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ABSTRACT

Image reconstruction is particularly difficult when the type of im-
age degradations are unknown. This may be the case if the acqui-
sition device is unknown or the images stem from an uncontrolled
environment like the internet. Yet, it may be important to recon-
struct a specific piece of information from the image, such as digits
from signs or vehicle license plates. Existing works incorporate such
prior information with a sequential super-resolution and classifica-
tion pipeline. However, this approach is prone to error propagation.

In this work, we propose a new approach of connecting classifi-
cation and super-resolution in parallel within a multi-task network.
We show that this architecture is able to preserve structures and to re-
move noisy pixels although the network itself has never been trained
on noisy data. We also show that this design allows to transparently
trade classification and super-resolution quality. On upsampling by
factor 4, we outperform sequential approaches in terms of SSIM by
10% and improve classification by 69%.

Index Terms— Deep learning; Multi-task learning; Super-
resolution; Classification

1. INTRODUCTION

Recent advances in deep learning have led to tremendous perfor-
mance gains of single-image super-resolution. This can partly be
attributed to deep convolutional networks [1, 2, 3]. Generative Ad-
versarial Networks further improved the perceptual quality of the re-
constructed images [4, 5, 6]. Attention models for super-resolution
have shown a great advantage to focus on relevant image informa-
tion. Here, first-order [7] and second-order [8] attention networks
are able to capture details and to bypass irrelevant low-frequency in-
formation. Deep neural networks can fully exploit their potential on
large and comprehensive training datasets. However, deviations in
the characteristics of the training data and test images in the wild can
cause considerable performance degradations [9]. More specifically,
unseen image degradations like different noise levels or distributions
are challenging and impede the performance of deep networks [10].

One way to improve network generalization is multi-task learn-
ing [11, 12]. Here, simultaneously learning multiple tasks serves as
an inductive bias for the model [13]. In particular, joining super-
resolution and classification in one model has shown great bene-
fits. Existing work sequentially connects both tasks. First, a high-
resolution image is reconstructed from low-resolution input. Second,
an object of interest is classified from the reconstructed image. This
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Fig. 1: Schematic illustrations of the proposed super-resolution with
a structure-aware reconstruction (SR2) network. We arrange super-
resolution and classification in parallel and connect the tasks with
shared layers.

approach improved the pixel-wise classification of hyperspectral im-
ages on only a limited amount of labeled training data [14] and was
also successfully applied to pedestrian detection [15]. A similar de-
sign improved scene text recognition, with an end-to-end network of
sequential super-resolution and classification [16].

However, there is one notable disadvantage of sequential stack-
ing of super-resolution and classification, namely error propagation.
This becomes increasingly severe if additional image degradations
negatively affect the super-resolution output, which forces the clas-
sifier to operate on a distorted image.

To address this issue, we propose a parallel super-resolution
and classification architecture, where both tasks are connected with
shared layers, see Fig. 1. As a result, both tasks are performed on the
same input. This is a somewhat looser coupling of both tasks. If one
task is impaired by distortions, the other task may still succeed. Ad-
ditionally, both the super-resolved image and the classification result
can be useful in several applications. For example, in police inves-
tigations it can be important to reconstruct registration numbers or
letters from images from uncontrolled, poor-quality sources. Classi-
fication can help to reduce the list of suspects, and the super-resolved
image is used for validating and defending this assessment. Another
application example is face recognition of severely degraded images.

The contributions of this paper are two-fold:

1. We propose a new end-to-end super-resolution with structure-
aware reconstruction (SR2) architecture to connect super-
resolution and classification in parallel.

2. We demonstrate the robustness of this approach on two well-
known digit datasets. While trained on noise-free data, we
test our method on unseen image degradation and report bet-
ter generalization compared to sequential approaches.

In this work, we focus on digits but there are no inherent restrictions
towards the type of object to be super-resolved.

The paper is organized as follows: Section 2 presents the pro-
posed concept and network architectures. Section 3 reports the ex-
periments and discusses the results. Section 4 concludes the paper.
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Fig. 2: Example realizations of the proposed architecture. Top: Parallel WDSR and ResNet networks perform super-resolution and classi-
fication, respectively. Bottom: Parallel FSRCNN and ResNet networks perform these tasks. In both designs, the first layers are shared to
mutually benefit from super-resolution and classification. The annotations in the convolutional layers indicate the size and number of filters.
The stride is always 1 except for the identity mapping with downsampling (↓ 2). The black dots in WDSR denote repeated identity mappings.

2. PROPOSED METHOD

The focus of this work is on multi-task learning for image recon-
struction, specifically the combination of super-resolution and clas-
sification. We aim at recovering a high-resolution (HR) image X
from a low-resolution (LR) image Y. Additionally, the object in
Y is classified. The classification task provides information about
the object and improves the performance of the super-resolution. In
the proposed approach, both tasks are arranged in parallel. They are
connected by shared layers and jointly optimized. The two specific
architectures shown in Fig. 2 are example realizations. The architec-
ture on top is denoted as SR2

WDSR. It connects WDSR [17] for super-
resolution and ResNet-18 [18] for classification. The architecture on
the bottom is denoted as SR2

FSRCNN. It connects FSRCNN [19] for
super-resolution and ResNet-18 for classification.
Super-Resolution. WDSR consists of two branches. One is a con-
catenation of residual building blocks followed by a deconvolution
operation. The other branch only performs deconvolution. We im-
plement a slightly modified version of the architecture compared to
the original paper. We use the identity mappings, residual building
blocks with changed order of operations, proposed by He et al. [20].
Additionally, we replace the weight normalization by batch normal-
ization. We use 16 identity mappings for WDSR in total, including
the shared layers. FSRCNN is a concatenation of convolution lay-
ers, comprising feature extraction, shrinking, mapping, expanding,
and deconvolution.
Classification. ResNet is a common classification architecture.
There are several ResNet variants, from which we use ResNet-18.
However, any other classification network could in principle also be
used. We remove the last two identity mappings from ResNet-18
and perform less downsampling of the feature maps due to the small
input size of only ≤ 16 × 16 pixels in our datasets. The classifica-
tion output is an n-element vector, where n denotes the number of
classes.
Joint Super-Resolution and Classification. As shown in previous
works, the joint optimization of super-resolution and classification is
of advantage [15]. In contrast to previous works, we propose to use
shared layers to which both tasks contribute, followed by a split into
two branches. The shared layer is taken from the super-resolution

Fig. 3: Example images from MNIST (left) and SVHN (right).

network. For WDSR, it is the first identity mapping. For FSRCNN,
it is the first convolution layer. Experiments regarding more shared
layers are reported in Sec. 3.3.

After the split, one branch performs super-resolution, and the
second branch performs classification. Thus, the gradient of the
classification network contributes to the weight update of the first
layer(s) of the super-resolution network. In the end, both loss func-
tions are combined into a total loss Ltotal:

Ltotal = LSR + λLCl , (1)

where λ denotes the weight of the classification loss LCl and LSR

denotes the super-resolution loss. We use the cross-entropy for clas-
sification and the mean-squared error for super-resolution.

3. EXPERIMENTAL PROTOCOL AND RESULTS

Datasets. The experiments are performed on the MNIST [21] and
SVHN [22] datasets. Both datasets contain digits in various repre-
sentations and of varying difficulty. Figure 3 shows example data.

MNIST contains white handwritten digits on a black back-
ground. It consists of 60 000 training images and 10 000 test images
with a size of 28× 28 pixels.

SVHN contains street view house numbers. We use the MNIST-
like color images, consisting of 73 257 training images and 26 032
test images with a size of 32 × 32 pixels. We also use 126 743 im-
ages of the additional training data in the dataset. SVHN is more
challenging than MNIST. MNIST shows only a single digit per im-
age. SVHN images may exhibit additional rotation and distractors
next to the digit. Backgrounds in MNIST are black. SVHN back-
grounds have different colors, may vary within the same image, and
the overall contrast between digit and background may be consider-
ably lower than in MNIST.



2x 4x

SRMD [23] 0.917 0.803

FSRCNN [19] 0.944 0.796

WDSR [17] 0.950 0.768

SR2
FSRCNN 0.942 0.828

SR2
WDSR 0.959 0.801

Table 1: The average SSIM on the MNIST test data. Gaussian noise
with σ2 = 10−4 is added to the LR images.
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Fig. 4: Comparison of sequential (seq.) connection of FSRCNN and
ResNet-18 and SR2

FSRCNN on the MNIST test data. We report the
average accuracy of the predicted digits displayed in the LR images.
Gaussian noise with variance σ2 is added to the LR images.

Training. The training procedures are similar for both datasets and
performed in two stages, analogously to previous work [15]. First,
the super-resolution network is trained using the ADAM optimizer
with a learning rate of 10−3. All network weights are initialized
using the method proposed by He et al. [24]. In a second step, the
classification branch is attached to the network. The weights from
the previous step are used to initialize the super-resolution branch
and the shared layer(s). In the second training step, we use a learning
rate of 10−5 and jointly optimize both tasks. All weights are subject
to L2 regularization with regularization weight 0.01.

The training data is split into training (80%) and validation
(20%) to tune the hyperparameter of the networks. Each image is
prepared as follows: The low-resolution network input Y is ob-
tained via Gaussian blur and subsequent downsampling by factors 2
or 4, respectively. To prevent overfitting, we additionally augment
the training data before blurring and downsampling using horizontal
and vertical image shifts by up to ±3 pixels and rotation by up to
10◦.
Evaluation Protocol. Tests are is performed on noisy data to inves-
tigate the robustness of the proposed method. To this end, Gaussian
noise with varying variance σ2 is added to the low-resolution test
images. Since training of deep neural networks is a non-convex op-
timization problem, different initialization yields a variation in per-
formance. To account for this, we train the network three times and
report the mean Structural Similarity Index (SSIM) [25] and the ac-
curacy of the digit classification over those runs.

3.1. Comparison of Architectures

The proposed method is compared to the original WDSR [17] and
FSRCNN [19] methods, and to the pretrained super-resolution net-
work for multiple degradations (SRMD) [23]. SRMD was trained
on data with varying blur, downsampling, and noise.

(a) Ground truth (b) Bicubic (c) Sequential (d) SR2
FSRCNN

Fig. 5: Comparison of sequential connection of FSRCNN and
ResNet-18 and SR2

FSRCNN. Gaussian noise with σ2 = 10−3 is added
to the MNIST test image and perform 4x magnification.

We first report results for super-resolution by comparing the av-
erage structural similarity measure (SSIM) on MNIST in Tab. 1. For
SRMD we report the average SSIM over one test run using the pro-
vided pretrained weights. All other results are averaged over three
training and test runs. The first and second column report results on
magnification factors 2 and 4. The test images for this experiment
are distorted with additive Gaussian noise with σ2 = 10−4. Only
SRMD has seen noisy data during training, which makes this task
difficult for the other networks. For a magnification of 2, SR2

WDSR
outperforms WDSR, FSRCNN, and SRMD. However, for the more
challenging case of magnification of 4, both proposed architectures
perform substantially better than FSRCNN and WDSR. SR2

FSRCNN
outperforms SRMD, although not trained on any noisy data.

In a second experiment, we show that our parallel architecture
SR2

FSRCNN outperforms the sequential architecture. Similar to prior
work [15] we construct the sequential architecture by concatenating
FSRCNN and ResNet-18. Thus, the digit is classified based on the
high-resolution reconstructed image. The weighting of the classifi-
cation is chosen for both approaches individually and based on the
validation data. For sequential connection we chose λ = 0.11 and
for SR2

FSRCNN we chose λ = 9. To show the disadvantage of sequen-
tial connection, we evaluate the accuracy of the predicted digits. The
accuracy heavily drops with increasing noise levels and for magni-
fication factor 4, see Fig. 4. For magnification factor 2, the results
are comparable for low noise but the gap increases for strong noise.
Thus, the proposed method reliably classifies the input image even
under strong distortion. This is shown in Fig. 5 for magnification
factor 4: (a) shows the ground truth and (b) the input image. While
the sequential architecture links the two sides of the 0, the proposed
SR2

FSRCNN can suppress the noisy pixel, see (c) and (d).
Fig. 6 illustrates the SSIM values of FSRCNN, sequential (seq.)

connection of FSRCNN and ResNet-18 as well as the proposed
SR2

FSRCNN. The gap between the proposed approach and the com-
peting methods increases with increasing noise level. Also, for
magnification factor 4, the performance of the proposed approach is
substantially better than the sequential connection.

3.2. Influence of the Classification-driven Regularization

Interestingly, the classification branch actively supports the super-
resolution branch. This can be observed in the classification-driven
suppression of noisy pixels by constraining the shape of the digits.
Thus, the super-resolution branch benefits from slight denoising.

This influence of the classification on the super-resolution is
controlled by λ. Increasing λ leads to better structure preservation
in the super-resolution.

This is shown in Fig. 7 for magnification factor 4: (a) shows the
ground truth, and (b)-(c) show baselines for bicubic upsampling and
FSRCNN. Fig. 7 (d)-(e) show the results of SR2

FSRCNN for increasing
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Fig. 6: The average SSIM value of FSRCNN compared to the
sequential (seq.) connection of FSRCNN and ResNet-18 and
SR2

FSRCNN on the MNIST test data. Gaussian noise with variance
σ2 is added to the LR images.

(a) Ground
truth

(b) Bicubic (c) FSRCNN (d) SR2
FSRCNN

(λ = 0.1)
(e) SR2

FSRCNN
(λ = 9)

Fig. 7: Qualitative results of a MNIST test image for 4x magnifica-
tion and Gaussian noise with σ2 = 0.00032. We compare SR2

FSRCNN
with increasing weight λ and FSRCNN.

(a) Ground
truth

(b) Bicubic (c) WDSR (d) SR2
WDSR

(1 sl.)
(e) SR2

WDSR
(4 sl.)

Fig. 8: Comparison of SR2
WDSR with varying number of shared layers

(sl.). Gaussian noise with σ2 = 0.0001 is added to the input image
and super-resolution with 2x magnification is performed.

values of λ. It can be observed that the noise pixel in the center of the
image is suppressed with increasing λ. At the same time, the noise
pixel at the top arc of the digit is not removed. The network treats
these two pixels differently since the first pixel might potentially lead
to confusion with another digit in the classification, while the second
pixel does not.

3.3. Influence of the Number of Shared Layers

To adjust the denoising performance of SR2, the user can set the
number of shared layers. With an increasing number of shared lay-
ers, the network provides higher-fidelity reconstructions for low-
quality input images, but slightly blurrier reconstructions for higher-
quality input images. To show this property, we use the repetitive
residual building blocks in the WDSR network. In this experiment,
the overall number of residual units for super-resolution is set to
16, including the shared layers. The experiments are performed
on the SVHN dataset to show that the proposed approach is able
to reconstruct more challenging images. In Fig. 8, qualitative re-
sults for magnification factor 2 and noise level σ2 = 0.0001 are
shown. Fig. 8(a) shows the ground truth and (b)-(c) show baselines

(a) Ground truth (b) Bicubic (c) WDSR (d) SR2
WDSR

Fig. 9: Comparison of SR2
WDSR with 4 shared layers and WDSR.

Gaussian noise with σ2 = 0.001 is applied to the SVHN test data
and super-resolution with 4x magnification is performed.
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Fig. 10: Performance comparison of SR2
WDSR with 1 and 4 shared

layers (sl.) on the SVHN dataset. Gaussian noise with variance σ2

is added to the LR images.

for bicubic upsampling and WDSR. The results for SR2
WDSR with 1

and 4 shared layers are shown in (d)-(e). With an increasing number
of shared layers, the proposed architecture is able to substantially
reduce the background noise. However, a lower number of shared
layers make the digit 3 slightly sharper. A more challenging case is
shown in Fig. 9. The input image is severely distorted and WDSR is
not able to remove the background noise. The proposed approach,
however, reconstructs relevant parts of the digit 4 and reduces the
background noise. Fig. 10 illustrates the SSIM values of WDSR and
SR2

WDSR with 1 and 4 shared layers. Using 4 shared layers, the per-
formance of the network is not affected by lower noise levels and
barely decreases. With increasing noise level, SR2

WDSR with 4 shared
layers outperforms WDSR and SR2

WDSR with 1 shared layer.

4. CONCLUSION

This paper proposes super-resolution with structure-aware recon-
struction (SR2) via parallel branches of super-resolution and clas-
sification in a multi-task network. Both tasks share the first layers
of the network and then split into branches. This enables the high-
fidelity reconstruction of images distorted by unseen degradations.
The object information, given by the classification, constrains the
shape of the reconstructed object. Experiments on the reconstruc-
tion of digits confirm these properties. The number of shared layers
is a design choice and allows to adjust the denoising performance
of SR2. A lower number produces slightly sharper reconstructions,
while a higher number improves the noise reduction of background
pixels. Future work aims at reconstructing other object types, such
as faces or text, to further expand the proposed approach.
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Andreas Maier, and Christian Riess, “Toward bridging the
simulated-to-real gap: Benchmarking super-resolution on real
data,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2019.

[10] F. Schirrmacher, C. Riess, and T. Köhler, “Adaptive quan-
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