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Abstract—The goal of multimedia forensics is to determine
origin and authenticity of images and video. The currently most
successful approaches use machine learning, and demonstrate
excellent performance in lab settings. However, these methods
are still challenged to generalize to images from the internet
with potentially complex and partially unknown processing.
The current best counter-measure is extensive training data
augmentation, but this is extremely costly considering the many
possible processing variants that must be covered.

In this work, we review and consolidate our recent efforts on
a different approach to cope with the challenge of images from
unknown provenance. We propose to concentrate the training
to the forensic task at hand, and to additionally include a
measure for uncertainty to detect when a classifier is not confident
on a given input. We believe that uncertainty-aware tools can
complement existing efforts when data augmentation fails, and
additionally provide valuable feedback to forensic analysts.

Index Terms—multimedia forensics, machine learning,
Bayesian modeling, reliability

I. INTRODUCTION

Multimedia forensics aims to provide clues to the
authenticity and origin of an image. The image formation
offers several complementary traces which can be forensically
exploited. For example, classical methods use the scene
geometry [1], sensor noise patterns [2], or distortions in
the image or video compression [3, 4]. A more complete
introduction to the breadth of clues in multimedia forensics
can be found in textbooks [5, 6].

Many of the classical forensic traces are analytic, and are
therefore linked to model assumptions that can be manually
verified by a forensic analyst. However, analytic cues are
inherently limited in the complexity of the image formation
models that they use. Hence, these approaches have difficulties
to operate on images or videos that have a complex processing
history like many images on the internet. For example,
the largest social media sites routinely downsample and
recompress multimedia content prior to distribution, which
complicates the use of analytic forensic cues.

Thus, research in multimedia forensics focused in recent
years on learning-based methods. These approaches derive
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forensic cues directly from the data, which demonstrates
considerable performance improvements on data that is
difficult to model analytically. For example, impressive results
have been reported for the characterization of image noise [7],
for the detection of global image postprocessing [8], or for the
detection of so-called DeepFakes, i.e., images of computer-
generated faces [9].

However, the use of machine learning models introduces
new practical challenges. To the forensic analyst, these
models are typically opaque, such that predictions can not be
validated. The expected performance of a machine learning
model not only depends on the reported performance in
laboratory settings, but also in its ability to generalize well
to the single specific input that may be subject of the forensic
investigation. Prior work showed that learning-based detectors
are sensitive to test images that differ too much from the
training data [10, 11]. As a consequence, it may easily occur
that a model can not operate well on an input that slightly
differs from the training data, e.g., in its noise or compression
characteristics. Without the ability to investigate deeper into
the implicit assumptions of the learned model, such failure
cases are difficult to detect for a forensic analyst.

To address this challenge, we recently proposed machine
learning classifiers that provide a built-in confidence score.
These classifiers use a Bayesian framework to explicitly model
the uncertainty that is associated with a classifier decision.
The uncertainty can be further decomposed into aleatoric
and epistemic uncertainty [12]. Aleatoric uncertainty indicates
inherent ambiguities in the data, and is as such irreducible with
the given model and data. Epistemic uncertainty indicates a
lack of training data for the given input, and can be reduced
by tailoring the training set to the input. A forensic analyst can
use these uncertainties to derive a reliability in the classifier’s
decision, and also to reject decisions with marginal confidence.

In this work, we provide a gentle introduction to the
Bayesian framework for uncertainty quantification, put our
recent works [11, 13, 14] on classification with uncertainty in a
joint perspective, and provide experiments for the application
of JPEG forensics and resampling detection under different
types of dataset shifts. We also provide a discussion on current
limitations and open research challenges that hopefully benefit
the overall progress in the field.



II. RELATED WORK

There are currently two main strategies in multimedia
forensics to mitigate performance degradation when the
training data is not sufficiently representative for the test data.

First, several works propose to train specific detectors for
images of different qualities [7, 15, 16]. Arguably, the most
notable parameter that affects the detector performance on
images is the JPEG compression quality. Hence, a common
strategy is to train an individual detector on images that have
been compressed with a specific JPEG quality factor. For
evaluation, the best matching detector is determined based
on the distance of the JPEG quantization matrices between
the test image and the training images. If the compression
parameters of the testing data are very similar to one of the
trained models, this approach can lead to very strong results.
However, it is also very costly to maintain a database with
multiple copies of a model, each fully trained on one specific
quality factor. Additionally, although this strategy improves
the overall results, it may still fail for other types of unseen
distortions or due to other subtle differences in the JPEG
implementation [11].

The second widely used strategy to mitigate the training-
test mismatch is to train a single classifier with extensive data
augmentation [7, 17, 18]. This approach aims to anticipate a
representative space of common image editing operations, and
is also the best strategy in multimedia forensics competitions
with completely unseen testing data. However, also this
approach requires a significant effort in training resources
while not necessarily guaranteeing that all possible processing
variants are covered. Additionally, the performance of a single,
broad classifier is oftentimes weaker than the performance of
a specialized classifier, as noted in a recent study on classifier
performance guarantees for image denoising [19].

In the broader machine learning literature, Bayesian learning
techniques received increasing attention in the past years.
Gal’s Ph.D. thesis is an early work that covers Uncertainty
in Deep Learning [20]. Blundell et al. presented a method to
effectively train deep neural networks that follow the Bayesian
framework [21]. Arguably the simplest approach to create
uncertainties is via Monte-Carlo dropout at test time, which
has been explored by Gal and Ghahramani [22]. Several
later works explore different application fields of uncertainty
estimates, for example in medical image analysis [23, 24].

A competing, fundamentally different approach to
uncertainty is to use a conventional neural network, and
to interpret the relative magnitude of the class activations
in the output layer as confidence. Hendrycks and Gimpel
examine the softmax statistics of the output layer to detect
a training-test-mismatch [25]. However, these statistics are
oftentimes skewed towards overly confident predictions. An
alternative is to actively calibrate the statistics. To this end,
Guo et al. propose Temperature Scaling [26], which inspired
several follow-up works [27]. These approaches have the
benefit that they can be applied on any commonly used neural
network architecture. However, they lack the mathematical

rigour of Bayesian approaches.
Ovadia et al. [28] recently presented a comparative study

of several uncertainty metrics, which reports that deep
Ensembles [29] perform quite well, i.e., an ensemble of neural
networks with different training initializations. However, this
approach requires that multiple copies of the same network
are trained and evaluated, with the associated computational
resource requirements.

III. MODELING UNCERTAINTY IN MULTIMEDIA
FORENSICS

The approach to include an uncertainty metrics into the
classifier is conceptually relatively straightforward: at least one
scalar component of the classification system is replaced by
a distribution, such that the predictions themselves becomes
probabilistic. Examining the distribution of outputs enables
drawing conclusions on the uncertainty. Narrow distributions,
i.e., very similar predictions, are an indication that the model
is very confident. Conversely, broad predictive distributions
indicate that the model is not confident, i.e., that the input can
lead to controversial decisions.

Mathematically, this behavior is achieved via Bayesian
inference. We consider the predictive distribution

p(y∗|x∗,xt,yt) =

∫
p(y∗|x∗,w)p(w|xt,yt) dw , (1)

where y∗ denotes the label that shall be predicted given
input x∗ and the training data and labels xt and yt. On
the right hand side of the equation, the dependency on the
classifier parameters is made explicit with w. Some or all
of the parameters form a distribution, which is calculated
from the training data, indicated by the posterior distribution
over the weights p(w|xt,yt). The predictive distribution is
obtained by marginalization over these weights via integration.
The predictive distribution p(y∗|x∗,xt,yt) is categorical for
classification tasks, and continuous for regression tasks.

The posterior distribution of weights p(w|xt,yt) can be
further decomposed via Bayes’ theorem to

p(w|xt,yt) =
p(yt|xt)p(w)∫

p(yt|xt,w)p(w) dw
, (2)

where the numerator consists of the product of likelihood and
prior, and the denominator of the marginal likelihood, which
is also called evidence.

The integral in the evidence can in general not be solved
analytically, and numerically integrating over the whole space
of weights w is very expensive. An alternative is to use a
variational approximation with the additional assumptions that
the model parameters are independent, and that the posterior
of each parameter follows a simple distribution. In that case, a
distribution q(w|θ) with parameters θ can be calculated that
approximates p(w|xt,yt), such that the predictive distribution
from Eqn. 1 becomes

p(y∗|x∗,xt,yt) ≈
∫
p(y∗|x∗,w)q(w|θ) dw . (3)



The parameters θ of q(w|θ) are determined by minimizing
the Kullback-Leibler (KL) divergence between q(w|θ) and
p(w|xtyt),

θ∗ = argmin
θ

KL (q(w|θ)‖p(w|xt,yt)) (4)

= argmin
θ

KL (q(w|θ)‖p(w)) (5)

− Eq(w|θ)(log p(yt|xt,w)) .

The full derivation of this identity is provided in Eqn. (2)
of our earlier work [13]. The expression in Eqn. 5 is the
negative evidence lower bound (ELBO). Hence, maximization
of the ELBO minimizes the KL divergence between q(w|θ)
and p(w|xt,yt). The optimum is found iteratively via gradient
descent on the negative ELBO. To this end, N random
weights wi are sampled from q(w|θ) and evaluated with the
approximation equation

KL (q(w|θ)‖p(w))− Eq(w|θ)(log p(yt|xt,w)) (6)

≈ 1

N

N∑
i=1

log q(wi|θ)− log p(wi)− log p(yt|xt,wi) . (7)

With the trained classifier, a prediction is performed very
similarly, by again sampling weights wi and averaging the
resulting predictions. The uncertainty is calculated from
the variance of the predictions. In particular, the epistemic
uncertainty, which expresses a mismatch between the training
and testing data distribution, is calculated from the N draws
of the test run as [12, 24]

Varep(y
∗) =

1

N

N∑
i=1

(p(y∗|x∗,wi)− q(y∗|x∗))⊗2 , (8)

where ⊗2 denotes the outer vector product.
This framework requires two design decisions. In our

experiments, we use a Gaussian weight prior p(w). For the
representation for q(w|θ), we use a mean-field approximation.
Furthermore, in practice, it is also important to introduce a
weight in the loss of Eqn. 7, since the first two terms grow
with the number of parameters, and the last term grows with
the dataset size.

This framework is sufficiently general to cover
different specific models. We explored Bayesian logistic
regression [11], Gaussian processes [30], and Bayesian neural
networks [13, 14] as specific realizations. For Bayesian neural
networks, this framework can be effectively included into the
standard backpropagation, as shown by Blundell et al. [21].
Simpler classifiers like Bayesian logistic regression enable
a further simplification when used with a Gaussian weight
prior, namely to estimate the variational posterior q(w|θ) via
Expectation-Maximization [11].

The derivation above makes the inclusion of a weight
distribution into the classifier explicit. However, it is
interesting to note that this is not the only design variant to
obtain a distribution of the outputs. To notable alternatives are
Monte-Carlo dropout [22] and deep Ensembles [29]. Monte-
Carlo dropout randomly deactivates weights at test time to

obtain a predictive distribution. Deep Ensembles form the
predictive distribution from the outputs of multiple networks
with identical architecture that were trained with different
initializations. In both cases, the epistemic uncertainty can be
calculated analogously as the variance of the predictions.

IV. EXPERIMENTS

We illustrate the performance of this framework on selected
experiments that complement earlier results using Bayesian
Logistic Regression [11] and Bayesian Neural Networks [13].

A. Detection of Double JPEG Compression

We first investigate the application of double JPEG
compression. This classical forensic problem is a binary
classification task. We re-use the Bayesian Logistic Regression
and the experimental setup from our earlier work [11], but
study here the dataset shift when the quality factor of the
secondary JPEG compression (QF2) is unknown. This scenario
has been considered, e.g., by Amerini et al. [31], and may
occur when a JPEG image is re-saved in a lossless format
such as PNG, such that the JPEG header information is lost.

We use the RAISE1k dataset [32], with a 50/50 split
into training and testing. For each image, we create a
single-compressed version with fixed quality factor QF2train
for training, and multiple double compressed versions with
different primary quality factors QF1 ∈ {50, 55, . . . , 90}
und again QF2train for the secondary compression. For
the training, 500 of the 5000 double-compressed images
are randomly selected, such that the identical number of
single- and double-compressed images is used. This protocol
is repeated for different secondary compression factors
QF2train ∈ {50, 55, . . . , 90}. All compression steps are
performed with libjpeg. We extract first-digit features from
the first nine AC bands, and count the frequency of all nine
possible first digits, which leads to a 81-dimensional feature
vector, and use Bayesian Logistic Regression analogously to
our previous work [11].

The evaluation investigates the performance of the method
in the challenging case when the secondary quality factor
differs between training and testing, i.e., QF2train 6= QF2test.
Figure 1 shows the results. On top, the performance of
detecting double compression is shown in terms of accuracy
for all combinations of QF2train and QF2test. As expected,
the performance of the method is strongly reduced by
a mismatch in the training and test distributions. Most
combinations of secondary quality factors reduce the classifier
even to guessing chance of 0.5. However, the second row
shows the area under the curve (AUC) over the uncertainties
from the Bayesian Logistic Regression: in almost all cases,
the dataset shift can be perfectly detected with an AUC of 1.
This information can be used as a feedback to the analyst to
indicate that the classifier is applied to an out-of-distribution
input.

The proposed framework also compares favorably to other
methods. We investigate a k-nearest-neighbor (kNN) classifier
with k = 5 to calculate the uncertainty from the distance
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Fig. 1. Detection of double JPEG compression for the case when the
QF2 factor between the training set and testing set differ. As expected, the
accuracies (top) are strongly impacted by this dataset shift. However, the AUC
over the uncertainties (bottom) indicates that these cases can be detected and
reported to the forensic analyst.

of the test sample to the training data in the feature
space. Additionally, we investigate the combined classification
framework (CCF) by Wang et al. [33]. This framework
consists of two one-class SVMs and one two-class SVMs
for camera classification. The one-class SVMs are trained on
each of the two classes, and use radial basis functions with
ν = 0.001 that is found via grid search. If both classes
disagree, the two-class SVM decides between the classes.
It uses a linear kernel with C = 1.0. The uncertainties
are calculated from the binary decision whether a sample is
recognized as inlier or outlier. Table I shows the result of this
comparison. The proposed Bayesian Linear Regression (BLR)
provides overall the best tradeoff. It outperforms the baselines
both with respect to the detection accuracy for in-distribution
samples, and is only matched by the k-NN classifier for the
detection of out-of-distribution (OOD) samples.

TABLE I
DETECTION OF DOUBLE JPEG COMPRESSION UNDER DATASET SHIFT.

COMPARISON OF THE PROPOSED BAYESIAN LINEAR REGRESSION (BLR)
WITH THE K-NN CLASSIFIER AND THE COMBINED CLASSIFICATION

FRAMEWORK (CCF) BY WANG et al. [33].

Method In-dist. Acc. OOD AUC
kNN 0.86 1.00
CCF 0.91 0.96
BLR 0.99 1.00

B. Detection of Resizing

We also investigate the application of resizing detection
under dataset shift, in this case due to different types
of postprocessing. The investigated classifiers are Bayesian
Logistic Regression and Bayesian Neural Networks.

To evaluate the Bayesian Logistic Regression, we randomly
extract 25 patches from the RAISE1k dataset, each with a size
of 512 × 512 pixels. The patches are converted to gray. We
create a copy of each patch, resized via bicubic interpolation
by a factor of 1.3 and again cropped around the center to
512×512 pixels. The training and test sets are split 80/20, such
that a source patch and its resized complement is either part of
the training or set, but not in both. On each patch, we calculate
the popular SPAM features with a quantization factor of 4.5
and cropping interval T = 1. This yields a 50-dimensional
feature vector per patch. These feature vectors are used to
train a Bayesian Logistic Regression Model analogously to
our previous work [11].

For testing, we additionally apply Gaussian blur with blur
kernels σb ∈ {0.3, 0.4, . . . , 0.7}, additive Gaussian noise with
a standard deviation of σn ∈ {0.2, 0.3, . . . , 0.6}, and JPEG
compression with quality factors qf ∈ {100, 90, . . . , 40}.
These distortions are unseen during training, to simulate the
situation of a dataset shift on input from unknown sources.

Figure 2 shows the evaluation results. On top, the detection
accuracy is shown. As expected, the detection accuracy
decreases with increasing amount of unseen postprocessing.
On bottom, the AUC for detecting out-of-distribution inputs
from the uncertainty measure is shown. Gaussian blur and
JPEG compression can be reliably detected. The OOD
detection for additive Gaussian noise is more difficult, the
AUC only approaches 0.9 for the highest noise level.
Nevertheless, the vast majority of OOD cases can be reliably
detected for all three types of postprocessing.

We perform a very similar experiment with a Bayesian
Neural Network (BNN), using the architecture and following
the protocol of our earlier work [13]. To this end, we split
the images of the RAISE1k dataset 80/10/10 into training,
validation and testing data, convert the images to grayscale,
and create rescaled copies of each image with resizing factors
between 1 and 1.5 in steps of 0.05. Fig. 3 looks at the same
experiment with a BNN. We then draw from the original image
and one of its resized copies N = 50 non-overlapping patches
of size 256×256 pixels. The detection network is a direct BNN
adaptation of the CNN architecture by Bayar and Stamm [34]
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Fig. 2. Resizing detection via Bayesian Logistic Regression on SPAM
features. The resized images are subject to various types of postprocessing.

that we also used in our earlier work [13].
For testing, we additionally apply the unseen distortions

of additive Gaussian noise with a standard deviation of
0.20, Gaussian blur with a kernel size of 5 × 5 and a
JPEG compression quality of 85. The resulting epistemic
uncertainties for each resizing factor are shown in Fig. 3.
The epistemic uncertainty for indistribution data is consistently
low across all rescaling factors. Conversely, the epistemic
uncertainties of all distortions are notably larger than 0,
which can be used to detect a mismatch between the
training and test data. It is interesting to observe that
different types of distortions lead to different magnitudes
of the epistemic uncertainties. JPEG compression causes
the highest uncertainties, while Gaussian blur leads to
the lowest uncertainties. Furthermore, it is at first glance
somewhat counter-intuitive to observe that the uncertainty
of Gaussian blur increases with increasing rescaling factor,
while the uncertainty of additive Gaussian noise decreases. We
hypothesize that Gaussian blur removes interpolation traces
that are more notable for higher rescaling factors, while
Gaussian noise emulates a high-frequency variation of the
image content, which the BNN interprets as a more natural
image.

V. OPEN QUESTIONS AND FUTURE RESEARCH

There are still a number of open questions that need to
be addressed for the proposed framework. So far, there is to
our knowledge no systematic examination of the relationship
between the magnitude of the uncertainty and the distortion of
the data. A simple relationship would in the best case allow to
introduce thresholds on the uncertainty measure. Moreover, it
could be used to further fine-tune a practical tradeoff, namely
whether to use a classifier with a slight performance penalty
on data with only slight distortions.

Explainability is another important consideration in
multimedia forensics, particularly when it is necessary to
substantiate the decision of a forensic algorithm in court.
In this respect, analytic features and simple classifiers have
a clear advantage over the currently quite opaque neural
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Fig. 3. Epistemic uncertainties of the Bayesian Neural Network for
resampling detection under various postprocessing steps.

network architectures. Fortunately, the Bayesian framework
is applicable to both types of algorithms, as shown in
the example of Bayesian Logistic Regression with analytic
first digit features and Bayesian Neural Networks that are
entirely data-driven. Besides explainability, another advantage
of Bayesian Logistic Regression is its relative simplicity in
training. Conversely, the training of Bayesian Neural Network
is somewhat more brittle, also compared to standard CNNs:
since each weight is a distribution, two parameters are at
least required per weight to model the mean and the standard
deviation. Hence, a BNN has twice the parameters of a CNN
of identical architecture.

Another open question are the limits of the additional
robustness of Bayesian classifiers. The experiments show that
there is excellent potential in the detection of various types
of out-of-distribution data. However, there is so far no in-
depth study of the smallest distortions that can be detected, or
distortion types that are indetectable, e.g., because they occur
in the feature space at locations where also in-distribution
samples are located. It would furthermore also be interesting
to investigate the robustness of Bayesian classifiers to targeted
attacks, in particular via adversarial examples.

VI. CONCLUSIONS

Machine learning classifiers are challenged by images
with unseen processing, and reliable generalization of these
classifiers is still an open issue. In this work, we present
a recently proposed Bayesian framework for the detection
of out-of-distribution samples in multimedia forensics. The
framework can be flexibly used on simple classifiers such
as Bayesian Logistic Expression and on the considerably
more complex Bayesian Neural Networks. We demonstrate
on two classical forensic tasks the suitability of the
proposed framework, namely for the detection of double
JPEG compression and resampling. In both cases, unseen
postprocessing can be reliably detected. We hope that the



provided open questions and suggestions for future research
further spur the development of reliable forensic classification
systems.
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