the image and restricts the mo-
des in which an image can be encoded. With respect to the

metadata, the “Exchangable Image File Format” (EXIF) was
introduced shortly after JFIF. It specifies many optional meta-
data entries that are compliant to the TIFF standard. These stan-
dards leave considerable freedom in the choice of parameters.
This enables camera manufacturers and software packages to
trade-off file size and image quality and to embed additional
information in form of metadata. Conversely, this freedom en-
ables to extract signatures from JPEG headers to identify the
device or software in which the image was created.

In this work, we use two groups of header parameters as
features. First, metadata parameters that provide further infor-
mation on the acquisition conditions and the color-profile meta-
data. Second, parameters for the encoding of the actual image.

The metadata-specific features are derived from the EXIF
and color-profile metadata. These entries are key-value pairs
that can be directly read out from the header, e.g., using the
command line tool exiftool.

EXIF groups information in so called “Image File Directo-
ries” (IFDs). The first IFD, IFD0, records parameters that cover
properties of the actual image, e.g., the numbers of rows and
columns of the image. The second IFD, IFD1, provides the pa-
rameters of the thumbnail image if such a thumbnail is embed-
ded. Further commonly occurring IFD directories are ExifIFD,
MakerNotes, and GPS. ExifIFD is a directory that only con-
tains additional descriptions on the image, such as shutter speed,
aperture size, or the date and time of the image acquisition.
MakerNotes may contain additional information that is embed-
ded from the manufacturer of the device. The directory GPS can
reveal information about the geolocation where the image was
captured. Additionally to these EXIF entries, the ICCProfile
denotes another group of entries that is defined by the Interna-
tional Color Consortium. The goal of this specification is to
provide a standard that ensures colors in visual information are
displayed equally, independent of the output device or manu-
facturer of that device.

We do not use the entries in the metadata directly, but in-
stead form a histogram of the number of key-value pairs per
directory. More specifically, we count the number of entries
in each of the five above-stated EXIF directories and the addi-
tional ICCProfile directory, which leads to a six-dimensional
feature vector of integer numbers.

For the encoding-specific parameters, we consider the JPEG
quantization tables. We also experimented with the Hufmann
tables for runlength-encoding as features (Kee et al., 2011), but
did not find them very discriminative on our data.

The JPEG quantization table encodes the coarseness with
which individual frequency components of the image are atten-
uated. As such, it is the key factor in the trade-off between im-
age quality and image size. Manufacturers and software pack-
ages hence oftentimes use individual quantization tables (Kee
et al., 2011). These tables can be directly read out from the
header without decoding the actual image. The quantization
matrix is linearized following the JPEG zig-zag pattern, and
each coefficient is used as a single feature. In one variant of the
evaluation, we only use the quantization matrix for luminosity,
which yields a 64-dimensional feature vector. In another vari-
ant, we additionally use the chroma matrix, which yields in total
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a 128-dimensional feature vector.
In one experiment, we combine metadata parameters and

quantization parameters for the luminosity matrix, which yields
a 70-dimensional feature vector.

3.3. Supervised Learning in the Context of Open-Set Camera
Association

Model11

Make1

Model12 Model13 Model1J
. . .

Model21

Make2

Model22 Model23 Model2J

ModelI1

MakeI

ModelI2 ModelI3 ModelIJ

...

. . .

. . .

Samples for
training

Samples for
testing

Set of all camera devices Experimental
set-up for one
evaluation:

Figure 2: Relation between makes and models – Models are subsets of makes,
and makes form disjoint sets. In our classification experiments, one model
(shaded green) is left out of the training data. All other models (shaded blue)
are used to train the classifier. Classes are the makes.

In supervised learning, a classifier is fit from a set of sam-
ples X. X is also called design matrix, where each row is a
concrete sample x and each column represents a feature v of all
considered features V . Each class i, of all classes I that shall
be represented in the system, needs to be present at least once
in the training set. During training, the classifier f infers the
underlying statistical distribution of the features with respect to
the class labels I. That is, the machine learning system tries
to infer the mapping i = f (x). The classifier cannot learn a
class distribution that is not provided during training, and hence
supervised classification inherently operates on a closed-set of
data, i.e., no specific labels can be assigned to an unknown
class. All samples used for training are presented in a tuple
(x, i). Hence, in the scenario of an unknown camera model j,
we propose to predict its make i: since there are far fewer makes
than models, and it can be relatively safely assumed that cam-
eras of the same make are present in the dataset.

Thus, the class labels I for classification are the camera
makes, e.g., Nikon, Apple, or Samsung. To formalize this con-
clusively, each model j is a subset of all models J of one par-
ticular make i. Fig. 2 visualizes this. The blue and green boxes
represent enclosed sets of models that belong to exactly one
make. The set of models are disjoint.

In a real-world scenario, it can be assumed that the camera
makes and models are quite unevenly distributed due to dif-
ferent market shares. Such an imbalance is also reflected in
our collected dataset. Sample imbalance is a known challenge
to several classifiers. In preliminary experiments, extremely
randomized forests (Geurts et al., 2006) performed quite well,
which are used throughout the experiments in this paper. The
forest consists of 100 trees. Nodes in the trees are split dur-
ing training based on the gini impurity measure (Hastie et al.
(2009)). This criterion measures how clear the classes are split
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(b) Nikon DSLRs

Figure 3: Aggregated number of key-pair-values per directory for two makes.
Especially the directories ExifIFD and MakerNotes exhibit considerable dif-
ferences between the two makes.

on a given decision boundary. The gini impurity equals zero if
all samples belong to only one class in a node. Such a node
becomes a leaf. We only used fully grown trees, e.g., all leafs
are pure. Fully grown trees may be suboptimal in other clas-
sification tasks, since they are prone to overfitting. However,
the header data that we are operating on is in two ways differ-
ent from other classification tasks. First, it is almost categorical
in its nature, particularly for makes that barely vary the header
across models. Second, the imbalance of the sample set may
lead to a suppression of underrepresented models. Both factors
together benefit from a classifier that ensures the actual rep-
resentation of each individual sample instead of interpolating
a smoother decision boundary that may potentially “swallow”
minority models. We used python’s scikit library to work with
decision trees.

4. Variability of Header Information

Our hypothesis is that the header information between mod-
els from the same make are similar but vary significantly enough
across models of different make to distinguish them. The range
of variability of the header information is illustrated in this sec-
tion. To this end, we study intra-make and inter-make simi-
larities and differences in the header features. This illustration
supports the understanding and interpretation of the classifier-
based prediction in the subsequent sections.

Kee et al. (2011) showed on DSLR cameras and compact
cameras that many headers are unique to a particular model.
However, neither the specific differences between non-matching
headers have been studied, nor whether these differences are
within makes or across makes. However, the variability of hea-
der information directly determines the difficulty for predicting
the association of a model to a make. This variability is illus-
trated for EXIF-profile and color-profile metadata in Sec. 4.1,
and for the encoding parameters in Sec. 4.2.

4.1. Variability of Metadata across Models
This first experiment characterizes the distribution of meta-

data from EXIF tags and the color profile. To this end, we select
from our dataset 22 DSLR models from cameras by Canon and
19 DSLR models from cameras by Nikon. For each model,
1000 images are randomly drawn. During that sampling, it was
ensured that the EXIF field Exif:Software is empty, i.e., that
there are no obvious traces of additional processing.
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Figure 4: Box-whisker-plots for number of key-value-pairs in ExifIFD direc-
tories per model.

For these images, the metadata features are calculated, i.e.,
the number of entries per metadata directory are counted. The
distribution of these values are shown in Fig. 3 on the left (Ca-
non) and on the right (Nikon). These box-whisker-plots are
bounded by the lower quartile (Q1) and upper quartile (Q3),
the so-called inter-quartile distance. A smaller box indicates
a denser distribution. The red bar within the box denotes the
median of the distribution. The whiskers above and below the
boxes extend up to 1.5 · (Q3 − Q1), or the last datapoint on
this side, e.g. if minimum or maximum are within this range.
For both makes, the distributions are quite compact for the di-
rectories IFD0, IFD1, GPS, and ICC Profile. The directory
ExifIFD is also very compact for Nikon cameras, but not for
Canon DSLR cameras. For both makes, also the median num-
ber of entries in ExifIFD differs. The distribution for Canon
spreads between 28 and 39 key-value-pairs, while it is com-
pactly centered around 40 key-value-pairs for Nikon, with only
few outliers. Both figures also show significant differences in
MakerNotes. This exhibits major variations both within the
same make, but also across makes, where Nikon cameras show
across models considerably more key-value pairs than Canon.
We consider these findings as a first indication that differen-
tiation of makes is possible with such a metadata distribution,
although there may be considerable variations within one make.

Figure 4 provides a closer look at the distribution within the
directory ExifIFD. These box-whisker plots show the key-pair-
values distributions split per model, with Canon models on top
and Nikon models on bottom. This representation shows corre-
lations between the models of one make. For Canon, one group
of cameras consistently has 38 key-value-pairs in the ExifIFD
directory. The remaining Canon models are also similar, but
less compactly clustered, with 20 to 30 key-value pairs. Thus,
Canon’s ExifIFD directory appears to be well representable
with two clusters, which explains the somewhat larger stan-
dard deviation for the summary statistics in the previous Fig. 3.
Conversely, the Nikon models on the bottom of Fig. 4b overall
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Figure 5: Occurrence of specific quantization tables within a given model. Each
line represents a Canon model (left) or Nikon model (right). The x-axis in-
dexes distinct quantization tables, sorted by their relative frequency per model.
The y-axis shows the cumulative relative frequency of quantization tables per
model. Nikon models exhibit a much larger variety of quantization tables within
a model than Canon models.
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Figure 6: Root mean square error (RMSE) between quantization matrices of lu-
minosity within 50 Canon models (left) and 50 Nikon models (middle). RMSE
between 50 paired Canon and Nikon models (right).

exhibit a somewhat smaller variation in the median, with val-
ues between 39 and 41. Interestingly, the median is for many
models at the boundary of the quartile boxes, which indicates a
skewed distribution of the values.

We interpret this initial study as an indication that header
information is able to distinguish between makes, but models
may form clusters within one make. Additionally, each model
exhibits a considerable number of values that are far away from
the median value, which indicates that a lookup table, as used
in previous work, e.g., Kee et al. (2011), is probably not able
to fully cover the metadata variations that may be observed on
real data. Hence, we argue that a classification-based approach
is likely better suited to reflect such within-class variations.

4.2. Variability of Encoding Parameters across Models
We now aim at characterizing the variability of JPEG quan-

tization matrices, using again models from Canon and Nikon.
The number of models is expanded to 50, with 100 to 1000 ran-
domly sampled images per model. These models include both
DSLRs and compact cameras. As in the previous experiment,
only clean images with an empty EXIF field Exif:Software

are used in order to exclude reprocessed images. On all im-
ages of one model, the quantization matrix for luminosity is
extracted. It turns out that images from all models have vari-
ations in their quantization matrices, which can be explained,
e.g., with varying camera settings or potentially cameras that
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optimize the quantization tables to suit the image content best.
The cumulative distribution of these matrices is shown in Fig. 5
for Canon (left) and Nikon (right). Both plots consist of 50
curves, where one curve indicates the cumulative distribution
of quantization matrices for one model. The x-axis denotes the
number nq of different quantization matrices, the y-axis the cu-
mulative percentage of images with the subset of nq matrices.
Thus, if a curve is close to the y-axis, then most of the quantiza-
tion matrices of this model are identical. A curve that notably
extends to the right exhibits many quantization matrices, and
this variation affects a large percentage of the images.

When comparing the plots for Canon and Nikon models, it
turns out that several Nikon models use a considerably larger set
of different quantization tables. One Nikon model even showed
375 different quantization tables. The median number of quan-
tization tables for Nikon models is 91. For the Nikon model
with the most identical tables, only 38% of images shared the
most common quantization table. Conversely, the most diverse
Canon models had 64 different quantization tables, and several
Canon models exhibited identical tables for more than 80% of
the images.

Some of our data points may still have been processed by
additional software, since our data collection protocol does not
perfectly exclude such cases. Nevertheless, even if some of
these matrices stem from external software, the overall statis-
tics indicate that quantization matrices can exhibit a surpris-
ingly broad distribution. In light of these findings, results in
earlier work on header-based source identification (Kee et al.,
2011) might somewhat too optimistic, as this work excluded
rarely occurring quantization matrices. Conversely, we argue
that this diversity of quantization matrices should be explicitly
considered to minimize false negative assignments.

We further illustrate the quantitative differences between the
quantization matrices within and across different makes. To this
end, we select from each model the most frequently occurring
luminance quantization matrix. In one experiment, we compare
these quantization matrices within the 50 Canon models, in a
second experiment within the 50 Nikon models, and in a third
experiment between the 50 Canon and 50 Nikon models. We
decided for the root mean squared error as metric to quantify the
distances between pairs of vectorized matrices. The root mean
squared error is equivalent to the euclidean distance between
two vectors, and therefore, is a convenient metric to determine
their distances (Han et al. (2011)) .

These distances are visualized in Fig. 6 in color-coded adja-
cency tables. The x- and y-axis consists of 50 rows and columns.
The distances between model i1 and i2 is color-coded at position
(i1, i2). Stronger saturation indicates more similar matrices.

Figure 6a shows the distances within models of Canon. Pre-
dominantly, these matrices are all relatively similar, indicated
by the overall high saturation. The identical distances for many
combinations indicate that there exist few clusters of identical
matrices. Figure 6b shows the distances within models of Ni-
kon. This figure is much more heterogeneous, due to the larger
variation of Nikon quantization matrices. Also the absolute dis-
tances are in some cases significantly larger, with root mean
squared errors of up to 28. Figure 6c shows the distances of

# Images per model
Make Models Min. Med. Max. Total

Canon 50 101 422 1000 25643
Nikon 50 102 264 1000 21038
Apple 25 188 1000 1000 19436
Sony 50 109 269 1000 17033
Olympus 50 100 205 936 13679
Panasonic 50 100 195 1000 12977
Samsung 30 101 136 330 5007
HTC 8 104 272 691 2512
Ricoh 5 117 158 331 995

Table 2: Overview of samples used for training the classifiers. The column
“Models” shows the number of models per make. The minimum (Min.), me-
dian (Med.), and maximum (Max.) number of images across models are listed,
together with the total number of samples. The imbalance in the number of
images per make aims to mimick real-life distributions.

models of Canon compared to models of Nikon. Here, the over-
all distances are larger, and also quite varied due to the diversity
of the Nikon quantization matrices. We interpret these findings
as another indication for the possibility to associate makes by
quantization matrices.

4.3. Classification of Makes of Unseen Models

In this experiment, we aim to exploit the reported observa-
tions in an automated classification of the camera make from an
unseen camera model.

4.3.1. Data Set, Classifier Training, and Performance Metrics
We expand the evaluation data set from the previous subsec-

tion to a total of 9 makes. To reflect the real-life circumstance
that manufacturers do have different numbers of models on the
market, we did not limit the number of models per brand to the
minimum number of models the weakest manufacturer (Ricoh,
with 5 models) has. Instead, we randomly sampled up to 50
models per make, or the most number of samples available for
that make. This large variation in models per make results in a
challenging class imbalance by a factor of 10. Each model con-
sists of at least 100 images, and if more than 1000 images are
available, then up to 1000 images are randomly drawn from the
pool. This varying amount of images again increases the class
imbalance. Analogously to the previous experiments, care was
taken that these images do not contain indications of additional
software processing in the Exif:Software tag. In addition to
this constraint, we linked back the images to the original Flickr
users, and ensured that only one image per model and Flickr
user is in the data set to avoid potential data bias. Table 2 pro-
vides an overview of the data distribution for this experiment,
including the minimum, median, and maximum number of im-
ages per model, and the total number of images per make.

The data is split in a training set and a test set. The test set
consists of all the samples of one particular model per make.
The training set contains all samples of the remaining models.
In Fig. 2 this is schematically illustrated by the picked colors.
All samples of models shaded blue are taken for training, sam-
ples of the one model shaded green, is taken for testing. Train-
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ing and test set form disjoint sets. Thus, the evaluated classifier
has never seen a sample of a model under test during training.

The extremely randomized forests classifier is trained on
four combinations of the feature vectors. These combinations
consist of a) the metadata directory histograms, b) the luminos-
ity quantization matrices, c) a concatenation of luminosity and
chromaticity quantization matrices, and d) a concatenation of
the metadata directory histograms and the luminosity quanti-
zation matrix. The classifier is fitted to the training data with
the task to predict the make. During evaluation, the classifier is
tested with the samples of the unseen model.

We report the accuracy as a performance metric of the clas-
sifier. Accuracy denotes the percentage of images for which the
model is correctly identified belonging to its make. Accuracy
can be calculated with respect to all makes or individually per
make. However, in the case of class imbalance, the accuracy
with respect to all makes is dominated by the most frequent
classes. Hence, we report the accuracies per make to provide a
more complete picture of the actual performance.

4.3.2. Results and Discussion
Figure 7 compares the performance of the extremely ran-

domized forest classifier on the four feature sets. From left
to right, these are the metadata directory histograms, the lu-
minosity quantization matrices, concatenated luminosity and
chromaticity quantization matrices, and concatenated metadata
directory histograms and luminosity quantization matrix.

All figures show box-whisker-plots for the nine evaluated
makes. The plot shows for each make the distribution of accu-
racies per model of that make. Overall, the accuracies for the
first and last feature vectors are remarkably high, with almost
all median accuracies beyond 90%. These experiments use the
metadata directories as features. The performances of the plots
in the middle are considerably lower. These experiments use
the quantization matrices as features.

In the results that only use the metadata directories in Fig. 7a,
Apple and HTC models are very reliably associated with their
make. Ricoh models perform worst, but their median accuracy
is still at about 90%. Ricoh is also the class with the fewest
models and samples. Overall, all makes can be well associated
with this feature set. In Fig. 7b, the luminosity quantization
matrices perform surprisingly poorly. All median accuracies
are considerably lower compared to the metadata directory fea-
tures. Samsung devices exhibit the worst performance with a
median accuracy that is only slightly above 20%. Apple still
performs best, but the accuracy is also slightly lower than when
using the metadata directory features. Also the variance of the
accuracy increases, indicated by the larger boxes. In Fig. 7c, the
addition of chromaticity quantization matrices to the luminos-
ity matrices barely improves the results. A slight improvement
can be seen for Sony models, but overall the results are well
comparable to features that only use luminosity quantization
matrices. Finally, Fig. 7d shows that the combination of fea-
tures from metadata directories with luminosity matrices per-
forms overall comparably to features from metadata directories
alone. Median accuracies are typically in the range of 90% and

beyond. Ricoh and Samsung models perform somewhat worse
compared to using just the metadata directories.

In summary, features that only use the metadata directories
perform best. This is in line with the preliminary observations
in Sec. 4 on the variability of metadata information and quan-
tization matrices: the metadata structure is relatively robust
across various models of manufacturers, such that a classifier
can be successfully trained for source association with an accu-
racy of 90% and higher. We find these results quite encourag-
ing, particularly when considering that the images are retrieved
from an uncontrolled public source, and that some images may
be polluted by influencing factors outside of our control.

It is surprising to observe that the quantization tables per-
form considerably worse. One reason for this observation is
certainly that we did not restrict the image set to the most com-
mon quantization matrices, as it has been done in previous work.
Another reason might be that this 64- or 128-dimensional fea-
ture vector is much more complex than the metadata directories,
and it is more difficult to identify the discriminating features.
Moreover, our feature extraction and classification pipeline does
not exploit the special structure of the quantization matrices:
The entries of a quantization matrix typically reside on a lower-
dimensional manifold, since low-frequency quantization fac-
tors are by tendency smaller than high-frequency quantization
factors. This particular property could be used to efficiently
summarize the quantization matrices in a considerably lower-
dimensional feature space in which each individual dimension
is more informative. This could in particular help to summa-
rize the multitude of quantization matrices within one make, as
observed in Sec. 4.2 for Nikon models.

We consider the comparably weak performance of the quan-
tization matrices also to be the prime reason why the combined
feature vector in Fig. 7d does not exceed the performance of
metadata directory features. This feature combination might
also benefit from a mapping of the quantization features to a
lower-dimensional space. We will investigate such advanced
feature representations in our future work.

4.4. Classification of Makes on Postprocessed Images
In practice, images are oftentimes post-processed, for ex-

ample through an app on a smartphone or with a desktop PC
software. Such a processing is likely to modify the header of
an image, which increases the difficulty to associate an image
to its model or make. This practically important question has to
our knowledge not yet been addressed in the literature.

4.4.1. Data, Classifier Training and Performance Metrics
This experiment takes a slightly different perspective on the

open-set problem: We train an extremely randomized forest on
the full data set from the previous experiment. These images
are carefully cleaned to exclude images that have undergone
processing in external software packages. Then, we test on im-
ages where the EXIF field EXIF:Software states the name of
a processing software, and aim to still predict the camera make
that is stated in the EXIF:Make field.

More in detail, the testing data consists of images that have
an entry in the field EXIF:Software that can be linked to a
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(a) Features are number of key-
value-pairs per directory.
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(b) Features are entries of
greyscale quantization matrix.
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(c) Features are entries of both
quantization matrices.
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(d) Directories and greyscale
combined.

Figure 7: Distribution of accuracies per make on four combinations of the feature sets.
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(a) Accuracy on images that
are postprocessed by apps.
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(b) Accuracy on images that
are postprocessed by Desk-
top software.

Figure 8: Performance for predicting the make using four combinations of the
feature sets on postprocessed images.

known software package, and hence we identify it as modified
after acquisition. The names of the software tags are normal-
ized as described in Sec. 3.1. We manually categorize the soft-
ware entries in this dataset by their software platform, namely
app-based software and desktop-based software. Tab. 3 shows
examples of software packages in both categories. This catego-
rization is in some details unsharp, as there are some pairs of
desktop software with a companion app, or cloud services that
serve both platforms. Nevertheless, upon manual inspection,
we realized that most apps offer only simple filters to postpro-
cess an image, while desktop-based software packages typically
provide more sophisticated tools.

In total, the dataset consists of 121 desktop software pack-
ages and 27 apps. We conjecture that the desktop category is
larger because the collected images date back until 2008, and
because flickr is a platform for photographers, who may prefer
to postprocess images on a desktop PC.

To quantitatively measure the performance, we report dis-
tributions of accuracies on the set of postprocessed images.

4.4.2. Results and Discussion
First, we report the accuracies across all images with an

Exif:Software field, separated by desktop software and apps.
These results are shown in Fig. 8. On the left, results for apps
are shown, and on the right for desktop software. The results are

calculated for all four combinations of the proposed features.
Overall, the median accuracies range between 50% and about
75% for apps, and between about 10% to slightly beyond 50%
for desktop software. Nevertheless, the guessing chance on nine
makes is 11.11%. This baseline is easily exceeded across apps
and desktop software for features from the metadata directories,
either as stand-alone features or in combination with luminos-
ity quantization matrices. In all experiments with a reasonable
accuracy, the inter-quartile distances are quite large, which in-
dicates that the confidence that can be put on individual results
is relatively low. Overall, it is quite reasonable that the perfor-
mance in this experiment is lower than in the previous exper-
iment. The classifier is evaluated on images that underwent a
potentially large modification in the processing software.

Postprocessing of apps simplifies the association of an im-
age to the camera make. We hypothesize that apps have a
stronger tendency to reuse library functions from the smart-
phone operating system stack, which effectively has a smaller
impact on the JPEG headers compared to processing in a desk-
top software. Moreover, even desktop sofware leaves charac-
teristic traces in the metadata that allows to associate images to
the original make with a median accuracy of about 50%.

Table 3 lists the apps and desktop packages that perform
best and worst for both categories. For the apps, it is interesting
to note that the apps from the same organization may have quite
different accuracies. Specifically, the Flickr app is extremely
well recognizable in many versions with an accuracy of 100%,
but “Flickr for iPhone” completely fails with an accuracy of
0%. Similarly, several versions of Camera+ can be recognized
with accuracies between 77% and 90%, but version “2863” is
only recognized with an accuracy of 43%.

Desktop software is more likely to use a software stack
that is considerably different from the camera software stack.
Additionally, we observed that several desktop software pack-
ages rewrite major parts of the header. An example for this
behavior is studied on images from “Adobe Photoshop Light-
room 5”. Figure 9 shows the distribution of key-value pairs
per directory on images with this entry in the EXIF:Software
field. The images in this experiment come from any make or
models available, so the original distribution of header infor-
mation can be assumed to be quite broad. Nevertheless, af-
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App
Rank Software Version(s) Acc.

1 Flickr 1, 2, 6060, 3622 1.00
5 Mobile Fotos , 2, 1006 [0.97–1.00]
8 Instagram 0.95
9 Camera+ 3, 6, 7, 9 [0.80–0.90]

13 PicsArt 0.80
14 VSCO 0.78
15 Camera+ 5 0.77

. . .
23 Camera+ 2863 0.43
24 Pixlr 0.40
25 Camera360 0.40
26 Snapseed 0.18
27 Flickr for iPhone 0.00

Desktop
Rank Software Version Acc.

1 Capture NX-D 1 1.00
2 Microsoft Windows Photo Viewer 6 0.93
3 Nikon Transfer 2 0.93
4 ViewNX-i 1 0.91
5 Phatch 0.90
6 Photoshop Express 3 0.88
7 DXO Optics Pro v5 0.87

. . .
116 ACDSee Ultimate 10 0.08
117 Elements Organizer 14 0.07
118 ACDSee Pro 8 0.06
119 Capture One 8 0.06
121 Imagen digital ACD Systems 0.00

Table 3: Examples of software split into apps (top) and desktop (bottom).
Listed are the software packages that performed best and worst in header asso-
ciation, together with their accuracy. Comparable results of multiple versions of
the same software are summarized in one row. The software versions are listed
in the second column. The underscore denotes versions without identifier.
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Figure 9: Distribution of key-value pairs, after the images were edited with
“Adobe Photoshop Lightroom 5”.

ter processing in Adobe Lightroom, all directories IFD0, IFD1,
GPS, MakerNotes, and ICC Profile are virtually identical in
size. This indicates that Adobe Lightroom rewrites these en-
tries. Interestingly, the directory ExifIFD contains a larger
inter-quartile distance and an overall larger spread. We hypoth-
esize that this directory may still contain some of the original
header information from different models and makes. The com-
bination of erased and preserved header information can poten-

tially be useful for further software fingerprinting. We will in-
vestigate this direction in our future work.

5. Conclusions

In this paper we investigated source identification from file
headers of JPEG images. Headers are extremely fast to read
out and process, and are as such an ideal tool for fast screening
of large amounts of multimedia data. However, a pathological
issue in source identification is to maintain an up-to-date model
database, given that new camera models appear every month,
and updatable software stacks modify the camera characteris-
tics. Hence, we propose to consider source identification as an
inherent open-set problem. To mitigate this issue, we propose
to use known models to predict the make of a camera.

Towards this goal, we collected a large database of images
from the website Flickr, and we proposed two sets of features:
a histogram over the number of metadata directory entries, and
the quantization matrices of JPEG files. Three major exper-
iments were performed to study the possibility to predict the
camera make from header information. First, we illustrate the
variability of header information across makes. Second, we
classify camera makes with combinations of the proposed fea-
tures. It turns out, that the histograms over the metadata direc-
tories are an excellent tool to associate an image to the camera
make. Third, we study the impact of apps and desktop postpro-
cessing software on the same task. In this considerably more
difficult task, images with postprocessing by apps can in many
cases still be well associated, with a median accuracy of about
75% for a combination of histogram and quantization features.
However, we also show that desktop software has a strong ten-
dency to rewrite major portions of the header, with a median ac-
curacy of only 55%. Nevertheless, this result is still well above
guessing chance of 11.11%, which suggests that more sophis-
ticated features may yield further improvements. This poten-
tially includes hand-crafted features that exploit specific data
properties, or automatically learned features from deep neural
networks. The fact that manufacturers like Nikon deploy dif-
ferent, possible image content sensitive, quantization matrices
may open another interesting research direction: For example,
it may be possible to find a low-dimensional manifold where
these matrices reside to simplify header association from en-
coding parameters.
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