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Abstract—Identifying the model of a camera that has captured
an image can be an important task in criminal investigations.
Many methods assume that the image under analysis originates
from a given set of known camera models. In practice, however,
a photo can come from an unknown camera model, or its
appearance could have been altered by unknown post-processing.
In such a case, forensic detectors are prone to fail silently.

One way to mitigate silent failures is to use a rejection
mechanism for unknown examples. In this work, we propose
Gaussian processes (GPs), which intrinsically provide such a
rejection mechanism. This makes GPs a potentially powerful tool
in multimedia forensics, where forensic analysts regularly work
on images from unknown origins. We demonstrate that GPs scale
well to the task of camera model identification. Probabilistic pre-
dictions from a GP classifier achieve high classification accuracy
for known camera models while providing reliable uncertainty
estimates. The built-in uncertainty estimates effectively tackle
open-set camera model identification, outperforming two state-
of-the-art methods.

Index Terms—camera model identification, Gaussian processes,
open-set classification

I. INTRODUCTION

L INKING a photo to a particular camera device or model
is an important task in criminal investigations. Previous

work has shown that camera devices leave characteristic traces
during image acquisition. Some of these traces such as PRNU
are specific to the source device [16], while others are shared
among devices of the same make and model. Source device
identification requires access to images from the specific
candidate device, which can be expensive to obtain or may
not be available at all. As a complementary technique, camera
model identification only needs images from another instance
of the same camera model and facilitates narrowing down the
set of candidate devices [15].

Previous work on camera model identification can be di-
vided into model-based and learning-based approaches. Some
model-based approaches aim at characterizing a particular
component in the imaging pipeline [15], while others derive
a fingerprint from DCT [23] or noise statistics [24]. In both
cases, the camera model is identified by hypothesis testing.

Conversely, learning-based methods derive model-specific
traces from general-purpose feature descriptors, which are
designed to capture complex interactions between the compo-
nents of the camera processing pipeline. Early work devised
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global feature descriptors based on color formation, image
quality metrics, wavelet features, and binary similarity mea-
sures [4, 11, 14, 26]. More recent work has focused on local
interactions between neighboring pixels. One of these feature
descriptors is spatial rich models [7]. Marra et al. evaluated
different variants of the spatial rich models and showed
that SPAM features outperformed previously proposed feature
descriptors on the task of camera model identification [18].
Furthermore, SPAM features have also been used for forgery
detection and localization in images [5, 6] and videos [20].

Many studies have shown that feature-based camera model
identification works in a closed-set scenario. However, only
few studies consider the practically relevant open-set sce-
nario, where an investigator may work with an image from
an unknown camera model. Additionally, machine learning
classifiers are sensitive to post-processing that is not covered
by the training data [17]. In both cases, false accusations can
be prevented with the ability to recognize that an image does
not belong to any of the known cameras, or that it differs from
the training data.

For the open-set scenario, related work builds on classifiers
that can reject images from unknown cameras. Gloe trained
a one-class SVM for each camera model, but reported only
moderate performance [9]. Wang et al. combined a set of
one-class SVMs with a multi-class SVM [27]. Costa et al.
moved the decision boundary of an SVM towards the positive
class to avoid false positive camera device identifications [21].
Bayar and Stamm partitioned the known camera models into
knowns and known unknowns and trained a binary classifier
to recognize unknown camera models [1]. However, a re-
cent evaluation reported that this binary classifier is sensitive
to the choice of known unknowns [19]. In that study, the
Probability of Inclusion-SVM (PI-SVM) achieved the best
performance [19].

An underexplored solution for rejecting unknown inputs
are classifiers based on Bayesian modeling. In particular,
Gaussian processes provide a suitable framework for multi-
class classification and yield an uncertainty range with each
prediction. This makes GPs a potentially powerful tool for
camera model identification in the open-set scenario. As our
contribution, we demonstrate that a sparse Gaussian process
classifier (GPC) [12] based on SPAM features is effective at
camera model identification. The uncertainty in the GPC’s
predictions enables rejecting unknown test images, e.g., from
unknown cameras or unseen post-processing. We show that
the proposed GPC outperforms the combined classification
framework from [27] and the PI-SVM from [19] and study the
trade-off between sparsity and performance and the impact of
the image resolution.

https://www.cs1.tf.fau.de/research/multimedia-security
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II. GAUSSIAN PROCESS CLASSIFICATION

In this work, we use a GP as black-box function approxima-
tor to predict the camera model, and we use the GP’s predictive
variance to reject unknown camera models as well as unseen
post-processing. A GP is a non-parametric Bayesian method to
approximate arbitrary functions via probabilistic predictions.
This section gives a short introduction to sparse Gaussian
process classification as found in [12, 22].

A GP defines a probability distribution over functions where
the function values f(x) at any position x ∈ RD are random
variables with a joint Gaussian distribution [2]. Following stan-
dard practice, we assume that this joint distribution has zero
mean and the covariance is defined by a kernel function, i.e.,
p(f |X) = N (f |0, k(·, ·)) where f = [f(x1), . . . , f(xn)]
and X = [x1, . . . ,xn] for n training samples. We choose an
isotropic radial basis functions (RBF) kernel

k(x1,x2) = σ2
f exp

(
−‖x1 − x2‖22

2 l2

)
, (1)

where the output scale σ2
f ∈ R and the length scale l ∈ R are

hyper-parameters.
GPs for classification are derived from the noise-free re-

gression formulation. In noise-free regression, the goal is to
obtain the prediction f∗ for a new data point x∗ ∈ RD

by conditioning the joint distribution p(y, f∗|X,x∗) on the
observations y ∈ Rn. The resulting predictive distribution is
denoted as p(f∗|x∗,X,y).

For multi-class classification, we assume one latent function
f c for each of the C classes and define an independent
GP prior p(f c|X) over each latent function. Each GP prior
introduces its own kernel hyper-parameters, i.e., l,σ2

f ∈ RC .
The latent variables at all training points are denoted as
f :=

[
f1, ...,fC

]
∈ Rn×C . The one-hot encoded training la-

bels are γ :=
[
y1, ...,yC

]
∈ Rn×C . The posterior over the

latent variables p(f|X,γ) follows from Bayes’ theorem, but
in our case needs to be approximated as described below.

Predictions are computed in two steps. The first step obtains
the latent variables f∗ =

[
f1∗ , . . . , f

C
∗
]
∈ RC at test point x∗:

p(f∗|x∗,X,γ) =

∫
p(f∗|x∗,X, f) p(f|X,γ) df . (2)

In the second step, the C latent variables are rescaled by
a softmax function to obtain a posterior distribution over the
categorical classes

p(y∗|x∗,X,γ) =

∫
p(y∗|f∗) p(f∗|x∗,X,γ) df∗ , (3)

where the likelihood is defined as

p(yc∗|f∗) =
exp(f c∗)∑

c′∈C
exp(f c′∗ )

. (4)

Exact analytical treatment is not possible as the Gaussian
prior and the softmax likelihood are non-conjugate. Fol-
lowing [12], we approximate the posterior distribution over
the latent variables p(f|X,γ) by a variational distribution

q(u) = N (u|m,S) with learnable parameters m and S.
Here, u ∈ Rm are the latent variables at inducing points
Z ∈ Rm×D. These inducing points aim to compress the train-
ing data into a subset of m� n auxiliary points learned during
training. Besides providing a tractable optimization problem,
this sparse variational approximation reduces the computa-
tional complexity of inference from O(n3) to O(nm2) [25].

The parameters of the variational posterior and the co-
variance hyper-parameters are obtained by maximizing the
evidence lower bound (ELBO)

LELBO =

n∑
i=1

Eq(fi) [log p(yi |fi)]− KL [q(u)‖p(u)] , (5)

where KL denotes the Kullback-Leibler divergence. Maximiz-
ing the ELBO is equivalent to minimizing the KL divergence
between the variational posterior and the intractable true
posterior.

After obtaining the variational posterior, the posterior over
the latent variables for the test example x∗ is computed
analogously to Eq. 2 by marginalizing over the inducing
variables, i.e.,

q(f∗|x∗) =
∫
p(f∗|x∗,Z,u)q(u) du . (6)

The predictive distribution from Eq. 3 is approximated as

q(y∗|x∗) =
∫
p(y∗|f∗) q(f∗|x∗) df∗ . (7)

Because Eq. 7 is intractable, we approximate the integration
using T Monte Carlo samples. The mean is approximated as

q̂(y∗|x∗) =
1

T

T∑
i=1

p(y∗|f (i)
∗ ) , (8)

where f (i)
∗ denotes the i-th draw from the latent posterior

q(f∗|x∗). The unbiased variance is computed as

Var [q(y∗|x∗)] =
1

T − 1

T∑
i=1

(
p(y∗|f (i)

∗ )− q̂(y∗|f∗)
)2

(9)

and we take the mean over the classes as uncertainty estimate.

III. EXPERIMENTAL SETUP

In this section, we describe the data splitting, the feature
extraction, and the training details for the evaluated methods.

1) Dataset: The Dresden database provides 18 camera
models with images from at least two devices [10]. As in
previous work [3], we consider the Nikon D70 and Nikon
D70s the same model. We randomly select C = 10 out of
these 18 as known camera models. From each of the known
camera models, we randomly pick one device for the training
set. The images from the other devices of known camera
models are assigned to the test set. To ensure that all known
camera models are represented equally, we sample for each
device the same number of images. This number is determined
by the device with the smallest number of images. To avoid
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side effects from scene content, we perform a random, non-
overlapping split by scene using 80% of the scenes for training
and 20% for testing. The remaining 16 camera models are used
to evaluate the rejection ability of unknown cameras.

2) Feature representation: While the GPC can operate on
any feature representation, we use in this work the popu-
lar SPAM features with identical configuration as previous
work on camera model identification [18]. This yields a 338-
dimensional statistical feature vector per image.

3) GPC Training: The variational posterior and kernel
hyper-parameters are optimized by maximizing the ELBO. We
use the Adam optimizer with a learning rate of 0.001, and
coefficients β1 = 0.9, and β2 = 0.999. The learning rate is
divided by 10 whenever the loss plateaus for 1k iterations.
Training terminates when the loss has not improved for 20k
iterations. The kernel length scales l ∈ RC and output scales
σf ∈ RC are initialized to 0 and are transformed by a softplus
function to ensure positivity. If not mentioned otherwise, we
use m = 512 inducing points, which are initialized by random
selection from the training samples. The integral in Eq. 7
is approximated using T = 100 Monte Carlo samples at
training time and T = 1000 samples at test time for increased
precision. All experiments are implemented using GPyTorch
1.2.1 [8] and executed on a NVIDIA GTX 1080 Ti GPU.

4) Competing methods: We compare the proposed method
to two previous approaches for open-set camera model iden-
tification. Wang et al. proposed a combined classification
framework (CCF) consisting of a one-class RBF-SVM per
camera model [27]. A test sample is rejected if none of the
SVMs recognizes it. If exactly one SVM recognizes the test
sample, it is assigned the corresponding class. If a test sample
is recognized by more than one SVM, a multi-class RBF-SVM
is trained on-the-fly to distinguish the possible classes.

As one of the most successful methods used for open-set
camera model identification [19], the PI-SVM is an SVM ex-
tension that re-calibrates the decision scores to (unnormalized)
posterior probabilities by modeling the most extreme positive
training data [13]. For multi-class classification, the PI-SVM
fits one SVM with an RBF kernel for each class using a
1-vs-rest approach. After training, the PI-SVM returns the
maximum posterior probability and the corresponding class
label, which also allows rejecting uncertain test examples.

The regularization hyper-parameters of CCF and PI-SVM
are selected via the grid search described in [19], which
simulates an open-set setup by randomly splitting the C
training classes into C

2 known and C
2 known-unknown camera

models. 80% of the images from the known set are used for
training, 20% for validation. From the known-unknown set, we
randomly pick the same number of images to obtain an equal
number of images from known and known-unknown models in
the validation set. This random splitting procedure is repeated
100 times for each combination of hyper-parameters. For each
split, we use the validation set to evaluate the classification
accuracy of known samples (AKS) and the accuracy of identi-
fying unknown samples (AUS). For computing the AUS with
the PI-SVM, we binarize the continuous posterior estimate
using the threshold closest to the top-left corner of the receiver
operating characteristic (ROC) curve. Finally, we pick the set

TABLE I
CLASSIFICATION ACCURACY OF KNOWN AND DETECTION OF UNKNOWN

CAMERA MODELS WITH FULL-RESOLUTION IMAGES

Method Known model
accuracy

Detection of unknown
models AUC

CCF 0.85 ± 0.04 0.67 ± 0.01
PI-SVM 0.97 ± 0.01 0.87 ± 0.02
GPC 0.98 ± 0.01 0.94 ± 0.02
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Fig. 1. Classification accuracy of known camera models (left) and detection
of unknown models (right). The error bars denote the standard deviation over
five training-test splits. The GPC’s performance increases with the number of
inducing points, but saturates between 128 and 512 inducing points.

of hyper-parameters that maximizes the sum of AKS and AUS
on average over the 100 splits. The final classifier is trained
on all C camera models with the best hyper-parameters.

5) Evaluation metrics: The competing methods are com-
pared in terms of their classification accuracy on known cam-
era models, denoted as in-distribution data, and in their ability
to detect out-of-distribution images from unknown camera
models or unseen post-processing. For the latter performance
metrics, we compare the predictive variances of in-distribution
and out-of-distribution images. The larger of these two sets
is randomly subsampled such that the sets contain the same
number of images. We then report the area under the ROC
curve (AUC) as a threshold-independent metric.

IV. RESULTS

We first compare the proposed GPC to the CCF and the PI-
SVM, followed by an ablation study on the number of inducing
points. Subsequently, we evaluate the GPC’s performance w.r.t.
the image resolution, the number of known camera models,
and with images distorted by unseen post-processing.

1) Comparison to related methods: Table I reports the clas-
sification accuracy with full-resolution test images from known
camera models and the ability to reject images from unseen
camera models. The results are averaged over five training-test
splits where different instances of the same camera models
were randomly selected for the training set. The GPC exhibits
the highest accuracy, and it clearly outperforms the PI-SVM
in the AUC for detecting unknown models As a sidenote (not
reported in Tab. I), the linear SVM by Marra et al. [18] yields
an even higher accuracy of 99.8%, but it is unable to reject
unknown models.

2) Number of inducing points: Figure 1 provides an abla-
tion on the number of the GPC’s inducing points. The error
bars show the standard deviation over five training runs with
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Fig. 2. Classification accuracy of known camera models (left) and detection
of unknown camera models (right). Performance of GPC (blue), PI-SVM
(orange), and CCF (green) with SPAM features extracted from smaller ROI
sizes (full denotes full image resolution).
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Fig. 3. Classification accuracy of known (left) and detection of unknown
camera models (right) as a function of the number of known camera models.

varying training-test splits. During training, the GPC seeks to
compress the training points into a lower number of inducing
points so as to reduce computational complexity. As expected,
the performance increases with the number of inducing points.
With only 16 inducing points, the classification accuracy of the
GPC with known camera models reaches 0.97. The detection
of unseen camera models benefits from more inducing points
but saturates between 128 and 512 inducing points. In com-
parison, a non-sparse GP (m = n where n ranges between
1030 and 1350 training images depending on the random
selection of known devices) achieves the same classification
accuracy of 0.98 and AUC of 0.94. On our hardware, training
the non-sparse GP requires 24.3 hours while the sparse GP
with m = 512 only needs 3.8 hours. Given that the non-
sparse GP does not yield any performance benefit, we use in
the remaining experiments the GPC with m = 512 due to its
significantly lower computational cost.

3) Impact of ROI size: In Fig. 2, we compare the three
methods with SPAM features extracted from a region-of-
interest (ROI) of smaller size. The training and test images
are center-cropped to squares of side lengths between 1024
down to 128 prior to feature extraction. As expected, both
classification accuracy and AUC decrease for smaller ROI
sizes. The GPC outperforms the PI-SVM in classification
accuracy and AUC. Only on small patches of size 128 the
AUC of both methods is on-par.

4) Number of known camera models: In Fig. 3, we study
the GPC’s performance w.r.t. the number of known camera
models. More specifically, we randomly select the desired
number of camera models, train on images from one device
each, and test with the images from the other devices. To
facilitate a fair comparison across different numbers of known
models, the set of unknown cameras consists only of those
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Fig. 4. Classification accuracy for post-processed images (top) and ability to
reject unseen post-processing (bottom). The classification accuracy decreases
with higher distortion but the predictive variance enables detecting many of
the post-processed images. The black dashed line indicates the accuracy for
test images without any post-processing.

8 camera models with one device in the Dresden database.
Figure 3 reports the accuracy with test images from known
camera models but unseen devices (left) and the detection
of unseen camera models (right). The error bars show the
standard deviation over five training-test splits with randomly
selected known models. Overall, the classification accuracy
remains at around 0.98 for up to 11 known camera models and
decreases to 0.92 with 18 known camera models. The AUC
ranges from 0.94 to 0.90 for the first 11 known camera models
and achieves more than 0.85 with more camera models.

5) Unseen post-processing: In addition to images from
unknown camera models, the forensic detector may be used
on images with unseen post-processing. In Fig. 4, we study
the effect of additive Gaussian noise with standard deviation
σn, Gaussian blur with standard deviation σb, and JPEG
compression with quality factor qf. With little distortion, the
test accuracy remains close to 0.98, as in the case without
any post-processing, and the predictive variances remain close
to 0. As the amount of distortion increases, the classification
accuracy drops. At the same time, the predictive variance
increases, which allows detecting many of the post-processed
images. We also observe that the classifier is sensitive to
unseen JPEG compression. However, also here the predictive
variance facilitates detecting such unseen JPEG compression.
This hints an analyst at improving the distribution matching
between training and test data.

V. CONCLUSION

We proposed Gaussian process classifiers for reliable cam-
era model identification. The GPC achieves a classification
accuracy of 0.98 on 10 camera models. At the same time,
the probabilistic predictions enable detecting images from
unknown camera models and unseen post-processing. The
ability to recognize unknown types of images is important to
prevent false accusations. Despite the probabilistic predictions,
classifiers should be able to cope with smaller variations in
the test data, e.g., mild compression. In future work, we plan
to study possible GPC resilience improvements through data
augmentation while retaining computational efficiency.
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