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Abstract

Inverse problems play a central role for many classical computer vision and image processing
tasks. Many inverse problems are ill-posed, and hence require a prior to regularize the solution
space. However, many of the existing priors, like total variation, are based on ad-hoc assumptions
that have difficulties to represent the actual distribution of natural images. Thus, a key challenge
in research on image processing is to find better suited priors to represent natural images.

In this work, we propose the Adaptive Quantile Sparse Image (AQuaSI) prior. It is based
on a quantile filter, can be used as a joint filter on guidance data, and be readily plugged into a
wide range of numerical optimization algorithms. We demonstrate the efficacy of the proposed
prior in joint RGB/depth upsampling, on RGB/NIR image restoration, and in a comparison
with related regularization by denoising approaches.

1 Introduction

In computer vision and image processing, many tasks are modeled as inverse problems ranging from
low-level vision to image analysis and scene understanding. Inverse problems refer to the inference
of latent information from noisy observations, whereas both quantities are linked by a generative
model. For instance, in image denoising, we are interested in obtaining clean images from noisy
ones under a certain noise model. Despite widespread application domains, such formulations can
be tackled from two complementary perspectives: Model-based approaches aim at inverting the
generative model using iterative optimization. This includes classical Bayesian statistics [1] or the
most recent compressive sensing methodologies [2]. Learning-based approaches infer mappings in
forward direction by learning from exemplars. Here, dictionary-based methods [3] constitute the
classical approach, while more recently deep neural network pushed the frontiers towards end-to-end
learning, for example in super-resolution [4] or motion deblurring [5].

An inverse problem is oftentimes highly ill-posed. This implies that its solution is not necessarily
unique and continuously related to the given observations. Turning ill-posed problems to well-posed
ones requires priors on the desired solution spaces. Such prior knowledge can either be incorporated
implicitly via learning from example data, or explicitly by enforcing properties of a solution. The
latter has the merit that it is exclusively driven by available input data without relying on external
training data. It is achieved by a proper regularization of the problem, which can be steered by
general assumptions like smoothness or sparsity of the desired solution. For instance, traditional
models like total variation (TV) or related methods regularize with linear filter operations (e. g.,
gradients or Wavelet transforms) using sparsity-inducing loss functions in that filter domain. Such
priors are well understood and can be modeled in Bayesian form but, despite their flexibility, they are
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(a) Noisy input (b) RED [8] with
DnCNN [13]

(c) AQuaSI - Dynamic
guidance

(d) AQuaSI - Static guid-
ance

Figure 1: Top:Schematic representation of the AQuaSI prior. Bottom: Denoising results on an image
corrupted by multiplicative speckle noise. The weighted p-quantile filter is applied to an input image
fi. Then, the L1 norm is applied to the difference of the filtered output and the input image. The
filter sorts the pixel values within a predefined neighborhood N (i) in ascending order. Weights are
assigned based on the similarity to the center pixel and the intensity distribution in a guidance
image. The guidance can be gained by external data (static guidance) or from the input data itself
(dynamic guidance).

based on too simplistic design choices to reasonably constraining the solution space. For example,
TV priors in image restoration oftentimes cause staircasing artifacts that are typically not observed
in natural images.

Recently, powerful priors that build on image denoising methods have been demonstrated for their
performance in inverse imaging. Plug-and-play (PnP) [6] formulations, autoencoding priors [7], as
well as regularization by denoising (RED) [8] and variants thereof [9,10] are some manifestations of
this approach. Specifically, RED allows to relate non-linear operators with image priors in analytical
form. However, despite its practical success, Reehorst and Schniter [11] showed that RED algorithms
can only be related to specific priors under denoisers with symmetric Jacobian. Unfortunately, this
property does not hold true for popular denoisers like BM3D or deep neural nets. Moreover, RED is
based on a cross correlation between an image and its residual noise estimated by a denoiser, which
is assumed to be white noise. This model can be translated into Tikhonov-like regularization also
known as graph Laplacian in case of symmetric smoothing [12]. This is a delicate property as it
would require a perfect denoiser to infer the residual noise. Current denoising engines can barely
infer the residual in form of pure white noise, especially if observations are degraded by challenging
noise types like Poisson or multiplicative models. This can limit the power of the prior in many
applications.

In this paper, we pursue the goal of designing a more appropriate model and propose the Adaptive

2



Quantile Sparse Image (AQuaSI) prior – a novel prior for ill-posed inverse imaging problems. The
proposed AQuaSI prior falls into the broad class of RED formulations with some crucial design
choices: 1) We exploit the general class of weighted quantile filters as a specific denoising type to build
our model. Contrary to standard denoisers, such filters are particularly effective for heavy-tailed
noise distributions differing from Gaussian models, e. g., impulsive noise [14]. In our framework, they
can also be linearized, and hence very efficiently deployed for numerical optimization. 2) AQuaSI
assumes images to be fixed points under weighted quantile filtering similar to autoencoding priors,
but with sparsity-promoting regularization contributing to its robustness. In particular, we use L1

norm regularization for fixed points and can relate this model to a prior distribution in the sense of
Bayesian statistics. In contrast, the graph Laplacian in RED is sensitive to denoising inaccuracy of
the used filter. While both priors are expected to perform equally under ideal conditions like additive
Gaussian noise, our sparse model gains in importance under challenging noise distributions. The
advantages of these properties can be seen in Fig. 1 (left) for multiplicative speckle noise removal.
Here, RED with DnCNN [13] as denoiser fails to handle this noise distribution and overpenalizes
the denoising inaccuracy in its regularization term, resulting in oversmoothing. In contrast, AQuaSI
with its weighted quantile filter and sparse regularization achieves superior structure preservation.

The proposed model generalizes our previous paper on the QuaSI prior [15]. This earlier work
proposes a quantile filter as prior. In this work, we make it spatially adaptive by introducing filter
weights. This filter class also contains weighted median filtering [16, 17] as a special instance. As
such, AQuaSI enables regularization via joint filtering by calculating the filter weights from guidance
data. In this case, the pixel values within the filter kernel are sorted and weighted by values derived
from the guidance data to calculate quantiles. The spatial weighting can be either derived from an
external image, termed static guidance, or from the given input image, termed dynamic guidance.
In contrast, QuaSI exploits uniform weights. A schematic representation of our prior is shown in
Fig. 1 (right).

We further show that AQuaSI is universally usable and how it can be deployed in different model-
based optimization approaches to solve typical inverse imaging problems1. In different applications,
including non-blind image deblurring, joint upsampling of RGB/depth images, and restoration of
RGB/near infrared images, we demonstrate that our prior improves upon hand-crafted priors that
are driven by ad-hoc assumptions.

This paper is organized as follows. We first mathematically define the inverse problem and list
related work on it in Sec. 2. The AQuaSI prior and its numerical optimization are presented in Sec. 3
and Sec. 4, respectively. Quantitative and qualitative experiments on three applications of AQuaSI
are presented in Sec. 5. Finally, Sec. 6 concludes this work.

2 Problem Statement and Related Work

The focus of this work is on inverse problems in computer vision. An inverse problem aims at
recovering a latent image f ∈ Rn from measurements g ∈ Rm. In a maximum a-posteriori (MAP)
formulation, the latent image maximizes the posterior distribution p(f |g) and can be inferred as the
solution of an optimization problem using Bayes rule

f̂ = argmax
f

p(f |g) = argmax
f

p(g|f)p(f) . (1)

The prior p(f) models the distribution of the latent image and the observation model p(g|f) denotes
the probability of observing the measurement g from the latent image f . Using the negative log-
likelihood − log(p(f |g)), Eq. 1 can be written as the energy minimization task

f̂ = argmin
f
{L(f ,g) + λR(f)} , (2)

1The source code to our methods and supplementary material can be downloaded at: https://github.com/

franziska-schirrmacher/AQuaSI

3

https://github.com/franziska-schirrmacher/AQuaSI
https://github.com/franziska-schirrmacher/AQuaSI


where L(f ,g) = − log(p(g|f)) is a data term to measure the fidelity of an estimate f w. r. t. g under
a given image formation model, and λR(f) = − log(p(f)) is a regularization term with weight λ ≥ 0

derived from prior knowledge on the solution f̂ . In common frameworks for denoising, deblurring,
or super-resolution, the data term is L(f ,g) = ‖g −Wf‖22, where W ∈ Rn×m is a task-dependent
operator that models an underlying linear image formation model. While the choice of the data
term is highly dependent on the application, it is oftentimes possible to define more generic priors
for the regularization term R(f). The large body of existing works on image priors can roughly be
organized into priors on sparsity, priors from deep learning, and priors from denoising.

2.0.1 Natural Scene Statistics and Sparsity Priors

The vast majority of classical image priors p(f) for Eq. 1 are derived from statistical models of natural
scenes. Some common assumptions are to consider natural images as smooth, piecewise smooth, or
piecewise constant signals under certain transforms. This includes the well known TV prior [18] that
has been widely adopted for image restoration. Many elaborated optimizers exist to solve inverse
problems with a TV prior, but the underlying statistical assumption of a piecewise constancy of
image intensities is in many applications too simplistic to appropriately model the complex nature
of natural scenes.

Further advances in the field of natural scene statistics led to Hyper-Laplacian priors [19–21] or
normalized scale-invariant priors [22]. Specifically for deblurring, non-linear extreme value priors like
dark [23] or bright channels [24] have been proposed. Such approaches exploit sparsity of natural
images as a stronger prior for image restoration. Spectral models [25, 26] are likewise heading
towards this direction but exploit low-rank properties of non-local similar patches. These are more
suitable to model natural scene statistics but require specific optimization strategies like re-weighted
minimization [20] or variable splitting [21], which limits their flexibility. In contrast, we aim in this
work at designing an out-of-the box image prior that is widely applicable within different optimization
schemes.

2.0.2 Deep Learning-Based Priors

The use of deep learning architectures like convolutional neural networks (CNNs) is a different track
to design the prior p(f) in Eq. 1 and has become popular to solve low-level vision problems. In early
works, classical approaches to sparse coding like [27] have been newly interpreted via CNNs and
learned in an end-to-end fashion from exemplars [28]. Other approaches are to integrate denoising
networks to regularize model-based optimization in variable splitting schemes [29, 30]. However,
these methods require learning from large-scale example datasets, which are not readily available in
many real-world applications. In contrast, the proposed prior in this work is unsupervised.

Deep image priors [10,31] are one alternative, as prior knowledge on natural images is extracted
from network architectures instead of example data. In principle, this avoids the use of simplistic
hand-crafted features for regularization, but such priors are — other than the proposed prior —
difficult to deploy in existing model-based image restoration frameworks.

2.0.3 Transforming a Denoiser into a Regularizer

Most closely related to our proposed approach are strategies to form the prior p(f) in Eq. 1 via
image denoising. PnP priors are one of these attempts and replace proximal operators in variable
splitting algorithms like the alternating direction method of multiplier (ADMM) [6, 32] or primal
dual optimization [33] by invoking denoising algorithms. Moreover, variants of the iterative shrink-
age/thresholding algorithm (ISTA) [34] have been proposed to extend the PnP formulation towards
non-linear [35] and online optimization problems [36]. This implicitly models a prior on the solution
space and have gained much popularity in signal recovery and image restoration. Chan [12] pro-
vided theoretical insights to the actual performance of PnP by deriving relations to classical MAP
inference and consensus equilibrium [37] for the class of symmetric smoothing priors.
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Figure 2: Influence of different images degradations to the behavior of the AQuaSI prior. Top
row: clean and degraded baboon image using Gaussian, mixed Gaussian / salt & pepper, Poisson,
and speckle noise, respectively. Bottom row: empirical distribution of the quantile residual r =
f −Qp,w(f) for the different degradations. Notice that the distributions on clean images are strongly
concentrated around 0, while the distribution of noisy images are very broad.

In that sense, an alternative approach includes regularization by denoising (RED) as proposed
by Romano et al. [8]. Their model considers clean images as a fixed point of image denoising. In
its core, RED extends the well known fixed point property of natural images as raised in related
works on autoencoding [7] or mean-shift priors [38] to general denoisers. This allows the integration
of many advanced filters to solve inverse imaging problems under different optimization schemes
and broadens the scope compared to PnP. In principle, RED can also be combined with other
complementary models like deep image priors [10]. The used denoiser can be related to an analytical
prior in a MAP framework provided that it has symmetric Jacobian [11] – a property that is,
however, not fulfilled by many elaborated filters including those covered in this work. From a
practical perspective, RED is based on Tikhonov regularization similar to related autoencoding
priors as proposed in the work of Bigdeli et al. [7]. In [39], the authors showed that PnP can also be
related to Tikhonov regularization. A direct comparison in [12] shows that RED is less sensitive to
parameters compared to PnP, while PnP yields better performance in terms its mean squared error.
However, overall Tikhonov regularization can be expected to be less robust to non-Gaussian noise,
e. g., than L1-based regularizer. The proposed AQuaSI prior aims at increasing the robustness using
a sparsity-promoting model without relying on strong assumptions like a symmetric Jacobian for its
interpretation.

3 Adaptive Quantile Sparse Image (AQuaSI) Prior

The proposed AQuaSI prior is a spatially adaptive model for natural images. It is sensitive to
common image degradations, and can be efficiently implemented in various optimization frameworks.
In this section, we first introduce the prior itself and its behavior under common image degradations.
Then, we show its applicability in joint filtering, and finally present a linearization of the filter for
insertion into an optimizer.
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3.1 Definition of the AQuaSI Prior

Turning denoising algorithms into an image prior for regularization is an emerging topic in image
restoration. Our approach follows a similar train of thought and is based on weighted quantile filtering
as a particular denoiser. We denote a weighted p-quantile filter with 0 ≤ p ≤ 1 for an image f as
Qp,w(f), where w ∈ RN are spatially adaptive weights. The weighted quantile filter selects a pixel
from a neighborhood based on two considerations: a) the intensity distribution in the neighborhood,
b) the distribution of similarities of each pixel to the center pixel. That way, pixels that are very
dissimilar to the center can be weighed down, and effectively be ignored by the quantile filter.

Let wi ∈ Rn with n = |N (i)| be the weights within the kernel N (i) of this filter centered at the
i-th pixel. Then, we define a permutation of these weights, w̃i = mi(w), such that the associated
pixel intensities mi(fij) ∈ N (i) are sorted in ascending order. The weighted p-quantile is the element
[Qp,w(f)]i = fl with

wl = m−1
i (w̃ik∗) (3)

where m−1
i (w̃i) maps the elements of the permutation w̃i back to weights in the filter kernel wi and

the index k∗ is given by:

k∗ = min k s.t.
k∑
j=1

w̃ij ≥ p
n∑
j=1

w̃ij . (4)

The general model in Eq. 3 and Eq. 4 depends on the percentage parameter p, which is a hyper-
parameter to adjust the filter for specific applications. If p = 0.5, we obtain the weighted median
filter, which has been shown to be particularly suitable for denoising under zero-mean noise [16,17].

Conceptionally, the proposed AQuaSI prior follows the idea that a natural image should be a
fixed point under the weighted quantile filter. That is, the quantile residual of a clean image f is zero,
i. e. f −Qp,w(f) = 0. In order to apply this assumption for the regularization of inverse problems,
we define the prior with slight relaxation according to the sparsity-inducing term

RAQuaSI(f) = ‖f −Qp,w(f)‖1 . (5)

Under the general MAP framework in Eq. 1, we can relate this regularization term to the prior
distribution p(f) = exp(−λRAQuaSI(f)).

3.2 Impact of Image Degradations on the AQuaSI Prior

We validate the key assumptions behind our AQuaSI prior on natural images that have been subject
to different types of degradations. Specifically, we present the behavior of AQuaSI for several noise
distributions. We use the images from Set14 [40] as clean images, and simulate noisy counterparts
using mixed Gaussian and salt & pepper noise, Poisson noise, and speckle noise. Sample images are
shown in the top row of Fig. 2. For each noise model, we compute the quantile residual

r = f −Qp,w(f) , (6)

with p = 0.5 and w = 1 on a neighborhood of n = 52 pixels, which corresponds to the usual median
operator on a window of 5 × 5 pixels. In the bottom row of Fig. 2, histograms of the residuals are
shown.

Two observations can be made from these distributions. First, the residual distributions of noisy
images are very broad. In contrast to that, residual distributions on clean images are strongly
concentrated around zero. Second, also for clean images, there are a few notable outliers that
largely differ from zero. Both observations together indicate that the proposed quantile residual
is an adequate model for natural images: the overall concentration around zero indicates that the
quantile is a good predictor for most pixels, and the use of the sparsity-promoting L1 norm ensures
that the influence of the few outliers in the clean image does not dominate the overall result.
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(a) Noisy color image (b) Near-infrared image (c) QuaSI [15]

(d) AQuaSI - Dynamic guidance, fixed
f

(e) AQuaSI - Dynamic guidance, up-
dated f

(f) AQuaSI - Static guidance

Figure 3: Denoising of the bowls color image [41] using the ADMM optimization in combination with
different variants of our prior. QuaSI [15] is spatially non-adaptive and can only exploit color data
for regularization. AQuaSI is spatially adaptive and can be steered by color data (either the fixed
input or an intermediate ADMM result) in a dynamic guidance mode or by external near-infrared
data in a static guidance mode. Notice the superior recovery of small image structures achieved by
the spatially adaptive variants.

3.3 Joint Filtering

Similar to existing local [17,42] or global [43] optimization-based methods, the proposed prior facili-
tates joint filtering by steering the regularizer in Eq. 5 with either internal or external image features.
This is achieved by controlling the weights w of the underlying weighted quantile operator. At the
same time, the non-uniform choice of weights make the proposed technique spatially adaptive.

More specifically, for regularization of f , the weight wij for the pixel fj w. r. t. the pixel fi is
determined according to

wij = Gσw (zi, zj) , (7)

where zi and zj are the respective pixels in a guidance image z, and Gσw (zi, zj) is a measure for
their spatial neighborhood. For instance, we can use an isotropic Gaussian kernel

Gσw (zi, zj) = exp

(
− (zi − zj)2

2σ2
w

)
, (8)

where σw denotes the standard deviation. Joint filtering can be done in two modes: In static
guidance mode [17,42], spatially adaptive weights w are derived from an external guidance image z.
In dynamic guidance mode [43], spatially adaptive weights w are internally derived in the domain of
the regularized image without considering additional guidance data. This can be done using either
the fixed input g to obtain spatially adaptive weights (i. e., z = g) or using an indeterminate result
f (i. e. z = f) to gradually update the weights within iterative optimization as introduced in Sec. 4.

Spatial adaptivity has a large impact on image structure preservation, and as such greatly im-
proves upon our earlier, spatially non-adaptive prior, which we then called “QuaSI” [15]. In order
to show the impact of spatial adaptivity, we compare AQuaSI with static and dynamic guidance
to the non-adaptive QuaSI prior. The is done for the task of RGB and near-infrared (NIR) image
restoration (see Sec. 5.4) [44], where the filtering of noisy color images is guided by NIR data. The
parameters of the quantile filter are p = 0.5 for a median filter on a n = 52 neighborhood and
σw = 0.1 for the Gaussian kernel Gσw

.
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Figure 3 shows the behavior of the different priors on the bowls scene. Fine details, such as the
border of the flower printing, are better preserved in the filtered color image using AQuaSI with static
guidance obtained from NIR data: the edges in Fig. 3f are sharper than the edges in Fig. 3c. Also
between the spatially non-adaptive QuaSI and AQuaSI with dynamic guidance, AQuaSI performs
better in preserving more details of the flower printing while smoothing homogeneous regions. We
also observe superior denoising performance for dynamic mode when using intermediate results as
guidance (Fig. 3e) than when using the noisy input image as guidance (Fig. 3d). Also the flower
printings are better preserved.

Thus, the spatial adaptivity and the possibility of using additional guidance data broadens the
applicability and enhances the performance of the proposed AQuaSI prior compared to the QuaSI
prior.

3.4 Pseudo-Linear Filtering

The proposed AQuaSI prior is both non-convex and highly non-linear due to the underlying weighted
quantile filtering. However, this flexibility somewhat complicates the numerical optimization when
using this model for an image restoration task. To mitigate this issue, a proper linearization can
be used to deploy our prior for the solution of inverse imaging problems. We propose to formulate
Qp,w(f) in the pseudo-linear form [8]:

Qp,w(f) = Qf , (9)

where Q denotes the weighted quantile filter in matrix notation constructed from the image f . This
decomposes the filter into the construction of its pseudo-linear form Q adapted to the image f and
the actual filtering. While this formulation applies in principle to many popular non-linear models,
like non-local means or bilateral filtering, the proposed weighted quantile filtering allows for the
efficient linearization

Qij =

{
1 if j = z in the sense of Eq. 3

0 otherwise
, (10)

where z denotes the position of the p-weighted quantile in the neighborhood N (i) centered at the
i-th pixel.

The pseudo-linear form in Eq. 9 is accurate for a fixed image f . In case of small perturbations
in the image that do not affect the ordering of the pixel values in the neighborhood N (i), this form
is still accurate and Q remains constant.

4 Numerical Optimization with AQuaSI Prior

AQuaSI can be deployed within several widely used iterative optimization schemes for inverse imaging
problems. These schemes follow the quite general energy minimization framework of Eq. 2.

4.1 Gradient Descent

Gradient descent is among the most frequently used optimization methods to solve inverse imaging
problems. We study steepest descent as a conceptional simple, yet flexible gradient descent iteration
scheme. Given an estimate f t for the solution of the inverse problem in Eq. 2 with the problem-
specific data fidelity term L(f ,g) and our proposed regularization term RAQuaSI(f), we refine f t from
iteration t to t+ 1 according to the update equation

f t+1 = f t − µ
(
∇fL

(
f t,g

)
+ λ∇fRAQuaSI

(
f t
))

, (11)

where ∇f denotes the gradient calculated at f = f t and µ is the iteration step size parameter. To
calculate the gradient of the AQuaSI regularization term for this update rule, Qp,w(f) is constructed
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with the pseudo-linear form in Eq. 9 around the current estimate f t such that Qp,w(f t) = Qf t.
Based on this linearization, the gradient of the AQuaSI term is

∇fRAQuaSI(f
t) = ∇f‖f −Qp,w(f)‖1

∣∣
f=f t

= (I−Q)>sign(f −Qf t) .
(12)

To handle the non-differentiability of the L1 norm at zero, we use an ε-smoothed version with
sign(u) ≈ u(

√
u2 + ε)−1 for small ε.

The above iteration scheme can be employed with fixed step size parameter µ or line searches to
determine µ dynamically per iteration. Moreover, we can revise the selection of the search direction
from the steepest descent approach to related techniques like conjugate gradient (CG) iterations.

4.2 Variable Splitting

AQuaSI can also be used in variable splitting techniques for minimization of Eq. 2. As one of the
most popular techniques within this class of optimizers, we study the alternating direction method
of multipliers (ADMM) [45], where Eq. 2 is rewritten as the constrained optimization problem

(f̂ , û) = argmin
f ,u

{L(f ,g) + λ‖u‖1}

s.t. u = f −Qp,w(f)
(13)

with auxiliary variable u. This is equivalent to enforcing the non-linear constraint u = f −Qp,w(f)
by minimizing the Augmented Lagrangian

(f̂ , û) = argmin
f ,u

{
L(f ,g) + λ‖u‖1

+
α

2
‖u− f +Qp,w(f)− bu‖22

}
,

(14)

where α and bu denote the corresponding Lagrangian multiplier and a Bregman variable, respec-
tively.

The minimization of Eq. 14 is accomplished in an alternating manner

f t+1 = argmin
f

{
L(f ,g)

+
α

2
‖ut − f +Qp,w(f)− btu‖22

}
,

(15)

ut+1 = argmin
u

{
λ‖u‖1

+
α

2
‖u− f t+1 +Qp,w(f t+1)− btu‖22

}
,

(16)

= shrink

(
f t+1 +Qp,w(f t+1) + btu,

λ

α

)
, (17)

bt+1
u = btu +

(
f t+1 −Qp,w(f t+1)− ut+1

)
, (18)

where shrink(u, γ) = sign(u) max(u − γ, 0) is the shrinkage operator associated with the L1 norm
‖u‖1. To reduce the influence of the selection of the Lagrangian multiplier, we adopt varying penalty
parameters [46]. The weighted quantile filter Qp,w(f) is again approximated by the pseudo-linear
form in Eq. 9.

4.3 Multi-Channel Inverse Problems

The AQuaSI prior can be easily generalized to handle multi-channel data like RGB color or multi-
spectral images. Applying this model to each channel separately is straightforward but would ignore
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inter-channel correlations like structures present in all channels. Multi-channel images can be jointly
optimized in order to allow for simultaneous processing of all channels. To this end, we couple all
channels in the AQuaSI prior.

Let fc ∈ RN , c = 1, . . . , C be the individual channels of a multi-channel image denoted in vector
notation. Based on Eq. 2, we plug the AQuaSI prior into a multi-channel inverse problem according
to:

argmin
f1,...,fC

{
C∑
c=1

L(fc,gc) + λ
∥∥f̄ −Qp,w(f̄)

∥∥
1

}
, (19)

where f̄ denotes the weighted average:

f̄ =

C∑
c=1

mcfc . (20)

For instance, in case of RGB color images, using the weights m = (0.299, 0.587, 0.114)> is
equivalent to a standard grayscale conversion. We replace the non-linear filter Qp,w(·) with its
pseudo-linear form Q̄ computed from f̄ to exploit inter-channel correlations and to allow for better
structure preservation. Then, we can resort the AQuaSI prior on the average image:

‖f̄ −Qp,w(f̄)‖1 =

∥∥∥∥∥
C∑
c=1

mcfc −Qp,w

(
C∑
c=1

mcfc

)∥∥∥∥∥
1

≈

∥∥∥∥∥
C∑
c=1

mcfc −
C∑
c=1

mcQ̄fc

∥∥∥∥∥
1

=

∥∥∥∥∥
C∑
c=1

mc

(
fc − Q̄fc

)∥∥∥∥∥
1

.

(21)

Thus, we apply a single linearization Q̄ to the individual channels of the underlying inverse problem.
All channels are stacked in the variables f and g:

f =
(
f1, f2, · · · , fC

)>
,

g =
(
g1, g2, · · · , gC

)>
.

(22)

Then, the objective function in Eq. 19 can be rewritten as

f̂ = argmin
f
{L(f ,g) + λ ‖M (f −Qf)‖1} , (23)

where Q = diag(Q̄, . . . , Q̄), M = diag(M1, . . . ,MC), and Mc = diag(mc, . . . ,mc) ∈ RCN×CN . The
optimization problem in Eq. 23 can be solved using the algorithms described in Sec. 4.2.

We compare the channel-wise and multi-channel (MC) approach for RGB/NIR image restoration
(see Sec. 5.4) on an example of the ARRI dataset [47] in Fig. 4. In general, the advantage of the
multi-channel approach compared to a channel-wise optimization is two-fold: 1) AQuaSI MC yields
better structure preservation than AQuaSI channel-wise. For example, the wooden sticks at the
back of the image are less blurred and the gaps between the sticks are better visible. 2) AQuaSI
MC requires less computation time than simple channel-wise processing. This is explained by the
fact that only a single linearization Q̄ is required per iteration. In contrast, channel-wise processing
needs to construct one linearization per image channel. In Fig. 4, AQuaSI MC converged after
388 seconds, whereas the channel-wise approach converged after 6678 seconds on an image of size
1575× 2800 pixels.
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(a) Ground truth

(PSNR: 22.54.48 MS-SSIM: 0.86)

(PSNR: 22.54.48 MS-SSIM: 0.86)

(b) Noisy image

(PSNR: 31.08 MS-SSIM: 0.94)

(PSNR: 31.08 MS-SSIM: 0.94)

(c) AQuaSI channel-wise

(PSNR: 33.05 MS-SSIM: 0.96)

(PSNR: 33.05 MS-SSIM: 0.96)

(d) AQuaSI MC

Figure 4: RGB/NIR restoration on the ARRI dataset [47]. (a) Ground truth color image, (b) color
image corrupted by speckle noise, (c) AQuaSI channel-wise with static guidance, and (d) AQuaSI
multi-channel with static guidance.
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Figure 5: Convergence analysis for iterative optimization with the AQuaSI prior. We evaluated the
overall energy function optimized by ADMM using an update of the AQuaSI pseudo-linear form after
every iteration and after every second iteration. The time gap ∆t indicates the performance improve-
ment when updating every second iteration for images of size 256 × 256 pixels. This improvement
increases with the image resolution.

4.4 Implementation Remarks

The iterative algorithms with our AQuaSI prior are easy to implement and can be seamlessly in-
tegrated into existing inverse imaging frameworks. There are two main steps at each iteration: 1)
estimation of the image f t+1, and 2) the construction of the linearization Q for weighted quantile
filtering Qp,w(f). While the first step involves efficient matrix/vector operations, the computational
complexity of an iteration is mainly related to the second step.

To decrease the computation time, we found that it is sufficient to re-use the same Q for several
iterations instead of updating Q in every iteration. In this case, the pseudo-linear form is an
approximation of the actual filtering. We validate this approximation experimentally by examining
the convergence of our iteration scheme. Figure 5 depicts the convergence of ADMM in terms of
the optimized energy for RGB/NIR restoration (see Sec. 5.4) versus the computation time of the
algorithm. We evaluated the convergence on image patches of size 256 × 256 pixels. Here, we
compare an update of Q at every iteration against an update after every second iteration. It is
worth noting that both variants convergences to comparable local minima, while the approximation
is considerably faster in computation. Especially for large-scale images, significantly lower processing
time are possible.

5 Experimental Evaluation and Applications

In order to emphasize the effectiveness of the AQuaSI prior, we relate it to TV regularization and
RED algorithms. Additionally, we evaluate the performance of the proposed method on two common
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Figure 6: Parameter sensitivity analysis for the TV prior with regularization weight µ (a) and the
combination of AQuaSI with regularization weight λ and TV (b) on the RGB/NIR image restoration
result.

(a) Input (b) TV prior without
AQuaSI

(c) AQuaSI prior without
TV

(d) AQuaSI + TV prior

Figure 7: Influence of the TV prior and the AQuaSI prior to image denoising. We compare a noisy
input (a) to denoised images using only the TV prior (b), only AQuaSI (c), as well as the combination
TV + AQuaSI (d). For each configuration, we report denoised images with the highest PSNR.

inverse problems in computer vision, namely joint RGB/depth map upsampling and RGB/NIR image
restoration.

5.1 Comparison to Total Variation Regularization

We investigate the influence of the AQuaSI prior with dynamic guidance for RGB/NIR image restora-
tion (see Sec. 5.4) and compare it to the influence of the TV prior. We varied the regularization
weights of the TV and AQuaSI prior in Eq. 27 separately, while setting the other one to zero. We
additionally combined AQuaSI with TV for varying regularization weight of the TV prior.

Figure 6 shows the peak signal-to-noise ratio (PSNR) for TV and AQuaSI with different regular-
ization weights. A small regularization weight µ for the TV prior effectively removes the term from
the optimization. Increasing µ for the TV prior beyond the optimum point drastically decreases the
performance again, since TV starts to oversmooth the results. Changing the weight for AQuaSI from
λ = 0 to a larger value corresponds to activating it. The jump in the activation can be steered by the
choice of σw, the standard deviation of the Gaussian weighting function. AQuaSI smooths the image
with large σw and allows for better structure preservation with smaller σw. For this experiment, we
choose n = 32 and σw = 0.1, which is rather low. Thus, compared to TV, AQuaSI does not achieve
a competitive denoising performance. The advantage of this configuration of AQuaSI can be seen in
combination with the TV prior in Fig. 7. The smoothing property of TV is retained and AQuaSI
helps to preserve the original image content. This property of AQuaSI is underlined in the following
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Table 1: Averaged peak signal to noise ratio (PSNR) and no-reference deblurring metric (DM) [49]
for non-blind deblurring using RED [8] with WMF [17] or BM3D denoising [51], and AQuaSI on the
Levin dataset [48]. Results are reported for different noise levels of additive white Gaussian noise
(AWGN) and speckle noise (SN).

Level RED with WMF RED with BM3D AQuaSI
σnoise PSNR DM PSNR DM PSNR DM

A
W

G
N 0.0001 29.40 -13.96 30.62 -14.11 30.47 -12.94

0.0009 27.12 -14.02 28.41 -14.60 27.51 -12.77
0.0025 25.87 -13.10 27.32 -15.46 26.34 -13.36

S
N

0.0001 33.69 -13.13 35.04 -13.48 33.92 -12.47
0.0009 30.04 -13.05 30.87 -14.23 30.25 -12.30
0.0025 28.41 -12.89 28.58 -14.93 28.76 -12.10

sections, where AQuaSI drastically improves the performance of common image priors. We provide
additional qualitative results for comparison to TV regularization in the supplementary material.

5.2 Comparison to Regularization by Denoising (RED)

AQuaSI is similar in spirit to the RED framework proposed by Romano et al. [8]. Using a weighted
median filter Qp,w(·), p = 0.5 as denoising engine in the same variant as in the proposed prior, RED
is modeled by the regularization term

RRED(f) = f>(f −Qp,w(f)) . (24)

That is, instead of regularizing with the L1 norm, RED uses the square of the image f . For a
comparison between these models, we apply both on denoising and deblurring tasks.

We evaluated AQuaSI and RED for non-blind deblurring using the dataset of Levin et al. [48]
comprising eight blur kernels and four ground truth grayscale images. We degraded the ground truths
by convolutions with the known blur kernels. In addition, each blurred image is corrupted by additive
white Gaussian noise and speckle noise (σnoise ∈ {0.0001, 0.009, 0.0025} for each model and images
in [0, 1]). For deblurring, we applied AQuaSI with dynamic guidance and RED with the weighted
median filter (n = 52, σw = 0.6) and BM3D in the framework provided by Romano et al. [8]. The
deblurring quality was assessed by the PSNR and the no-reference motion deblurring metric (DM)
[49]. While PSNR measures distortions relative to the ground truth, DM is specifically designed to
assess the perceptual quality of the deblurring methods and lower values express better performance.
Quantitative results for both noise models are reported in Tab. 1. RED with BM3D outperforms
AQuaSI w. r. t. PSNR. However AQuaSI excels in the deblurring metric DM. Here, AQuaSI overall
outperforms RED with WMF and RED with BM3D especially under heavy speckle noise that is
difficult to handle by of-the-shelf denoisers. Analogously to the other image restoration problems
(cf. Sec. 5.4), there is an inherent tradeoff between signal distortion and perceptual quality [50]. In
our experiments, AQuaSI performs reasonably in terms of distortions (second best in PSNR) while
providing excellent perceptual quality (best in DM) leading to good perception-distortion tradeoffs.
This is also confirmed in the qualitative results in Fig. 8.

Figure 9 depicts RED versus the proposed AQuaSI prior for RGB/NIR image restoration (see
Sec. 5.4). Here, NIR data guides the restoration of noisy RGB images that are degraded by speckle
noise (σnoise = 0.2). For fair comparison we set µ = 0, thus eliminate the influence of the TV prior.
We couple both priors with an L2 norm data term and use the weighted median filter (n = 92,
σw = 0.006) in static guidance mode within ADMM optimization. It is worth noting that AQuaSI
yields considerably better perceptual quality in terms of noise reduction as well as a higher PSNR.
We explain this behavior by the different models underlying the priors: RED with its quadratic
model has difficulties in handling non-Gaussian noise on its own, while AQuaSI with the L1 norm
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(PSNR: 19.04 DM: -16.18) (PSNR: 31.30 DM: -12.77) (PSNR: 33.31 DM: -13.35)] (PSNR: 32.63 DM: -12.50)

(a) Ground truth

(PSNR: 23.47 DM: -14.64)

(b) Blurred image

(PSNR: 28.65 DM: -13.86)

(c) RED [8] with
WMF [17]

(PSNR: 30.94 DM: -17.55)

(d) RED [8] with
BM3D [51]

(PSNR: 29.78 DM: -13.23)

(e) AQuaSI

Figure 8: Qualitative deblurring results for two images of the Levin dataset [48]. The top row shows
ground truth data, blurry input data corrupted by additive white Gaussian noise with σnoise =
0.0001 and deblurring results of different algorithms. The bottom row depicts qualitative results for
σnoise = 0.025.

(a) Ground truth

(PSNR: 21.36 MS-SSIM: 0.90)

(PSNR: 21.36 MS-SSIM: 0.90)

(b) Noisy image

(PSNR: 22.36 MS-SSIM: 0.90)

(PSNR: 22.36 MS-SSIM: 0.90)

(c) RED [8] with BM3D [52]

(PSNR: 21.64 MS-SSIM: 0.84)

(PSNR: 21.64 MS-SSIM: 0.84)

(d) RED [8] with DnCNN [13]

(PSNR: 19.04 MS-SSIM: 0.84)

(PSNR: 19.04 MS-SSIM: 0.84)

(e) RED [8] with WMF [17]

(PSNR: 25.83 MS-SSIM: 0.93)

(PSNR: 25.83 MS-SSIM: 0.93)

(f) AQuaSI

Figure 9: RGB/NIR restoration using our AQuaSI prior under non-Gaussian noise in comparison
to regularization by denoising (RED) [8].(a) Ground truth color image, (b) color image corrupted
by speckle noise, (e) RED with weighted median filter (WMF), and (f) AQuaSI prior. The priors
are steered by NIR data in a static guidance mode. The reported PSNR and MS-SSIM values are
calculated from the sections to be seen.
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Figure 10: Bad matching error (BME) of various joint RGB/depth map upsampling methods at
different error thresholds δ on the Middlebury data.

(a) Ground truth (b) Degraded depth map (c) Color image

(RMSE: 0.0152 BME: 0.50)

(RMSE: 0.0152 BME: 0.50)

(d) MS [53]

(RMSE: 0.0133 BME: 0.36)

(RMSE: 0.0133 BME: 0.36)

(e) TGVL2 [54]

(RMSE: 0.0178 BME: 0.57)

(RMSE: 0.0178 BME: 0.57)

(f) DJF [55]

(RMSE: 0.0178 BME: 0.57)

(RMSE: 0.0178 BME: 0.57)

(g) DJFR [56]

(RMSE: 0.0113 BME: 0.25)

(RMSE: 0.0113 BME: 0.25)

(h) SD filter [43]
w/ Welsch, w/ AQuaSI

Figure 11: Joint RGB/depth map upsampling on a SUN image pair. (a) Ground truth depth map,
(b) degraded depth map, (c) color image, (d) - (h) results of mutual structure (MS) filter, TGVL2
upsampling, deep joint filter (DJF), residual-based deep joint filter (DJFR), and SD filter w/ Welsch,
w/ AQuaSI. RMSE and BME, with δ = 0.01, are reported for each result.

model is less sensitive in that case. This also confirms the properties of our sparsity-promoting
model shown in Sec. 3.2. We additionally report the results of RED without guidance data using
BM3D [52], DnCNN [13] as denoiser. While DnCNN tends to oversmooth the result, BM3D provides
a better tradeoff between noise reduction and structure preservation.

5.3 Joint Upsampling

In joint upsampling, we aim at upsampling a noisy depth map under the guidance of an RGB image.
To demonstrate the applicability of the proposed method for this task, we augment the popular
joint static and dynamic (SD) filter [43] by our AQuaSI prior. Given a noisy depth map g and a
complementary RGB color image z, we obtain an upsampled depth map f according to the inverse
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(RMSE: 0.0128 BME: 0.38)

(RMSE: 0.0128 BME: 0.38)(a) SD filter [43]
w/ Welsch, w/o AQuaSI

(RMSE: 0.0161 BME: 0.50)

(RMSE: 0.0161 BME: 0.50)(b) SD filter [43]
w/o Welsch, w/ AQuaSI

(RMSE: 0.0114 BME: 0.27)

(RMSE: 0.0114 BME: 0.27)(c) SD filter [43]
w/ Welsch, w/ QuaSI

(RMSE: 0.0113 BME: 0.25)

(RMSE: 0.0113 BME: 0.25)(d) SD filter [43]
w/ Welsch, w/ AQuaSI

Figure 12: Comparison of the different variants of the SD filter [43] on a SUN image pair. (a) SD
w/ Welsch, w/o AQuaSI, (b) SD filter w/o Welsch, w/ AQuaSI, (c) SD filter w/ Welsch, w/ QuaSI,
(d) SD filter w/ Welsch, w/ AQuaSI. RMSE and BME with δ = 0.01 are reported for each result.

Table 2: Averaged root mean square error (RMSE) for RGB/depth map upsampling using differ-
ent general-purpose (MS [53], DJF [55], and DJFR [56]) and customized methods for depth maps
(TGVL2 [54]) on the Middlebury, NYU, and SUN benchmark datasets.

Method RMSE RMSE RMSE
MiddleburyNYU SUN

MS [53] 0.0245 0.0167 0.0190
TGVL2 [54] 0.0245 0.0169 0.0213
DJF [55] 0.0266 - 0.0218
DJFR [56] 0.0273 - 0.0218
SD filter [43] w/ Welsch,
w/o AQuaSI

0.0220 0.0143 0.0178

SD filter [43] w/o Welsch,
w/ AQuaSI

0.0253 0.0176 0.0205

SD filter [43] w/ Welsch, w/
QuaSI

0.0211 0.0136 0.0177

SD filter [43] w/ Welsch, w/
AQuaSI

0.0197 0.0124 0.0165

problem
f̂ = argmin

f
L(f ,g) + µR(f , z)︸ ︷︷ ︸

SD prior

+λ‖f −Qp,w(f)‖1︸ ︷︷ ︸
AQuaSI prior

, (25)

where R(f , z) denotes the Welsch function as proposed in [43] with regularization weight µ ≥ 0.
The data fidelity term is defined analogously to [43] as L(f ,g) = ‖c � (f − g)‖22, where c denotes
a confidence map to mask out outliers, e. g., invalid depth measurements, and � is the Hadamard
(element-wise) product. In order to solve Eq. 25, we perform iteratively reweighted least squares as
in [43], which essentially is a variant of gradient descent as introduced in Sec. 4.1.

We study joint upsampling on the Middlebury dataset (using the Art, Books, Dolls, Laundry,
Moebius and Reindeer depth maps), the NYU dataset [57], and the SUN dataset [58–60]. We
generated synthetic depth maps normalized in [0, 1] from their ground truth by Gaussian blurring
with standard deviation σblur = 4 followed by nearest neighbor downsampling with a factor of 8
and by adding Gaussian noise with standard deviation σnoise = 0.0005. Joint upsampling is assessed
quantitatively with the Root Mean Square Error (RMSE) between the ground truth depth map f̃
and a recovered depth map f . Additionally, we report the Bad Matching Error (BME) [61]

EBME =
1

N

∑
(|fi − f̃i| > δ) , (26)
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(a) Ground truth color image (b) Near-infrared image

Figure 13: Example color and near-infrared image from the ARRI dataset [47].
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Figure 14: Quantitative results of all competing methods on the ARRI dataset using the perception-
distortion plane to visualize BRISQUE and NIQE over RMSE and MS-SSIM. The red squares
indicate methods with near-infrared guidance and the black triangles indicate methods without
near-infrared guidance. All variants of QuaSI and AQuaSI use the multi-channel mode.

where N are the number of pixels in a depth map and δ denotes a scalar that can be set accordingly.
The SD filter with the AQuaSI prior according to Eq. 25 (SD filter, w/ AQuaSI) is compared

to TGVL2 upsampling [54], the mutual structure filter (MS) [53], the deep joint filter (DJF) [55],
and the residual-based deep joint filter (DJFR) [56]. We also conducted an ablation study using
Eq. 25 and evaluated different variants of the proposed joint upsampling by omitting individual
regularization terms (SD filter w/ Welsch and w/o AQuaSI, SD filter w/o Welsch and w/ AQuaSI)
and by replacing AQuaSI with its non-adaptive counterpart (SD filter w/ Welsch and w/ QuaSI).
The parameters of AQuaSI were set to p = 0.5, n = 92, σw = 0.1, and λ = 0.1 and the parameters
of the competing methods were chosen according to suggestions of the authors.

Table 2 shows the average RMSEs on the three datasets achieved by the different methods2.
Notice that the combination of the SD filter with the AQuaSI prior yields the lowest errors in all
benchmarks. In comparison to the baseline SD filter (w/ Welsch and w/o AQuaSI), SD w/ Welsch,
w/ AQuaSI reduces the RMSE by 10.5%, 13.3%, and 7.3% in the Middlebury, NYU, and SUN

2DJF and DJFR are not evaluated on the NYU dataset, since they used the NYU dataset for training.
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benchmark, respectively. Figure 10 shows the mean BME relative to the ground truth depth maps
for different δ values on the Middlebury data. The AQuaSI prior further improves the results of the
SD filter and outperforms all competing methods.

Figure 11 shows qualitative results of the competing upsampling approaches. The MS and DJFR
filters were sensitive to noise. In contrast, TGVL2 erroneously transfers textures from the color
image to the depth map. An example can be seen in Fig. 11e, where the layers of the books cause
artifacts in the depth map. The SD filter w/ Welsch and w/ AQuaSI achieves the best upsampling
performance, which is consistent with the quantitative results. The SD filter w/ Welsch and w/
QuaSI leads to a good noise reduction but causes to oversmoothing as shown in Fig. 12c. While the
SD filter w/o Welsch and w/ AQuaSI does not remove noise as effectively as SD filter w/ Welsch
and w/o AQuaSI, edge preservation is greatly improved. This observation underlines the reported
structure preservation property of the AQuaSI prior.

5.4 RGB/NIR Cross Field Image Restoration

Another popular application is color (RGB) and near-infrared (NIR) image restoration. The scene
is captured using a RGB and a NIR sensor. While NIR images in such setups are oftentimes flashed
and feature high signal-to-noise ratios, the RGB data can be noisy. Here, we aim at denoising RGB
images. AQuaSI is plugged into classical TV denoising [45]. That is, given a noisy RGB image g,
we recover its clean counterpart f according to

f̂ = argmin
f
L(f ,g) + µ (‖∇xf‖1 + ‖∇yf‖1)︸ ︷︷ ︸

TV prior

+ λ‖f −Qp,w(f)‖1︸ ︷︷ ︸
AQuaSI prior

,
(27)

where ∇xf and ∇yf denote the derivatives of f in x- and y-direction to define the TV prior with
regularization weight µ ≥ 0 and L(f ,g) = ‖f − g‖22 models the data fidelity. The optimization
of Eq. 27 is performed via ADMM (see Sec. 4.2). We apply AQuaSI with p = 0.5, n = 92, and
σw = 0.006 and the TV prior with µ = 0.05 and β = 7 for the corresponding auxiliary variable.
We compare the channel-wise approach of AQuaSI with λ = 13 and α = 1100 to the multi-channel
(MC) mode to simultaneously denoise three color channels with λ = 13 · 3, α = 1100 · 3.

5.4.1 With Near-Infrared Guidance

First, we study the case, where NIR images are used to restore clean RGB images using the static
guidance mode of our prior. The evaluation is performed on eleven registered ground truth RGB/NIR
image pairs taken from the publicly available ARRI dataset [47] as shown in Fig. 13. We simulate
noisy color images by adding speckle noise (variance σnoise = 0.2) to the respective ground truth
images. We compare AQuaSI against two state-of-the-art static guidance based methods, namely
guided filtering [42] and cross-field restoration via scale map [44]. In addition, we adopt regularization
by denoising (RED) [8] and zero-order reverse filtering (RF) [62]. Specifically, we equipped RED
with the weighted median filter [17] (RED with WMF) and the RF framework with the weighted
median filter (RF with WMF) as well as adaptive manifold filtering [63] (RF with AM).

For a quantitative comparison, the methods are plotted on a perception-distortion plane using
the evaluation framework by Blau and Michaeli [50]. The distortion is quantified by the RMSE and
multiscale structural similarity (MS-SSIM) [64]. The perceptual quality is quantified by the natural
image quality evaluator (NIQE) [65] and the blind/referenceless image spatial quality evaluator
(BRISQUE) [66]. These metrics are arranged in the perception-distortion plane in a way that better
methods are closer to the bottom left of the plane. For BRISQUE and NIQE, low values imply high
image quality in terms of observed naturalness. The closer MS-SSIM is to the value 1 the higher is
the structural similarity between the restored image and the ground truth.

18



Figure 14 shows the averaged perception-distortion planes. The distortion measure MS-SSIM is
used in the first two plots, where AQuaSI performs best. For the associated perceptual metrics NIQE
and BRISQUE, the best performer is in one case Scale Map and in the other case AQuaSI. The third
and fourth plots evaluate RMSE as a distortion measure and draw a similar picture. Again, AQuaSI
performs best w. r. t. RMSE, again only challenged by scale map for the perceptual metric NIQE.
Under BRISQUE, AQuaSI performs best. Overall, AQuaSI shows a highly competitive performance,
and is in all cases closely located to the bottom left corner.

Figure 15 depicts qualitative results for several methods. The guided filter slightly oversmooths
the image. For example, the contours on the bike are barley visible. Conversely, scale map produces
a crisp output at the expense of noise and color artifacts. Especially homogeneous areas, such as the
checkerboard fields, remain noisy. RED with WMF removes noisy color pixels but cause blob-like
artifacts. RF with AM produces color block artifacts and blurs small structures. In contrast, RF
with WMF causes grid-like artifacts. Overall, AQuaSI with static guidance yields high perceptual
image quality conforming the perception-distortion tradeoff analysis.

5.4.2 Without Near-Infrared Guidance

We also examine the more challenging problem of restoring a clean RGB image without guidance
by NIR data. For that use case, we compare AQuaSI in its dynamic guidance mode to differ-
ent well known stand-alone image denoising methods, namely weighted nuclear norm minimization
(WNN) [26], color block-matching and 3D filtering (CBM3D) [51], and feed-forward denoising con-
volutional neural networks (DnCNN) [13]. We also adopted the RF approach in combination with
BM3D [52] (RF with BM3D) as well as RED [8] with non-local means (NLM) [67], BM3D [52],
DnCNN [13], and trainable nonlinear reaction-diffusion (TNRD) [68].

In Fig. 14 the quantitative results are shown. In terms of distortion, AQuaSI with dynamic
guidance and CBM3D yield similar results. In terms of perceptual quality, AQuaSI with dynamic
guidance has the best BRISQUE value whereas CBM3D performs better w. r. t. NIQE.

Figure 16 shows the qualitative results of all competing methods that do not use additional guid-
ance data for denoising. WNN produces a sharp output at the expense of colored noise, especially
in homogeneous areas. Compared to WNN, CBM3D suppresses more noise, but produces small
streaking artifacts in homogeneous areas. While CBM3D does contain more residual noise than
DnCNN, small details such as the spokes of the wheel are preserved. QuaSI - MC provides compet-
itive denoising performance w. r. t. distortion, but produces slightly oversmoothed results. AQuaSI
with dynamic guidance has a similar performance to QuaSI, but avoids color artifacts. To enable a
fair comparison, AQuaSI’s smoothing parameter σw was optimized for static guidance mode. Hence,
the performance of the dynamic mode can be further improved by tuning σw either towards low
distortions or good perceptual image quality in the perception-distortion plane.

5.4.3 Comparison of Different AQuaSI Variants

In Table 3, the average RMSE and MS-SSIM values of all four variants of AQuaSI on the ARRI
dataset are shown. In terms of distortion measures, the multi-channel approach slightly outperforms
channel-wise processings in both guidance modes. We explain this behavior by the avoidance of color
artifacts under a simultaneous processing of the RGB channels. As shown in Sec. 4.3, another major
advantage of the multi-channel over the channel-wise approach is the lower computation time. Thus,
the multi-channel approach is preferable to simple channel-wise processing. Moreover, AQuaSI with
dynamic guidance is outperformed by the static guidance mode. Notice that the former achieves a
better recovery of small structures, as shown in Fig. 15 (g). This reveals the benefit of exploiting
NIR data for regularizing RGB denoising.
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(a) Near-infrared image

(b) Guided filter [42]

(c) Scale map [44]

(d) RED [8] with WMF [17]

(e) RF [62] with AM [63]

(f) RF [62] with WMF [17]

(g) AQuaSI - MC (static
guidance)

Figure 15: RGB/NIR image restoration on the ARRI dataset [47]. All competing methods enable
guided filtering to denoise the degraded color image using the near-infrared image for guidance.
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(a) Ground truth

(b) Noisy RGB image

(c) WNN [26]

(d) CBM3D [51]

(e) DnCNN [13]

(f) QuaSI - MC [15]

(g) AQuaSI - MC (dynamic
guidance)

Figure 16: RGB/NIR image restoration on the ARRI dataset [47]. All competing methods perform
denoising on the degraded color image only.
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Table 3: Averaged RMSE and MS-SSIM for RGB/NIR image restoration using all AQuaSI variants
on the ARRI dataset.

Method RMSE MS-SSIM

AQuaSI - channel-wise, dynamic guid-
ance

14.89 0.84

AQuaSI - channel-wise, static guidance 6.62 0.95
AQuaSI - multi-channel, dynamic guid-
ance

7.26 0.93

AQuaSI - multi-channel, static guid-
ance

5.99 0.95

6 Conclusions

We propose AQuaSI, a novel prior for solving inverse problems. The key assumption of this prior is
that good natural images are fixed points under a quantile filter with a spatially adaptive weighting
scheme. The flexibility of AQuaSI can be attributed to the optional use of a guidance image, which
can be either used in the direction of joint filtering based on a static guidance, or in dynamic guidance,
in which case it is similar in spirit to filtering. We present AQuaSI within a full mathematical
framework to seamlessly integrate it into popular optimization schemes such as gradient descent and
ADMM.

In our experimental results, we demonstrate the strength of AQuaSI for the application of
RGB/depth map upsampling, RGB/NIR image restoration, and image deblurring. Our prior is
universally applicable and compares favorably against the state-of-the-art in the investigated ap-
plications. Its importance over related RED or PnP approaches is especially evident for inverse
problems with unknown or non-Gaussian noise, e. g., RGB/NIR restoration. In analyzing perception-
distortion planes, we found that AQuaSI shows decent tradeoffs between low signal distortions and
high perceptional quality. In the simpler cases of noise-free problems or degradations by moderate
levels of Gaussian noise, RED algorithms perform equally well as shown for non-blind deblurring.
We also found that for certain problems like RGB/depth map upsampling, task-specific priors can
outperform the solely use of AQuaSI due to their superior denoising capabilities. However, thanks
to its structure preservation, state-of-the-art performance is achieved when combining AQuaSI with
task-specific regularization.

Due to the ever-increasing number of learning-based image restoration techniques, we believe that
transferring our universal prior to the field of deep learning, e. g., as operator in neural networks, is
an interesting area for future research and can help to boost the performance of these methods.
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