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Abstract—Camera model identification is a standard task in
digital image forensics. Learning-based approaches achieve state-
of-the-art performance, but they are sensitive to so-called out-
of-distribution (OOD) data due to a mismatch between the
training and testing distribution. This may result in a significant
reduction in classifier performance that is, unfortunately, not easy
to anticipate for a forensic analyst.

In this work, we investigate possibilities for adding reliability
measures to the task of camera model identification. We leverage
learning architectures that include an uncertainty measure with
every prediction that can be reported back to an analyst. To this
end, we investigate deep ensembles and Bayesian neural networks
(BNNs). We compare both methods against a standard CNN
with softmax statistics as uncertainty metric. We demonstrate in
several experiments that both probabilistic approaches provide
simultaneously state-of-the-art classification performance and
reliable uncertainty estimates on OOD data. The uncertainty of
deep ensembles is more accurate on OOD camera models, while
BNN uncertainties are more accurate on OOD post-processing.

Index Terms—digital image forensics, camera model identifi-
cation, reliability, training-test mismatch

I. INTRODUCTION

Digital image forensics aims to validate the source and
authenticity of digital images with applications like fraud
detection, journalistic fact checking, and criminal investiga-
tions. Most state-of-the-art forensic methods attain impressive
performance by leveraging deep learning, e.g., extracting noise
fingerprints of camera models [1], detecting image manipu-
lations [2], and identifying computer-generated images [3].
The success of these data-driven approaches can be mainly
attributed to the excellent ability of neural networks to learn
forensics traces from the training data.

Unfortunately, learning-based methods rely on the assump-
tion that the data on which they are evaluated is drawn from a
very similar distribution as the training data. With increas-
ing popularity of smartphone devices and social networks,
however, this assumption is increasingly difficult to satisfy.
Oftentimes, forensic analysts have limited knowledge about
the history of an image, especially when the images of interest
stem from the internet. Recent work suggests that classifiers
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are only able to generalize to features seen during training [4]–
[6]. Therefore, unknown cameras and unseen post-processing
pose an open challenge for forensic analysis. In the worst case,
an image with unseen post-processing or from an unknown
camera model is wrongly attributed to a known class with high
confidence. Standard neural networks provide barely more
information for detecting such failure cases.

Two possibilities to counter such cases of out-of-training-
distribution (OOD) inputs are to enlarge the training set by
including as many camera models as possible [7, 8], or through
extensive data augmentation with commonly seen processing
and manipulation operations [1, 6, 8, 9]. However, we argue
that both approaches are difficult to scale to the combinatorial
multiplicity of real-world hardware and software processing.

Another possibility to cope with OOD data is to explicitly
include uncertainty in the classifier development. There are
several possibilities to achieve this. Deep ensembles express
uncertainty as disagreement of multiple experts. Bayesian
neural networks model the network weights as probability dis-
tributions, and quantify the variability of the output. Two first
works investigate Bayesian methods for forensic tasks, namely
for safeguarding resampling detection and JPEG double-
compression detection against unseen operations [10, 11].

In this work, we investigate both deep ensembles and
Bayesian neural networks (BNNs) for camera model identi-
fication. We focus on the reliability of detecting images from
unseen sources or with an unseen post-processing history,
which we simulate by simple means with additive noise,
Gaussian blur, and JPEG double-compression. Both network
types are based on the camera model identification CNN by
Bayar and Stamm [2], but provide an additional uncertainty
metric to detect OOD inputs. In detail, our contributions are:

(i) We compare three network variants for uncertainty quan-
tification: a baseline CNN [2] with softmax statistics, a
deep ensemble variant, and a BNN variant of the network.

(ii) We show that deep ensembles and BNNs achieve in-
distribution detection accuracies that are comparable to
the original network, but they achieve significantly better
rejection capabilities for out-of-distribution data.

(iii) We discuss several findings on the advantages and disad-
vantages of deep ensembles and BNNs, and the impact
of the parameters for calculating uncertainty either via
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the predictive entropy or the epistemic uncertainty to aid
further development of reliable forensic methods.

This paper is organized as follows. Section II presents re-
lated work. Section III introduces deep ensembles and BNNs,
and Sec. IV the uncertainty measures. Our experimental results
are reported in Sec. V. Section VI concludes this work.

II. RELATED WORK

A. Camera Model Identification

Although information about the camera make and model
can be retrieved from the metadata, this information can easily
be modified, or is removed, e.g., upon sharing on social
media platforms. As an alternative, forensic researchers have
identified a number of imperceptible processing traces in the
pixel content of an image. Such pixel-level traces are more
difficult to modify, and hence enable potentially better imaging
device linkage [12].

Early methods use analytically derived cues, that aim, e.g.,
at color demosaicking [13] and JPEG compression charac-
teristics [14]. However, the increasing complexity of camera
processing modules and software variants makes it difficult to
develop sufficiently complex analytic models to isolate these
traces. As an alternative approach, learning-based methods
have recently shown great success in extracting characteristic
traces for camera model identification [1, 2, 15].

However, learning-based methods are challenged by images
with unseen post-processing [4, 10, 11]. Most studies hence
assume a closed-set scenario, in which an image is assumed
to come from a specific set of known camera models with
known post-processing. In many applications, however, this
approach requires extremely large training sets. Hence, the
open-set scenario aims at detecting images from unknown
models or with unknown processing. To this end, Bayar
and Stamm propose a binary classifier [16] that requires a
representative set of known-unknown cameras. Júnior et al.
evaluate different combinations of open-set classifiers, hand-
crafted and deep features, and training protocols [17]. While
the authors identify several promising methods, these methods
require separate feature extraction and classification stages. In
contrast, the investigated methods in our work are end-to-end
neural networks.

B. Out-of-distribution Detection and Uncertainty Modeling

The machine learning community proposed several meth-
ods for estimating uncertainty as a way for detecting OOD
inputs. As a simple baseline, the statistics of the network
softmax output can be used to identify OOD samples [16, 18].
Neural networks tend to assign higher softmax scores to in-
distribution examples. However, these simple statistics are
susceptible to incorrect predictions with low uncertainty [10].
To alleviate this issue, some lines of work investigated the
calibration of softmax scores [19] and training with perturbed
inputs for increasing the discrepancy between in-distribution
and OOD softmax scores [20].

A potentially more robust approach to uncertainty modeling
is via ensembling. Here, Monte Carlo dropout (MC-dropout)

uses a standard CNN with dropout at test time to simulate an
ensemble of networks [21]. Lakshminarayanan et al. trained a
standard CNN multiple times with random initialization and
random shuffling of the training points [22]. The resulting
deep ensemble contained sufficient diversity to detect OOD
examples from the discrepancy in the predictions of the
different networks. In a recent benchmark targeting models
under dataset shift, MC-dropout performed relatively weak,
while deep ensembles performed best [23].

Another approach to uncertainty modeling uses a Bayesian
framework. Here, Bayesian neural networks provide a pre-
dictive distribution over possible outcomes where the mean
indicates the most likely class and the variance indicates
the model’s uncertainty. Hence, a BNN can be seen as an
infinite ensemble of networks whose weights are drawn from
the learned weight distribution [24]. In theory, Bayesian neu-
ral networks require an intractable marginalization over the
weight space. To this end, the marginalization can be cir-
cumvented by approximating the intractable weight posterior
by a simpler variational distribution [25, 26] via stochastic
variational inference (SVI). Building upon previous work,
Bayes by backprop provides a tractable objective function to
train BNNs via gradient descent [24].

In this work, we compare a standard CNN with softmax
statistics with the two most promising approaches, namely
deep ensembles and BNNs trained with SVI.

III. PREDICTIVE DISTRIBUTIONS FROM NEURAL
NETWORKS

This section describes how deep ensembles and Bayesian
neural networks infer the predictive distribution. Let
D = {(xi,yi)}Ni=1 be a dataset with N training samples
that consist of inputs xi and class labels yi. The goal is to
infer a predictive distribution p(y∗|x∗) for a new input x∗.

A. Deep Ensembles

Deep neural networks have a complex loss landscape.
Hence, if the same network is trained with different random
initializations and shuffling of training samples, the training
likely converges for each network instance in a different
local minimum. These instances form an ensemble of diverse
experts [22]. The combination of these experts is a simple
technique to improve the accuracy of point estimates, but also
to quantify uncertainty. To this end, the predictive distribution
p(y∗|x∗) is formed from the outputs of M experts.

B. Bayesian Neural Networks

BNNs differentiate from standard neural networks by learn-
ing a posterior distribution p(w|D) over the trainable network
weights w. The predictive distribution is inferred by marginal-
izing over all possible weights

p(y∗|x∗,D) =
∫
p(y∗|x∗,w)p(w|D) dw. (1)

However, integration over the weight space is computa-
tionally prohibitive. Hence, Blundell et al. propose stochastic
variational inference to approximate the intractable weight



posterior p(w|D) by a simpler variational distribution qθ(w)
with parameters θ [24]. The optimal parameters θ̂ are obtained
by minimizing the Kullback-Leibler (KL) divergence between
the approximation and the intractable weight posterior, i.e.,

θ̂ = argmin
θ

KL [qθ(w)||p(w|D)]

= argmin
θ

KL [qθ(w)||p(w)]− Eqθ(w) [log p(D|w)] .
(2)

The resulting cost function in the last line of Eqn. 2 is
the negative evidence lower bound (ELBO) [24], and we
additionally multiply the KL term by a hyper-parameter λ
to weight its impact. In this cost function, the negative log-
likelihood is analogous to traditional neural networks, while
the KL term encourages similarity of the variational posterior
to a weight prior p(w). While the KL term can be computed in
closed form, computation of the expectation requires another
approximation, for which we refer to the original work by
Blundell et al. [24].

We empirically found that focusing on hard examples
improves the performance. Since the negative log-likelihood
after softmax activation is equivalent to the multi-class cross-
entropy loss [27], we replace the negative log-likelihood in
Eqn. 2 by the focal loss [28]. The focal loss is defined as

FL(xi,yi) = −
K∑
k=1

(1− p(yik|xi))γ yik log (p(yik|xi)) ,

(3)
where K is the number of classes and γ > 0 emphasizes hard
examples (γ = 0 is the original cross-entropy loss).

After training, we denote the learned parameters as θ̂. Then,
the predictive distribution from Eqn. 1 becomes

qθ̂(y
∗|x∗) =

∫
p(y∗|x∗,w)qθ̂(w) dw . (4)

IV. PREDICTIONS AND UNCERTAINTY QUANTIFICATION

The BNN prediction is the mean of the predictive distribu-
tion from Eqn. 4, which is evaluated via Monte Carlo sampling

q̂θ̂(y
∗|x∗) =

1

T

T∑
t=1

p(y∗|x∗, ŵt), ŵt ∼ qθ̂(w) . (5)

Here, T Monte Carlo samples draw weights ŵt from the
trained variational distribution qθ̂(w).

Similarly, the prediction of a deep ensemble is obtained by
averaging the predictions from M ensemble experts,

p(y∗|x∗) =
1

M

M∑
m=1

p(y∗|x∗,wm) , (6)

wherewm denotes the trained parameters of the m-th network.
Additionally, an uncertainty measure (or conversely, a con-

fidence) is desirable to predict failure cases. Standard CNNs
only offer the softmax probability distribution as uncertainty
measure. The predictive distribution from deep ensembles and
BNNs provides more possibilities to reason about uncertainty.
We examine the two most common ways, namely Shannon
entropy and epistemic uncertainty.

TABLE I
KNOWN AND UNKNOWN CAMERA MODELS FROM THE DRESDEN IMAGE

DATABASE (DIDB) AND KAGGLE DATASET IN THIS WORK.

Dataset Camera models

Known DIDB Canon Ixus70, Canon Ixus55, Nikon D200,
Nikon D70, Sony DSC-H50

Unknown DIDB Agfa DC-830i, Samsung L74wide, Sony DSC-W170,
Canon PowerShotA640, Nikon CoolPixS710

Unknown Kaggle Sony NEX-7, Motorola Moto X, Motorola Nexus 6,
Apple iPhone 4s, Apple iPhone 6, HTC One M7,
Samsung Galaxy S4, Samsung Galaxy Note 3
Motorola DROID MAXX, LG Nexus 5x

a) Softmax uncertainty: The softmax activations of the
last layer of a classification network tend to show lower
activations for incorrect and OOD samples [18]. Hence, the
maximum activation can be used as confidence score, i.e.,

c = max
k

p(y∗k|x∗,w) . (7)

b) Predictive entropy: Gal [29] proposed to quantify un-
certainty on the predictive distribution via the Shannon entropy
H [p(y∗|x∗)]. Reusing the BNN notation from Eqn. 5, the
variational entropy H

[
qθ̂(y

∗|x∗)
]

is increasingly accurately
approximated for increasing T as

H
[
qθ̂(y

∗|x∗)
]
≈

−
K∑
k=1

q̂θ̂(y
∗ = ek|x∗) log q̂θ̂(y

∗ = ek|x∗), (8)

where yi ∈ {ei}Ki=1, and ek is a K-dimensional unit vector.
c) Epistemic uncertainty: The variance of the predictive

distribution in Eqn. 4 captures the overall predictive uncer-
tainty, which can be further decomposed into aleatoric and
epistemic uncertainty [30]. Epistemic uncertainty reflects the
uncertainty in model parameters and is reducible with more
training data. Aleatoric uncertainty is irreducible and captures
inherent statistical noise from the data. Hence, epistemic
uncertainty can be used for OOD detection. We calculate the
epistemic uncertainty according to Kwon et al. [31] as

Varep [y
∗] =

1

T

T∑
t=1

[
p(y∗|x∗, ŵt)− q̂θ̂(y

∗|x∗)
]⊗2

, (9)

where ⊗2 denotes the outer product, i.e., v⊗2 = vvT , and we
take the sum over the diagonal elements as scalar uncertainty
estimate.

V. EVALUATION

We first state the experimental setup. Then, we evaluate the
classification accuracy, compare the detection of OOD samples
for unseen cameras and unseen processing, and investigate the
impact of ensemble size and the number of Monte Carlo draws.



A. Experimental Setup
Data Preparation: The in-distribution data is composed

of 2 453 images from five camera models from the Dresden
Image Database (DIDB) [7]. The number of images per camera
model ranges between 224 and 752. As OOD data, we choose
2 453 images from five different camera models in the DIDB,
and additionally 2 750 images from ten smartphone camera
models of the Kaggle-hosted IEEE Signal Processing Camera
Model Identification Challenge dataset (Kaggle) [32]. These
three datasets are denoted as Known DIDB, Unknown DIDB
and Unknown Kaggle. The camera models are listed in Tab. I.

We extract 25 non-overlapping 256×256 pixel patches from
the green channel of the central region of each full-resolution
image. Known DIDB patches are split into 49 075/6 125/6 125
patches for training, validation, and testing, such that patches
from a single image only occur in one of these three sets. From
Unknown DIDB and Unkown Kaggle, we randomly choose
576 and 256 patches from each camera model.

To evaluate the detection of unknown post-processing, we
form three additional datasets by adding either JPEG compres-
sion, Gaussian blur, or additive white Gaussian noise (AWGN)
to in-distribution test set patches (Known DIDB), resulting
in 6 125 OOD images per distortion (see specific distortion
parameters below). As a final pre-processing step, all pixel
intensities are scaled to the range [0, 1].

Network Architectures: All networks use the constrained
convolutional architecture by Bayar and Stamm [2]. The
baseline CNN and deep ensemble are trained with the focal
loss in Eqn. 3 with γ = 2 to compensate for the imbalanced
number of samples per class. The CNN weights are initialized
from a uniform distribution with Glorot limits. Also the BNN
uses the focal loss for the log-likelihood term with balancing
factor λ = 0.25/N . To convert the Bayar and Stamm CNN to
a BNN, we replace convolutional and fully-connected layers
with Flipout layers [33] from the TensorFlow Probability
framework [34]. Also, instead of ReLU activation followed
by batch normalization, we use the SELU activation [35]. As
prior distribution we assume a multivariate standard normal,
and initialize the variational posterior as diagonal Gaussian
distribution as suggested by [24]. Hence, the BNN has twice
as many trainable parameters as the baseline CNN.

Training Parameters: We use the Adam optimizer with
learning rate lr = 10−4, β1 = 0.9, β2 = 0.999, and ε = 10−7.
The baseline CNN and each ensemble member is trained for
100 epochs. whereas the BNN is trained for 300 epochs due
to the larger number of parameters. In both cases, we apply
early stopping with a patience of 5 epochs.

Evaluation Protocol: To determine the classification accu-
racy, we use the point estimate of the baseline CNN, and
the averaging in Eqns. 5 and 6 for the BNN and the deep
ensemble, respectively.

The predicted uncertainties are evaluated by their ability
to separate in-distribution data from out-of-distribution data.
Following Hendrycks and Gimpel [18], the negative class
consists of correct classifications on in-distribution data, and
the positive class consists of out-of-distribution data (i.e.,

misclassifications on in-distribution data do not contribute to
the evaluation of uncertainty). We report the receiver operating
characteristic (ROC) curves and the area under the ROC curve
(AUC). For the baseline CNN, we use the negative confidence
of the most likely class as uncertainty (Eqn. 7). For the deep
ensemble and the BNN, we evaluate both predictive entropy
(Eqn. 8) and epistemic uncertainty (Eqn. 9).

B. In-distribution Classification Accuracy

Each model is trained on image patches from the Known
DIDB dataset. The baseline CNN achieves an overall accuracy
of 98.74%, and a per-class accuracy between 97.33% and
99.78%. Averaging the predictions from M = 5 CNNs results
in an accuracy of 99.40% for the deep ensemble. A BNN
with T = 50 Monte-Carlo draws achieves a slightly lower
(but overall still quite high) accuracy of 97.42%.

C. Detection of Out-of-Distribution Images

Table II compares the softmax confidence from a single
CNN to uncertainty estimates from a deep ensemble and
a BNN in detecting five different types of OOD data. We
repeated all experiments five times and report the mean and
standard deviation. For all datasets, softmax statistics are
outperformed by both the deep ensemble and the BNN. The
deep ensemble performs better at detecting unknown cameras,
while the BNN performs better at detecting unseen post-
processing, as reported below.

a) Unseen Camera Models: The left two columns in
Tab. II show the AUC (scaled by factor 100) to detect unknown
camera models from the DIDB and Kaggle datasets. On both
datasets, the deep ensemble outperforms the BNN, which in
turn outperforms the baseline CNN. In these experiments,
the type of uncertainty calculation does not show a large
difference for the deep ensemble; the BNN performs better
with epistemic uncertainty.

b) Unseen Post-Processing: The last three columns of
Tab. II show different forms of post-processing, namely the
detection of JPEG compression with quality 70, Gaussian blur
with σblur = 1.1, and additive white Gaussian noise (AWGN)
with σnoise = 0.1. These levels were chosen based on [36],
but we used a smaller σnoise for more realistic distortions. On
AWGN, both BNN and deep ensemble perform excellently,
with a 2% better performance for the deep ensemble. However,
for JPEG-compressed and blurred images, the BNN outper-
forms the deep ensemble by a significant margins of 12% and
14%. We take this as indication that BNNs better detect unseen
post-processing. For both networks, the predictive entropy is
better on JPEG post-processing, while epistemic uncertainty
is better on blur. For AWGN, both variants are about equal.

Across all experiments, the BNN also exhibits a consis-
tently low standard deviation for the five repetions of each
experiment, which makes the performance well predictable.
Conversely, the standard deviations of both the baseline CNN
and the deep ensemble are much higher. The deep ensembles
typically exhibit a standard deviation beyond 1% (except for
AWGN), and up to 9% for the deep ensembles on blurring.



TABLE II
DETECTION OF OUT-OF-DISTRIBUTION SAMPLES FROM UNKNOWN CAMERA MODELS AND UNSEEN POST-PROCESSING IN TERMS OF AUC (SCALED BY

FACTOR 100) WITH STANDARD DEVIATION OVER FIVE RUNS. BOTH DEEP ENSEMBLE AND BNN OUTPERFORM THE SOFTMAX STATISTICS. THE DEEP
ENSEMBLE BETTER DETECTS UNKNOWN CAMERAS, WHILE THE BNN BETTER DETECTS UNSEEN POST-PROCESSING.

Architecture Method Unknown cameras Unseen post-processing

Unknown DIDB Unknown Kaggle JPEG, QF=70 Blur, σblur = 1.1 AWGN, σnoise = 0.1

Baseline CNN Softmax Statistics 63.87(±2.25) 78.85(±1.96) 73.05(±4.45) 59.51(±20.38) 55.87(±34.69)
Deep ensemble, M = 5 Predictive Entropy 72.00(±2.30) 90.60(±1.42) 71.33(±1.77) 73.59(±9.08) 99.03(±0.66)
Deep ensemble, M = 5 Epistemic Uncertainty 72.11(±2.21) 90.26(±1.38) 69.83(±1.81) 74.78(±8.75) 99.75(±0.21)
BNN, T = 50 Predictive Entropy 68.43(±0.11) 86.15(±0.05) 83.81(±0.08) 94.39(±0.02) 97.63(±0.04)
BNN, T = 50 Epistemic Uncertainty 72.07(±0.21) 88.40(±0.10) 77.80(±0.20) 99.00(±0.03) 97.79(±0.12)
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Fig. 1. Detection of post-processed OOD images (JPEG, Gaussian blur,
additive white Gaussian noise) based on the BNN epistemic uncertainty with
T = 50. For Gaussian blur and AWGN, the AUC (scaled by 100) increases
with the amount of distortion.

We also report the detection performance for different post-
processing strengths for the better performing BNN using
epistemic uncertainty. In this experiment, we choose the
JPEG quality factors QF ∈ {50, 60, 70, 80, 90, 99}, blur
factors σblur ∈ {0.01, 0.1, 0.5, 1.1, 2.0}, and AWGN with
σnoise ∈ {0.01, 0.1, 0.5, 1.0, 2.0}. The resulting ROC curves
are shown in Fig. 1. For Gaussian blur, the AUC increases
with more distortion, as expected. For AWGN, the AUC peaks
at σnoise = 0.1, before starting to decline. Nevertheless, the
detection performance remains above 96% for σnoise ≥ 0.1.

For JPEG-compressed images, we observe an unexpected
behavior in the ROC curves. The AUC increases for QF = 90,
but worsens with increasing compression strength. We believe
that this behavior is caused by the fact the training images were
already JPEG-compressed. In these cases, the BNN predicts
uncertainties within the range of in-distribution images, though
higher than most in-distribution images. A further analysis will
be part of future work.

D. Impact of Monte Carlo Draws and Ensemble Size

As the BNN’s posterior predictive distribution is approx-
imated via Monte Carlo sampling, the number of samples
T trades off precision of the approximation against com-
putational complexity. In Fig. 2, we investigate the qual-
ity of the BNN’s epistemic uncertainty metric with T ∈
{3, 5, 10, 20, 30, 50, 100, 200}. As expected, we observe that
the detection of OOD samples benefits from more Monte Carlo
draws. Only for JPEG post-processing, the AUC decreases
slightly for higher T . In general, the improvement gains show

TABLE III
SCALING A DEEP ENSEMBLE TO M = 50 MEMBERS AIDS THE DETECTION

OF OUT-OF-DISTRIBUTION IMAGES FROM UNKNOWN CAMERA MODELS.

Dataset Method AUC

Unknown DIDB Predictive entropy 74.41(±0.82)
Epistemic uncertainty 75.81(±0.97)

Unknown Kaggle Predictive entropy 94.16(±0.39)
Epistemic uncertainty 95.08(±0.28)

JPEG, QF=70 Predictive entropy 69.06(±1.37)
Epistemic uncertainty 67.09(±1.60)

Blur, σblur = 1.1
Predictive entropy 67.99(±2.11)
Epistemic uncertainty 69.23(±2.44)

AWGN, σnoise = 0.1
Predictive entropy 99.77(±0.07)
Epistemic uncertainty 99.96(±0.05)

a logarithmic behavior. Therefore, we used T = 50 as a
performance trade-off.

Out of curiousity, we also took the computational effort to
train 100 CNNs for a deep ensemble, out of which M =
50 were randomly selected. We repeat this process five times
to also report the standard deviation of the predictions. The
results in Tab. III show that the detection of unknown cameras
and AWGN benefits from more ensemble members, clearly
outperforming the BNN with T = 50. However, results on
JPEG compression and blur do not improve. However, while
increasing the number of Monte Carlo samples for the BNN
is relatively cheap, the training of a large number of CNNs to
increase the ensemble is computationally extremely expensive.

VI. CONCLUSION

We investigated three deep learning paradigms to anticipate
a training-test mismatches and therefore prevent false accusa-
tions on the task of camera model identification. Interpreting a
CNN’s softmax output as confidence yields inferior detection
of OOD samples and can be affected by high variance. Both
deep ensemble and BNN outperform the baseline CNN by
large margins. The deep ensemble shows superior perfor-
mance for detecting unknown camera models, while the BNN
outperforms the deep ensemble for unseen post-processing.
Additionally, increasing the quality of the uncertainty of a
BNN by more samples is relatively cheap, while scaling a deep
ensemble requires significant computational effort. In future
work, we plan to train on a larger set of known cameras and
evaluate the detection of more types of out-of-distribution data.
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Fig. 2. Evaluation of the BNN’s epistemic uncertainty w.r.t. the number of Monte Carlo draws T at test time. Except for the JPEG-compressed dataset, the
AUC (scaled by factor 100) improves with increasing number of Monte Carlo samples for unseen camera models and unseen post-processing.
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[3] A. Rössler, D. Cozzolino, L. Verdoliva, C. Riess, J. Thies, and M. Niess-
ner, “Faceforensics++: Learning to detect manipulated facial images,” in
IEEE/CVF Int. Conf. Computer Vision, Oct. 2019, pp. 1–11.

[4] S. Mandelli, N. Bonettini, P. Bestagini, and S. Tubaro, “Training CNNs
in presence of JPEG compression: Multimedia forensics vs computer
vision,” in IEEE Int. Workshop Inf. Forensics Security, Dec. 2020.

[5] B. Diallo, T. Urruty, P. Bourdon, and C. Fernandez-Maloigne, “Improv-
ing robustness of image tampering detection for compression,” in Int.
Conf. Multimedia Modeling, Jan. 2019, pp. 387–398.
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