The Forchheim Image Database for Camera Identification in the Wild

Benjamin Hadwiger, Christian Riess

{benjamin.hadwiger, christian.riess}@fau.de

Multimedia Security Group, School of Engineering Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

Knowledge on source camera can be important for criminal investigation

Camera can be accurately identified with existing methods

What about images shared online?

Hadwiger, Riess: The Forchheim Image Database for Camera Identification in the Wild

January 11, 2021

Most existing methods fail on strongly compressed images

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

^[1] Kirchner, Gloe: "Forensic Camera Model Identification" (Handbook Dig. Forensics, 2015)

^[2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

Dresden Image Database (DIDB) [3]:

≈ 17,000 images of83 scenes recorded by73 devices1 quality (orig.)

- [1] Kirchner, Gloe: "Forensic Camera Model Identification" (Handbook Dig. Forensics, 2015)
- [2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)
- [3] Gloe, Böhme: "The Dresden Image Database for Benchmarking Digital Image Forensics (J. Dig. Forensic Pract., 2010)

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

Robustness considerations important to assess real-world applicability

Dresden Image Database (DIDB) [3]:

≈ 17,000 images of83 scenes recorded by73 devices1 quality (orig.)

^[1] Kirchner, Gloe: "Forensic Camera Model Identification" (Handbook Dig. Forensics, 2015)

^[2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)

^[3] Gloe, Böhme: "The Dresden Image Database for Benchmarking Digital Image Forensics (J. Dig. Forensic Pract., 2010)

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

Dresden Image Database (DIDB) [3]:

17,000 images of83 scenes recorded by73 devices1 quality (orig.)

Robustness considerations important to assess real-world applicability

VISION Database [4]:

 ≈ 30,000 natural images of arbitrary scenes recorded by 35 devices in 4 qualities (orig., FB x2, WA)

^[1] Kirchner, Gloe: "Forensic Camera Model Identification" (Handbook Dig. Forensics, 2015)

^[2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)

^[3] Gloe, Böhme: "The Dresden Image Database for Benchmarking Digital Image Forensics (J. Dig. Forensic Pract., 2010)

^[4] Shullani et al.: "VISION: A Video and Image Dataset for Source Identification" (J. Inf. Sec. 2017)

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

Dresden Image Database (DIDB) [3]:

17,000 images of83 scenes recorded by73 devices1 quality (orig.)

DIDB

supports splitting by scenes does not support benchmarking robustness

Robustness considerations important to assess real-world applicability

VISION Database [4]:

 ≈ 30,000 natural images of arbitrary scenes recorded by 35 devices in 4 qualities (orig., FB x2, WA)

VISION

does not support splitting by scenes supports benchmarking robustness

Scene split important for rigorous camera identification evaluation [1,2], (our paper: Sec. 5.4)

Robustness considerations important to assess real-world applicability

supports splitting by scenes

Forchheim Image Database (FODB)

supports benchmarking robustness

Database

The Forchheim Image Database

143 diverse scenes

Publicly available at: https://faui1-files.cs.fau.de/public/mmsec/datasets/fodb/

The Forchheim Image Database

143 diverse scenes

27 smartphones of 25 models, 9 brands

Publicly available at: https://faui1-files.cs.fau.de/public/mmsec/datasets/fodb/

The Forchheim Image Database (>23,000 Images)

143 diverse scenes

27 smartphones of 25 models, 9 brands

6 qualities (orig. + 5 social networks)

Publicly available at: https://faui1-files.cs.fau.de/public/mmsec/datasets/fodb/

Experiments

We train the recent EfficientNet-B5 (EN-B5) [5], a "general-purpose" CV CNN for camera ID

[5] Tan, Le: "Rethinking Model Scaling for CNNs" (ICML 2019)

We train the recent EfficientNet-B5 (EN-B5) [5], a "general-purpose" CV CNN for camera ID

Forensic reference methods

"BondiNet" (Bondi et al. [2])

"MISLnet" (Mayer, Stamm [6])

"RemNet" (Rafi et al. [7])

- [2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)
- [5] Tan, Le: "Rethinking Model Scaling for CNNs" (ICML 2019)
- [6] Mayer, Stamm: "Forensic Similarity for Digital Images" (TIFS 2020)
- [7] Rafi et al.: "RemNet: Remnant CNNs for Camera Model Identification" (Neural. Comput. Appl. 2020)

We train the recent EfficientNet-B5 (EN-B5) [5], a "general-purpose" CV CNN for camera ID

Forensic reference methods

"BondiNet" (Bondi et al. [2])

"MISLnet" (Mayer, Stamm [6])

"RemNet" (Rafi et al. [7])

Training / Evaluation Protocol

Data

Scene split (train / val / test): 97 / 18 / 28

25 devices

→ 2425 / 450 / 700 (train / val / test) images

- [2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)
- [5] Tan, Le: "Rethinking Model Scaling for CNNs" (ICML 2019)
- [6] Mayer, Stamm: "Forensic Similarity for Digital Images" (TIFS 2020)
- [7] Rafi et al.: "RemNet: Remnant CNNs for Camera Model Identification" (Neural. Comput. Appl. 2020)

We train the recent EfficientNet-B5 (EN-B5) [5], a "general-purpose" CV CNN for camera ID

Forensic reference methods

"BondiNet" (Bondi et al. [2])

"MISLnet" (Mayer, Stamm [6])

"RemNet" (Rafi et al. [7])

Training / Evaluation Protocol

Data

Scene split (train / val / test): 97 / 18 / 28

25 devices

→ 2425 / 450 / 700 (train / val / test) images

Patch size

64x64 (EN-B5, BondiNet, RemNet)

256x256 (MISLnet)

- [2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)
- [5] Tan, Le: "Rethinking Model Scaling for CNNs" (ICML 2019)
- [6] Mayer, Stamm: "Forensic Similarity for Digital Images" (TIFS 2020)
- [7] Rafi et al.: "RemNet: Remnant CNNs for Camera Model Identification" (Neural. Comput. Appl. 2020)

We train the recent EfficientNet-B5 (EN-B5) [5], a "general-purpose" CV CNN for camera ID

Forensic reference methods

"BondiNet" (Bondi et al. [2])

"MISLnet" (Mayer, Stamm [6])

"RemNet" (Rafi et al. [7])

Results on "clean" image (accuracy [%])

CNN	64x64	256x256	Image		
BondiNet	71.4	84.9	93.1		
MISLnet		93.5	96.8		
RemNet	93.8	96.6	99.1		
EN-B5	96.3	98.1	99.1		

^[2] Bondi et al.: "First Steps Toward Camera Model Identification With CNNs (Sig. Proc. Letters, 2017)

^[5] Tan, Le: "Rethinking Model Scaling for CNNs" (ICML 2019)

^[6] Mayer, Stamm: "Forensic Similarity for Digital Images" (TIFS 2020)

^[7] Rafi et al.: "RemNet: Remnant CNNs for Camera Model Identification" (Neural. Comput. Appl. 2020)

Evaluate for double JPEG compression and rescaling during test (image-level)

Evaluate for double JPEG compression and rescaling during test (image-level)

Hadwiger, Riess: The Forchheim Image Database for Camera Identification in the Wild

January 11, 2021

Evaluate for double JPEG compression and rescaling during test (image-level)

Can we do better?

Hadwiger, Riess: The Forchheim Image Database for Camera Identification in the Wild

January 11, 2021

```
Training augmentation with strong degradations ("deg.")

Rescaling: f \in [0.25, ..., 4.0]

JPEG recompression: QF \in [100, ..., 10]

OpenCV implementations
```


RemNet without deg.

<u>Hadwiger</u>, Riess: The Forchheim Image Database for Camera Identification in the Wild

January 11, 2021

Evaluate on test images with unknown real-world post-processing (black box)

Social media versions of test images in FODB

→ Facebook (FB), Instagram (IG), Telegram (TG), Twitter (TW), Whatsapp (WA)

Evaluate on test images with unknown real-world post-processing (black box)

Social media versions of test images in FODB

→ Facebook (FB), Instagram (IG), Telegram (TG), Twitter (TW), Whatsapp (WA)

Comparison of 3 variants:

- (1) Baseline: EfficientNet trained on orig. images without any degradation
- (2) EfficientNet trained on orig. images with strong degradation (OpenCV impl.)
- (3) Oracle: EfficientNet trained social media versions of training split

- (1) Baseline: EfficientNet trained on orig. images without any degradation
- (2) EfficientNet trained on orig. images with strong degradation (OpenCV impl.)
- (3) Oracle: EfficientNet trained on social media versions of training split

Training			Test Dataset					
	Dataset	Degr.	orig	FB	IG	TG	TW	WA
(1)	orig	no	99.1	4.6	5.6	5.3	9.8	6.8

- (1) Baseline: EfficientNet trained on orig. images without any degradation
- (2) EfficientNet trained on orig. images with strong degradation (OpenCV impl.)
- (3) Oracle: EfficientNet trained on social media versions of training split

Training			Test Dataset						
	Dataset	Degr.	orig	FB	IG	TG	TW	WA	
(1)	orig	no	99.1	4.6	5.6	5.3	9.8	6.8	
(2)	orig	yes	98.0	51.1	67.5	73.1	93.2	72.9	

significant improvement

- (1) Baseline: EfficientNet trained on orig. images without any degradation
- (2) EfficientNet trained on orig. images with strong degradation (OpenCV impl.)
- (3) Oracle: EfficientNet trained on social media versions of training split

Training			Test Dataset						
	Dataset	Degr.	orig	FB	IG	TG	TW	WA	
(1)	orig	no	99.1	4.6	5.6	5.3	9.8	6.8	
(2)	orig	yes	98.0	51.1	67.5	73.1	93.2	72.9	
(3)	post-pr.	no	-	71.4	84.0	86.2	97.7	90.4	

- (1) Baseline: EfficientNet trained on orig. images without any degradation
- (2) EfficientNet trained on orig. images with strong degradation (OpenCV impl.)
- (3) Oracle: EfficientNet trained on social media versions of training split

Training			Test Dataset						
	Dataset	Degr.	orig	FB	IG	TG	TW	WA	
(1)	orig	no	99.1	4.6	5.6	5.3	9.8	6.8	
(2)	orig	yes	98.0	51.1	67.5	73.1	93.2	72.9	
(3)	post-pr.	no	-	71.4	84.0	86.2	97.7	90.4	

We proposed FODB, a large-scale image forensics benchmark to jointly align training / test splits with scenes evaluate on real-world post-processing

We proposed FODB, a large-scale image forensics benchmark to jointly align training / test splits with scenes evaluate on real-world post-processing

We showed that artificial degradation can generalize to unknown post-processing FODB enables determining an upper bound on blind augmentation camera ID

We proposed FODB, a large-scale image forensics benchmark to jointly align training / test splits with scenes evaluate on real-world post-processing

We showed that artificial degradation can generalize to unknown post-processing FODB enables determining an upper bound on blind augmentation camera ID

FODB can also be used to evaluate social network provenance can be used to create a multi-image sharing dataset with aligned scenes

We proposed FODB, a large-scale image forensics benchmark to jointly align training / test splits with scenes evaluate on real-world post-processing

We showed that artificial degradation can generalize to unknown post-processing FODB enables determining an upper bound on blind augmentation camera ID

FODB can also be used to evaluate social network provenance can be used to create a multi-image sharing dataset with aligned scenes

Blind augmentation can also improve CNN-based forgery detection

Thank you!