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Abstract

Criminal investigations oftentimes need the identifica-
tion of license plates of escape vehicles. The vehicles may
be recorded by low-quality cameras in the wild. Their li-
cense plates may be unreadable for police officers. Recent
efforts aim to use machine learning to forensically decipher
license plates from such low-quality images. These methods
operate near the information-theoretic limit of recognition
and hence show quite high error rates. Unfortunately, it is
unclear when such prediction errors occur, which makes it
difficult to use these methods in practice. In this work, we
propose a Bayesian Neural Network to inherently incorpo-
rate a reliability measure into the classifier. We additionally
propose to integrate multiple estimations with an entropy
weight to further improve the reliability. Our experiments
show that this uncertainty metric dramatically reduces the
number of false predictions while preserving most of the
true predictions.

1. Introduction

License plates recordings on photo and video are of-
ten an important cue in a criminal investigation. They
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may serve as forensic trace or be probative in a legal set-
ting. However, these recordings oftentimes come from un-
controlled devices and uncontrolled acquisition conditions.
Hence, they are oftentimes of low quality, e.g., due to strong
compression, bad camera optics, large vehicle distance, and
environmental factors like rain. When the license plates are
unreadable for humans, the goal of forensic license plate
recognition (FLPR) is to reconstruct the characters of the
license plate. Even only partly reconstructed license plates
can already help to identify and hold potential perpetrators
accountable for their actions [3]. Though the reconstruction
only serves as an investigative clue for an analyst, not as
evidence in court.

From a technical perspective, FLPR systems have to ful-
fill two key requirements. First, they have to generalize
across a wide range of scenes, acquisition devices, illumi-
nation conditions, and noise artifacts. Second, a robust and
reliable prediction is an integral element. In recent years,
deep neural networks gained high popularity also for license
plate detection and classification [24, 23, 1, 14]. These re-
sults have shown that specially trained convolutional neu-
ral networks (CNNs) are able to outperform human perfor-
mance for character recognition of highly degraded license
plates. However, these methods do not give much insights
about their decision making, which makes it difficult to un-
derstand when the models fail. For example, if exposed to
so-called out-of-distribution examples, these models might
fail while making confident decisions [16]. This poses a se-
vere challenge in a forensic context, where reliability and
a graceful decline in performance are important require-



ments.

A way to improve the reliability of models is to explicitly
include a notion of uncertainty into the system. An uncer-
tainty measure enables an operator to decide whether she
can trust the result or not. Neural networks are also capable
of providing decisions with an additional uncertainty mea-
sure. To this end, the commonly used softmax outputs are
replaced by probability distributions. Blundell et al. pro-
posed such a network design by utilizing a variational ap-
proximation approach [2]. However, the resulting predic-
tive uncertainty alone might not be a sufficient indicator for
a reliable prediction. In cases of high entropy over the pre-
dictions, the expressed uncertainty is not meaningful. To
counter this issue, we propose a reliability measure that in-
corporates the predictive uncertainty and the predictive en-
tropy together with domain-specific prior information.

In this work, our contribution is threefold. First, we pro-
pose a Bayesian neural network (BNN) for for license plate
recognition. Second, we propose to model the conditional
dependence between consecutive license plate frames with
an entropy weight. Third and most importantly, we propose
a reliability score that integrates predictive uncertainty, pre-
dictive entropy, and domain-specific prior information. We
show in our experiments that the proposed entropy weight
improves the reliability for both models compared models.
The proposed reliability score from our third contribution
works best in combination with our BNN. The reliability
score enables the rejection of most false decisions while
preserving most of the true decisions.

The remainder of this paper is organized as follows. Sec-
tion 2 describes related work on uncertainty modeling and
on recognition of degraded license plates. Section 3 intro-
duces the Bayesian neural networks, the proposed entropy
weighting, and the proposed reliability score. Section 4
presents our experiments, and Sec. 5 concludes the work.

2. Related Work

The sensitivity of machine learning models to out-
of-distribution samples is of increasing importance in
reliability-critical application fields like autonomous driv-
ing [17] or multimedia forensics [15, 16]. Hendrycks and
Gimpel propose to detect out-of-distribution examples , and
hence to anticipate misclassifications by analyzing the clas-
sifier softmax activations [8]. However, Guo et al. showed
that these softmax statistics do not represent the likelihood
of correctness well [7]. Softmax statistics can be improved
via calibration to the model confidence. For example,
Liang et al. proposed the temperature scaling method [13].
However, this approach may still lead neural networks to
make overly confident decisions in out-of-distribution do-
mains as shown by Maier et al. [16].

Various approaches address these issues by enabling a
neural network to express uncertainty in its predictions.

One approach is to explicitly learn confidence estimates
in a neural network with two output branches that pro-
vide the prediction and its uncertainty estimate [4]. An-
other approach is to approximate the posterior distribution
in a Bayesian framework. Gal and Ghahramani proposed
MC-dropout as a discrete approximation [0]. Lakshmi-
narayanan et al. propose a similar idea, namely to use an en-
semble of neural networks for uncertainty estimation [11].
Both approaches, however, only approximate the full pos-
terior distribution of the Bayesian approach. Blundell ef
al. [2] show that variational approximation can be utilized
for neural networks. The resulting Bayesian neural network
(BNN) models probability distributions instead of scalar
point estimates over the trainable parameter space. This
property enables the network to predict uncertainty, which
allows to assess the reliability of a prediction. BNNs have
shown solid performance, robustness, and reliability in var-
ious tasks, e.g., pixel-wise depth regression [9], biomedical
image segmentation [ 0] and multimedia forensics [ 15, 16].
In this work, we apply BNNSs to the reliability-critical field
of forensic license plate recognition.

Early works on license plate recognition oftentimes as-
sume controlled acquisition conditions, and hence data
of relatively high quality. Early works propose hand-
crafted character recognition pipelines [19, 20, 26]. Li
and Shen [12] introduced the first CNN architecture with
bi-directional recurrent neural network and a connectionist
temporal classification (CTC). A similar approach by Zou et
al. proposes a Bi-LSTM [28].

There is an increasing number of works that address li-
cense plate recognition from low-quality images. gpaﬁhel et
al. propose a CNN for the recognition of low resolution and
low quality European license plates [24]. Agarwal et al.
was first to propose a CNN for deciphering unreadable US
license plates [1]. Lorch et al. extended this work [14], and
Moussa et al. proposed a sequence-based method for the
same task [18]. Additionally, Rossi et al. [22] extended the
work of Lorch et al. [14] by combining a UNet-based [21]
denoising network with a license plate deciphering CNN.
Since the proposed two staged model by Rossi et al. [22]
performs on par with Lorch et al. [14], we use the CNN
architecture by Lorch et al. as our baseline model to recog-
nize low-quality German license plates. In similar spirit to
the work of Rossi et al., our proposed method supports an
analyst with additional information. However, in contrast to
previous works, our main focus is on reliable estimates. Our
proposed method integrates multiple individual estimates,
that can either come from a sequence of images or from a
set of BNN estimates from a single image.

3. Reliable License Plate Recognition

Training a standard neural network consists of learning
optimal parameters, or point estimates, that maximize the



unknown posterior distribution P(w|D) over the weights w
given some training data D. In contrast to this paradigm,
Bayesian deep learning aims to estimate the full posterior
distribution over the weights. This enables the estimation of
the predictive uncertainty on unseen data. Exact inference
is intractable due the large parameter space within a typi-
cal neural network (which is not surprising considering that
exact inference is also intractable in much smaller Bayesian
models). However, the posterior distribution can be approx-
imated via variational inference, as shown by Blundell et
al. [2]. Through variational approximation, the intractable
integration problem is reformulated into an optimization
problem. Here, the goal is to find optimal parameters 6 of
the weight distribution ¢(w|f), subject to minimizing the
Kullback-Leibler divergence between ¢(w|f) and the true
unknown distribution P(w|D).

0" = argmin KL [g(e|6) | P(|D)]

= arg;nin KL [¢(w|0)]|P(w)] = Eq(w|o) [log P(D|w)]
(1)

Once we obtain the variational parameters, we can approx-
imate the exact cost as described by Blundell et al. [2] and
formulate an estimator of the predictive posterior through
sampling from the variational posterior distribution, accord-
ing to Kwon et al. [10] as

Eqwlo) [Py*|x*)] = /P(y*|m*,w)q(w|0)dw
2

Q
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with * representing an unknown sample, y* being the pre-
dicted class and P,,:(y*|x*) denoting sampling from the
predictive posterior. The approximation in Eq. 2 draws n
Monte-Carlo samples from the trained network on unseen
data. Then the network’s uncertainty over the predictions is
expressed via the variance of our estimator [10],

Var [P(y|2)] = Eywio) [y ] = Bguln) Y] Eqwo) [y]T@

By evaluating the predictive uncertainty for an unseen
data sample, we can consider the uncertainty as a proxy
for reliability. The predictive uncertainty is a measure of
the disagreement between different instances of the BNN.
A higher uncertainty implies various possibilities to explain
the given data sample, due to the BNN’s inability to ex-
trapolate to the data distribution from which the sample is
drawn. However, especially in high entropy regions, the un-
certainty alone is a poor indicator of reliability. If the model
output is an uninformative prediction, i.e., when each class
is equally likely, the predictive uncertainty is extremely low
and thus also uninformative. We can account for this caveat

P1 p2 p3

Figure 1: Schematic visualization of the calculation of the
predictive distance between two predictions. The blue bars
p1, P2, P3 representing example mean predictions, whereas
the error bars represent the network’s uncertainty over the
predictions. A higher distance is reflected in an increased
reliability score, while a smaller or negative distance will
reduce the score, respectively.

by also considering the entropy over the predictions. The
entropy is defined as

c
H(p) = - _pi-log(pi) “4)
i=1

where C' denotes the number of classes. Hence, the most
uninformative prediction is p; = ps = --- = p¢, thus the
maximum entropy is then given as

‘1 1
Hmax(p> = _26 log(a) (5)
= log(C) —log(1).

Based on Eq. 4 and Eq. 5, we define a weighting term that
expresses the predictive entropy as

H(p)
Hmax (p) .

Equation 6 will also be used as entropy weight in the evalu-
ation. Further, instead of evaluating the overall uncertainty
over the predictions, we evaluate the predictive distance
D, (i, j) between two predictions, which we define as

I(p) =1~ 6)

Dy (i, 7) =Eqwiey [P(y; = 1a)] = Var [P(y; = 1]=")] -
E;(w)0) [P(y;‘ = 1|a:*)] — Var [P(y]* = 1|w*)]
(N
and normalize into [0, 1] range using the sigmoid function

1

O—(DP(Z?])) = 1 + e(—(l'Dp(iyj)) ) (8)



where we empirically set &« = 6. A visual explanation of
the predictive distance is shown in Fig. 1. Here the blue
bars p1, pa, p3 represent three example mean predictions of
one of the output layers. The error bars represent the net-
work’s uncertainty over the predictions, thus the variance as
defined in Eq. 3. The predictive distance is then defined as
the overlap between the mean prediction and the respective
variance. A higher absolute distance with pgic > 0 is re-
flected in an increased reliability score. Whereas a smaller
or negative distance, represents the networks inability to
distinguish which prediction is more likely. In the exam-
ple case this would be the distinction between p, and ps,
thus reflected in a decreased reliability score.
The reliability score is defined as

I(p) ) —

Rip.Dy(i.1)) = exp (8- -5

where we empirically set 5 = —10.

4. Experimental Results

We conduct a series of experiments on license plate
recognition on real world video data to evaluate the
Bayesian CNNs (BNN) ability to express uncertainty and
its respective reliability. To this end we compare our pro-
posed BNN model to the state-of-the-art model for severely
degraded license plate recognition by Lorch ef al. [14]. The
CNN by Lorch er al. [14] is originally trained on Czech li-
cense plates. However, we slightly adapt the model to our
task and retrain it on a synthetic dataset of German license
plates for a direct and fair performance comparison.

4.1. Datasets

The training is performed on a synthetic dataset of Ger-
man license plates. Here, we can apply strong degrada-
tions (e.g., down-sampling, blur, and compression) in a con-
trolled way via data augmentation. For the evaluation, we
record a smaller set of real images of German license plates
on moving vehicles. Both datasets consist of a sequence
of characters followed by numbers. German area codes are
replaced by random characters to prevent biases towards li-
cense plates from large cities.

4.1.1 Synthetic Dataset

The synthetic dataset consists of about 1.3 million images
of German license plates. The images are created with size
180 x 40 pixels with the official font and formatting using
the 3D rendering framework by Spruck et al. [25]. Exam-
ples are shown in Fig. 2 (a).

Extensive augmentations are applied during training
with Gaussian noise, motion blur, random rotation, random
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(a) Generated synthetic data

(b) Augmented samples

Figure 2: (a) Example images from the synthetic German
license plate dataset. (b) License plate images after data
augmentations for the model training.

Table 1: Augmentation parameters for training (see text for
details).

] Augmentations ‘ Prob. ‘ Min. ‘ Max.
Gaussian Noise 0.5 o = 0.001 o =05
. a=1° a = 180°
Motion Blur 0.7 kernel =2 kernel = 30
Rand. Rotation 0.5 a=1° a=10°
Rand. Padding 0.5 1px 50 px
JPEG Comp. 0.5 q=>5 q=99
Downsampling 0.5 width = 20 | width = 160

padding, down-sampling, and JPEG-compression. The pa-
rameter ranges per augmentation type are listed in Tab. 1.
Most augmentations are applied independently with proba-
bility paug = 0.5. One exception is motion blur, where we
empirically chose p,,, = 0.7 after noticing that this aug-
mentation has a stronger impact on the performance. The
other exception is that if Gaussian noise or JPEG compres-
sion are selected, the image is also downsampled prior to
the noise or JPEG augmentations. Finally, each image is
again up-sampled to the original resolution of 180 x 40.
For the down- and up-sampling operation, we randomly de-
cide between bilinear-, bicubic-, nearest neighbor-, areal-
and Lanczos interpolation method. Figure 2 (b) shows ex-
ample augmentations. The synthetic dataset is split into dis-
tinct sets of 80% for training, 10% for validation, and 10%
for testing.

4.1.2 Real-world Dataset

The real-world dataset consists of 95 sequences of vehi-
cles that pass by a Google Pixel 2 smartphone camera. All
scenes show a total of 15637 frames with 164 frames on
average per scene. Each license plate is rendered, using the
same pipeline as for the synthetic dataset, printed on paper
and attached manually to the car on top of the real license
plate. The recordings show in each scene an approaching
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Figure 3: Example license plate images from the real-world
dataset.

or passing car. Figure 3 shows example images from the
real-world dataset.

4.2. Model Architecture

All models are implemented in Tensorflow. The CNN
by Lorch et al. [14] serves as backbone. The model expects
a grayscale image with resolution of 180 x 40 followed by
four convolution blocks. Each convolution block consists of
two convolution layers with a receptive field of 3 x 3, fol-
lowed by a maximum pooling operation. The classification
head consists of two fully connected layers with 2048 and
512 units, respectively, followed by the output layers. We
modify it to use nine output layers, each of which is a fully-
connected layer with 41 nodes and softmax activation. The
41 nodes encode the characters a to z, 0 to 9, three German
umlauts, space, and ‘-° to separate the area code from the
other characters. Figure 4 shows a schematic overview of
the architecture. The BNN uses the CNN as a template, i.e.,
with identical numbers of layers, filter kernel dimensions
per convolution layer, and fully-connected layers. To make
it Bayesian, we replace the fully-connected layers by flipout
fully-connected layers [27] from the Tensorflow probability
framework [5]. The prior distribution is heuristically chosen
as a zero-mean Gaussian with unit-variance. We perform
inference via Eq. 2 with n = 100 Monte Carlo samples,
and obtain the predictive variance from Eq. 3. We assume
a normally-distributed variational posterior, thus the BNN
has roughly twice as many training parameters as the CNN.

4.3. Training Protocol and Evaluation Metrics

The CNN and the BNN are trained on the synthetic data.
Both models are trained on augmented grayscale input im-
ages with a resolution 180 x 40, depicting the full license
plate, as shown in Fig.2 (b). Each of the nine output lay-
ers is then trained to classify the character at the respective
position within an image. The optimizer for training both
models is Adam with a learning rate of [ = 1074, B; = 0.9,
Bs = 0.999 and € = 107, and a batch size of 128. We train
the CNN for 150 epochs and our BNN for 250 epochs due
to the larger number of parameters. We select the model
by Lorch et al. [14] and the proposed BNN model from the
epoch in which each performs best on the validation set.

[ 4
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16 16 > 1616 >  conv4d

conv2 conv3
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fc7+softmax

Figure 4: Model architecture for German license plate
recognition. As input the model expects a fixed-size
grayscale input image with resolution 180 x 40, followed
by four convolution blocks. The classification head consists
of two fully connected layers and nine output layers each
with 41 output nodes followed by a softmax activation.

These models are used for the evaluation.

We report two metrics in the evaluation. First, the per-
character accuracy, i.e., the ratio of correctly classified char-
acters in the test set. Second, the license plate accuracy, i.e.,
the ratio of the correct classification of a whole license plate
over all license plate images. Additionally, we report the
top-k accuracies for k € {1,3,5} where we count whether
the true answer is within the k£ most likely predictions.

4.4. Recognition Accuracy on Synthetic Data

Both models perform strongly when testing on synthetic
images, i.e., when training and test distributions are well
aligned. The top-1 per-character accuracies are 0.920 and
0.923 for the CNN and our BNN, respectively. Per-license
plate accuracies are 0.747% and 0.755% for the CNN and
the proposed BNN. Hence, both models perform approxi-
mately equally well when the training and test data distri-
bution are aligned. However, we note that this assumption
is (almost certainly) overly optimistic, since images from
real cases come from entirely uncontrolled sources.

4.5. Recognition Accuracy on Out-of-Distribution
Real Data

We now focus on the test set of real images, which is en-
tirely unseen, i.e., no data from this source has been used
during training. This introduces a significant shift between
the training and testing distributions, which can also visu-
ally be observed when comparing Fig. 2 with Fig. 3. The
difference between training and testing distribution consid-
erably reduces the absolute accuracies. Nevertheless, we
argue that police investigations are oftentimes forced to op-
erate under such a distribution shift, since the data under
investigation almost always comes from third parties, and




Table 2: Accuracy per character on real data. The best per-
forming according to the applied weighting is marked bold
for each model. The entropy weighting greatly improves
the model performance for both the CNN by Lorch and the
BNN.

Weighting Net Top-1 | Top-3 | Top-5
independent Lorch 0.369 | 0.531 | 0.628

BNN 0.374 | 0.531 | 0.626
uniform Lorch 0.523 | 0.751 | 0.830

BNN 0.542 | 0.757 | 0.828
entropy Lorch 0.620 | 0.782 | 0.847
(proposed) BNN 0.627 | 0.794 | 0.850

Table 3: Accuracy per license plate on real data. The best
performing according to the applied weighting is marked
bold for each model. Here, the entropy weight also shows
significant improvements in license plate recognition rate
for both models.

Weighting Net Top-1 | Top-3 | Top-5
independent Lorch 0.007 | 0.054 | 0.095

BNN 0.014 | 0.047 | 0.088
uniform Lorch 0.011 | 0.189 | 0.305

BNN 0.021 | 0.137 | 0.316
entropy Lorch 0.032 | 0.284 | 0.389
(proposed) BNN 0.053 | 0.263 | 0.368

we argue that it is infeasible to cover the space of all possi-
ble source distributions in the training process.

We evaluate three different weighting approaches to fuse
additional information from several frames of video se-
quences. These weights are evaluated for the CNN by
Lorch [14] and the proposed BNN. The weighting “inde-
pendent” treats all inputs independently, i.e., without per-
forming any inference across images. The weighting “uni-
form” integrates multiple estimates on the same license
plate via averaging, i.e., as uniformly weighted estimates.
The weighting “entropy” combines multiple estimates with
the proposed entropy weighting.

Table 2 shows the per-character accuracies of these vari-
ants. We report a continuous increase in top-k accuracies
between the three variants. The proposed entropy weighting
achieves the highest accuracies for both evaluated networks.
The relative performance between the CNN by Lorch and
the proposed BNN is approximately on par. The relative
improvement between the three weighting variants is sub-
stantial. For example, the top-1 accuracy increases from
0.369 to 0.523 when using uniform weighting, and further
to 0.620 with the proposed entropy weight.

Analogous observations can be made for per-license
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Figure 5: Recognition accuracy of uniform weights versus
entropy weights per character position on the license plate.
Entropy weights almost everywhere improve the accuracy.

plates accuracies in Tab. 3. Also here, the proposed entropy
weighting outperforms the other weightings by a large mar-
gin. When comparing the CNN by Lorch with the BNN,
the top-1 accuracies are somewhat better for the BNN, top-
3 and top-5 accuracies are somewhat better for CNN.

The improvement of entropy weights over uniform
weights is quite consistent, also across the individual posi-
tions of the license plate. Figure 5 shows that performance
difference for each of the nine individual character posi-
tions. At almost all positions, the proposed entropy weights
improve the accuracy.

Overall, the entropy weight benefits from the fact that it
prefers confident predictions with low entropy, and penal-
izes on uninformative predictions with high entropy. This
approach leads to the substantial improvement in detection
accuracy for all variants of top-k predictions.

4.6. Rejection of Unreliable Predicitons on Single
Frames

A practically relevant, but more challenging scenario is
the case that only a single frame is available. This may be
the case if a vehicle quickly passes by, and is recorded by a
low-quality camera that stores the footage at a low framer-
ate. The entropy weight cannot be used in this case, since
it requires multiple frames that show the same license plate.
Hence, the calculation of a reliability score can only use in-
formation from the inference within one input frame. The
CNN only provides the softmax statistics to mimic a distri-
bution of license plate characters. The BNN offers the addi-
tional advantage to inherently provide the predictive distri-
bution from its Monte Carlo sampling, from which propose
to calculate the entropy as reliability score (cf. Sec. 3).

We show its usefulness by rejecting uncertain decisions.
More specifically, we show that thresholding on the relia-
bility score enables the BNN to reject a large percentage of
false predictions while preserving most of the correct pre-
dictions. For comparison, we perform the same experiment
on the CNN'’s Softmax statistics.

The experimental protocol is described below. We first
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Figure 6: Performance comparison of Lorch [14] with Soft-
max statistics (orange) and our proposed BNN with reliabil-
ity scoring (blue). The BNN preserves a higher percentage
of correct classifications (top) and also reduces a higher per-
centage of false predictions (bottom). See text for details.

evaluate a baseline performance for the BNN and CNN,
where we simply count the accuracy of predicting the most
likely character per license plate position. Then, we thresh-
old the reliability score to reject predictions with low relia-
bility. In this experiment we set r = 0.6 as a tradeoff for re-
jecting false predictions and preserving correct predictions.
Note that this threshold is not particularly optimized for the
test data. An analyst can choose other tradeoffs (less false
predictions or more correct predictions) by varying r.

Averaged over all real-world scenes and all character po-
sitions, the baseline CNN achieves an accuracy of 37.5%
(i.e., with 62.5% false predictions), and the BNN achieves
an accuracy of 37.9% (i.e., with 62.1% false predictions).
Applying the threshold reduces the CNN'’s false predictions
to 37.8% while reducing the correct predictions to 6.3%.
Conversely, the proposed BNN achieves a reduction of its
false predictions to 7.8% while preserving the correct pre-
dictions at 23.5%. We argue that the reduced accuracy is
justified by the dramatic reduction of false predictions by
almost 90%. These results are further illustrated per char-
acter position in Fig. 6. On top, we show the percentage of
preserved correct classifications. On bottom, we show the
percentage of reduced false predictions.

In summary, the CNN is not able to correctly identify
wrong classifications as non-reliable predictions. Addi-

tionally, it does not preserve correct classifications. Con-
versely, the proposed BNN with reliability score shows sig-
nificantly better performance on preserving correct classifi-
cations, while at the same time significantly reducing false
classifications. On average, the CNN preserves 16% of cor-
rect classification while our method keeps 62%. Similarly,
the CNN reduces the false predictions on average by only
39%, while our BNN reduces false predictions on average
by 89%. Hence, the CNN rejects mostly correct classifi-
cations while false predictions are still mostly classified as
reliable predictions.

Hence, the proposed reliability scoring further increases
the reliability of the BNN classifier by a considerable mar-
gin. The false predictions are greatly reduced, while most
of the correct classification results are preserved.

5. Conclusion

In this work we investigate approaches to enhance the
reliability for recognizing severely degraded license plates.
First, we use the conditional dependence among frames that
show the same license plate. We propose an entropy weight
to combine predictions from multiple frames by their con-
fidence. This approach performs considerably better than a
naive weighting or an independent treatment of the predic-
tions. Second, we propose a Bayesian neural network that
is able to express uncertainty even within only one single
frame. Third, we propose a reliability metric that combines
the entropy over the predictions with predictive uncertainty.
It enables the network to detect and abstain from unreli-
able predictions. Removing unreliable predictions greatly
increases the portion of correct prediction. Here, our pro-
posed approach clearly outperforms Softmax statistics for
reliable classification.

We hope that the proposed methods help towards clos-
ing an important gap for reliability-critical applications.
In future work, we will expand the investigation of re-
liability enhancements to further model architectures and
backbones like ResNet, DenseNet, or other CNN fami-
lies as well as to alternative methods for expressing uncer-
tainty.
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