
Frequency-Domain Analysis of Traces for the
Detection of AI-based Compression

Sandra Bergmann1, Denise Moussa1,2, Fabian Brand1, André Kaup1 and Christian Riess1
1Friedrich-Alexander University Erlangen-Nürnberg, Germany

2Federal Criminal Police Office (BKA), Germany
{sandra.daniela.bergmann, denise.moussa, fabian.brand, andre.kaup, christian.riess}@fau.de

Abstract—The JPEG algorithm is the most popular compres-
sion method on the internet. Its properties have been extensively
studied in image forensics for examining image origin and
authenticity. However, the JPEG standard will in the near
future be extended with AI-based compression. This approach
is fundamentally different from the classic JPEG algorithm, and
requires an entirely new set of forensics tools.
As a first step towards forensic tools for AI compression, we
present a first investigation of forensic traces in HiFiC, the
current state-of-the-art AI-based compression method. We inves-
tigate the frequency space of the compressed images, and identify
two types of traces, which likely arise from GAN upsampling and
in homogeneous areas. We evaluate the detectability on different
patch sizes and unseen postprocessing, and report a detectability
of 96.37%. Our empirical results also suggest that further, yet
unidentified, compression traces can be expected in the spatial
domain.

Index Terms—AI-based compression, frequency analysis

I. INTRODUCTION

Image forensics aims to reconstruct cues about origin and
authenticity of an image. JPEG forensics is one of the most
extensively studied subfields, since two decades [1]–[3].

However, “good, old-fashioned” JPEG forensics may re-
quire an update soon, since highly efficient AI-based image
compression methods have recently emerged. In fact, the JPEG
committee even decided to standardize the newly developed
JPEG AI format, which is expected to become available in
the next few years [4].

Different AI-based compression methods have been pro-
posed. Early works are based on RNNs [5]. Many recent
methods use autoencoders, a type of neural network that is
trained to encode and reconstruct (decode) its input [6]. One
of the most prominent methods is High-Fidelity Generative
Image Compression (HiFiC), which currently constitutes the
state-of-the-art. HiFiC is based on a convolutional encoder
with hyper-prior and a generative adversarial network (GAN)
as decoder. It can compress the data at three quality levels:
high (HiFiC-Hi), middle (HiFiC-Mi) and low (HiFiC-Lo) [7].

Berthet et al. presented a first forensic experiment on AI
compression [8]. They investigated the generalization ability
of existing JPEG-based forensic image manipulation detectors
to HiFiC. At the example of the CAT-Net [9], the authors show
that JPEG-based detectors perform poorly on AI-compressed

inputs. This demonstrates the need for novel forensic methods
for AI compression. In this spirit, Bhowmik et al. investigated
source identification on AI-compressed images [10].

Despite those pioneering works, there is to the best of
our knowledge no investigation of the actual traces of AI
compression. We argue that knowledge about the fingerprint of
AI compression methods can be a vital ingredient for building
reliable and interpretable forensic detectors. In this work,
we want to close this gap. We show that the state-of-the-art
method HiFiC leaves characteristic artifacts in the frequency-
domain, and we empirically investigate the detectability of
these artifacts. Our specific contributions are:
• We expose two types of HiFiC artifacts in frequency

domain. They likely stem from upsampling in the HiFiC
GAN, and from homogeneous regions.

• We further characterize these artifacts, and show that they
behave consistently and well predictably.

• We evaluate the artifact detectability under various types
of unseen postprocessing. Furthermore, we present evi-
dence that there are likely further traces in spatial domain
that can be exploited for detecting AI compression.

The paper is organized as follows: Section 2 summarizes
the related work. In Sec. 3, we briefly describe the HiFiC
compression method. In Sec. 4, we analytically investigate
HiFiC compression artifacts in the frequency domain. Sec-
tion 5 shows our experiments with respect to the artifacts’
robustness. We provide conclusions and an outlook in Sec. 6.

II. RELATED WORK

The compression history of an image can provide cues about
its provenance and potentially also about manipulations. The
literature on compression artifacts in traditional JPEG images
is vast, such that this brief review must necessarily omit many
excellent works.

Many works aim to distinguish single-compressed from
double-compressed images [1], [2]. Later works also addressed
very difficult cases, for example when the same quantization
table is used for recompression [11], when the JPEG grid
of the first and second compression are not aligned [12], or
when resampling occurs between both compression steps [3].
A popular statistics for detecting double compression is Ben-
ford’s Law, which uses the distribution of the first digits of
JPEG coefficients [13], [14]. With the rise of deep learning
applications, several deep learning works also address double979-8-3503-3607-8/23/$31.00 ©2023 IEEE
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Fig. 1: Example images from the CLIC2020 dataset. AI-compressed images on the bottom exhibit frequency-space artifacts
that are not found in the original images on top. Left are upsampling artifacts, right are homogeneous-area artifacts.

compression detection [12], [15], [16]. For example, a state-
of-the-art network is CAT-Net [9].

JPEG compression also leaves other traces in the image
that can be detected. For example, rounding errors can occur
due to the operator used in JPEG compression, which leave
artifacts in the image and can be localized [17]. Another
work has dealt with the so-called “dimples” JPEG artifacts,
which are caused by the mathematical operator to convert
the discrete cosine transform (DCT) coefficients from float to
integer [18]. JPEG library related artifacts can also arise during
compression. Furthermore, the JPEG library libjpeg leaves a
high frequency periodic pattern in chroma subsampling [19].
Since the literature shows that JPEG compression leaves traces
in the image, it is important to investigate this for AI-based
compression as well.

Another line of research picked up frequency-related ar-
tifacts in image forensics, namely the detection of GAN-
generated images. The number and quality of such images
is improving so much that a human can no longer identify
between real and fake [20]. The detection of GAN-generated
images often involves analyzing the frequency domain of the
image [21]. GAN generators leave fingerprints in their images
that can be used to detect a GAN-generated image and even
to distinguish the originating generator network from these
traces [22], [23]. Frank et al. link the fingerprints in the
frequency domain to the GAN upsampling operators [22].
These fingerprints are not limited to GANs. For example, it
has been shown that the recently developed diffusion models
exhibit similar artifacts in the frequency domain [24], [25].
Ricker et al. attribute these artifacts to a training objective that
performs suboptimally at processing high frequencies [25].

The AI-based compression algorithm HiFiC uses a con-
ditional GAN, with an additional latent space. Hence, we
use the GAN fingerprinting works as a guide to forensically
examine HiFiC compression. Our analysis uses the fast Fourier
transform (FFT) to expose two salient compression artifacts.
While we hope that these findings will be of forensic use,
we also note that this analysis only draws a partial picture of
HiFiC artifacts, because our empirical evaluation also indicates

that there may be further traces in spatial domain.

III. HIGH-FIDELITY GENERATIVE IMAGE COMPRESSION

HiFiC compression uses internally a conditional GAN. Like
standard GANs, this architecture optimizes during training a
generator subnetwork and a discriminator subnetwork. Ad-
ditionally, a generative model is learned with a conditional
probability that uses for each data point an additional piece of
information, like a class or a label [7].

HiFiC compresses an image x with a quantized latent
encoder y = E(x). Duan et al. showed that the latent
space y behaves similarly to an orthogonal transform like
the DCT to capture spatial dependencies in the image, and in
particular to model the amount of texture in a region [26]. To
additionally guide this representation, additional hyperpriors z
are introduced as side information for the entropy model of
the encoder [6].

Decompression is done with a decoder that is conditioned
on z. The specific implementation uses a GAN generator that
reconstructs from y the image x′ = G(y). Note that even
though the visual quality of the decompressed image is overall
quite high, the overall compression method is lossy, i.e., x′ 6=
x [7].

HiFiC is published with results on images from the
CLIC2020 [27], DIV2k [28] and Kodak [29] datasets1.
Throughout this work, we use the provided implementation
and compressed images in order to characterize the original
method as closely as possible.

IV. FREQUENCY DOMAIN ANALYSIS

The frequency domain of HiFiC-compressed images reveals
various artifacts that do not appear in natural images. These
artifacts are shown in two example images from the CLIC2020
dataset [27] in Fig. 1. On top, images and spectra of the
uncompressed source are shown. On bottom, the images and
spectra of their HiFiC-Lo compressed counterparts are shown.
It can be observed that the perceptual quality of the com-
pressed image is quite high in the spatial domain. However,

1https://hific.github.io/raw/index.html
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Fig. 2: Analysis of the frequency domain. (a) Difference of spectra from original and HiFiC-Lo compressed images exhibits
grid artifacts. (b) Difference of spectra taken exclusively from homogenous image regions exhibits a second type of artifact.
The yellow lines indicate the slices for the plots in Fig. 3 (a) and Fig. 4.

the frequency domain exhibits a grid pattern. The mostly
homogeneous image on the right exhibits an additional artifact.

It is highly plausible that an upsampling operation is the
cause of the grid pattern artifacts, because the generator
of a GAN is used for decoding AI-compressed images. To
confirm this assumption and to localize the grid pattern, further
investigations will be performed in the following Sec. IV-A.

The second artifact is shown in Fig. 1 in the homogeneous
image on the right. To the best of our knowledge, this artifact
is not yet known in the literature. We hypothesize that this
artifact is particular to the compression of this network in
low-texture regions. For example, it may be the case that
this artifact arises for particular values of the hyperprior z
that captures different spatial dependencies in the image. The
decoder is conditioned on z, which may ultimately introduce
the artifact upon reconstruction of the image. We analyze this
artifact by examining local image regions of images with many
homogeneous areas in Sec. IV-B.

A. Analysis of Upsampling Artifacts

The described artifacts exhibit a relatively weak signature
in frequency domain. This signature can be slightly enhanced
by averaging the spectra of multiple images. To do so, we
select 45 images from the CLIC2020 dataset [27]. A 1000×
1000 pixels patch is cropped from each image, converted to
grayscale, and represented by the log-magnitude of its Fourier
coefficients (here and throughout the paper, the number of used
Fourier coefficients corresponds to the number of pixels).

Such mean spectra are created for the images in uncom-
pressed format and for the images with HiFiC-Lo compression
(to create very pronounced artifact signatures). Subsequently,
these two mean spectra are subtracted to highlight the artifacts.
Figure 2 shows these spectra and the resulting difference
spectra. Additionally, binarizations of the difference spectra
are shown that highlight the artifacts. Figure 2 a) shows
the upsampling artifacts. The binary image indicates that the
peaks of the grid pattern occur at certain intervals. For a
N × N image, the artifacts are periodic and appear in the

zero-centered frequency domain at the locations (u, v) =
(i · (N/16), j · (N/16)) for −8 ≤ i, j ≤ 8, where u and v
denote the horizontal and vertical frequencies, respectively.

Figure 3 further characterizes the observed peaks and the
behavior during recompression. Figure 3 a) plots in 1-D the
HiFiC-Lo and HiFiC-Hi coefficients through the average FFT
spectra along the horizontal yellow line of Fig. 2 a). It can
be seen that HiFiC-Lo creates in most cases higher peaks
than HiFiC-Hi. This observation is confirmed in the other
line plots and suggests that HiFiC-Lo creates artifacts that are
structurally similar but stronger than artifacts of HiFiC-Hi.
Additionally, the line plot also confirms that the grid pattern
occurs at the previously noted periodic intervals.

One may wonder whether the structure of the artifacts
changes when iterating the compression, which can be seen
as an analogy to the study of double-JPEG compression in
image forensics. Repeated AI compression is examined in
Fig. 3 b) to Fig. 3 e). These plots show a horizontal slice
through the averaged FFT spectra of 260× 260 pixel patches
from 20 images. They show three cases, namely a HiFiC-
Hi image recompressed with HiFiC-Hi, a HiFiC-Hi image
recompressed with HiFiC-Lo, and a HiFiC-Lo image recom-
pressed as HiFiC-Hi. In the first case, Fig. 3 b) shows that
the spectra including the peaks are almost identical between
HiFiC-Hi images and their HiFiC-Hi-recompressed version. In
the second case, Fig. 3 c) shows that recompressing a HiFiC-
Hi image with HiFiC-Lo enlarges the peaks. In the third case,
Fig. 3 d) shows that HiFiC-Hi recompressed with HiFiC-Lo
is virtually identical to HiFiC-Lo, which likely makes these
spectra indistinguishable. This is consistent with the previous
observations in Fig. 3 b) and c). Fig. 3 e) shows HiFiC-Lo
followed by HiFiC-Hi, and in comparison only HiFiC-Lo and
only HiFiC-Hi. It is somewhat surprising that the height of the
peaks for the double compression are between the two single
compressions. One might have expected that the primary Lo
compression strongly biases the subsequent Hi compression.
However, this is not the case here, hence both compressions
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(d) HiFiC-Lo vs. recompression HiFiC-Hi→Lo
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Fig. 3: Line spectra for upsampling artifacts after compressions
HiFiC-Hi, HiFiC-Lo, and their recompression combinations.
The x-axis shows horizontal frequency u.

must be treated as similar-but-different operations.

B. Analysis of Homogeneous Artifacts

Images with many homogeneous structures exhibit another
type of artifact. In order to analyze these more precisely,
we hand-selected 20 mostly homogeneous images from the
datasets by Mentzer et al. [7]. Homogeneous patches of
260× 260 patches are cut from the images. These patches are
averaged and subtracted analogously to the previous process-
ing to expose the difference in spectra of AI-compressed and
original patches. The resulting spectra are shown in Fig. 2 b).
The artifact pattern is almost uniformly distributed across the
entire frequency domain. Each pattern consists of a pair of
nearby peaks in horizontal direction.

Line plots for this pattern are shown in Fig. 4. The line plots
are extracted along the yellow lines in Fig. 2 b). Horizontal
FFT coefficients are shown in Fig. 4 a). The vertical FFT
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Fig. 4: Homogeneous-region artifacts in horizontal and vertical
slices of the spectra in Fig. 2 b). The x-axis shows in a)
horizontal frequency u, in b) and c) vertical frequency v.

coefficients are shown in Fig. 4 b) and c). Their position in
the spectrum are chosen to intersect the artifact pattern in the
pair of nearby peaks. We observe in all plots that the peaks
of the artifacts are evenly spaced. HiFiC-Lo creates larger
amplitudes, analogously to the artifacts in the previous Section.
We also investigated the impact of recompression on these
artifacts. The findings are analogous to the artifacts from the
previous Section and are not explicitly plotted here.

We note that this pattern is not strictly limited to homoge-
neous patches. The difference image in Fig. 2 a) also exhibits
weak traces of this pattern. However, those traces are mostly
overlaid by frequency components from texture.

C. Baseline Detectability for Various Patch Sizes

The previous investigation suggests that distinguishing orig-
inal and HiFiC-compressed images should in principle be well
feasible. We hence perform a baseline detectability evaluation
on patches of different size, to empirically test for a lower
bound of detection. We use a linear regression classifier on
2000 randomly selected non-overlapping square patches from
45 images of CLIC2020. The patches have 32, 64, 128, and
256 pixels per dimension. Two copies of each image are in
uncompressed and in HiFiC-Hi compressed format. 1500 of
these patches are used for training and 500 for testing (where
patches from the same root image are either in training or in
test to avoid information leakage). Each patch is converted to
grayscale, and the log-magnitude of its Fourier coefficients is
normalized to zero mean and unit variance.

The resulting accuracies are shown in Table I. As expected,
smaller patch sizes are more difficult to classify. However,



TABLE I: Logistic Regression on different patch sizes

Patch Size 32× 32 64× 64 128× 128 256× 256

Accuracy (%) 72.90 81.48 91.59 93.68

already patches of 128 × 128 pixels are classified with an
accuracy of more than 90%, patches of 256 × 256 pixels
achieve an accuracy of 93.68%. When evaluating the same
classifier on patches with HiFiC-Lo compression, then the
accuracy increases even to 94.98% due to the stronger artifacts
as shown in the previous Sections.

V. ROBUSTNESS OF AI-BASED COMPRESSION ARTIFACTS

We use more complex classifiers than logistic regression
to empirically investigate the robustness of the artifacts. Our
classifiers of choice are here InceptionV3 [30], ResNet50 [31]
and EfficientNetB2 [32].

A. Datasets and Experimental Setup

We use the images by Mentzer et al., which comprise
428 images from the CLIC2020 dataset, 45 images from the
DIV2k dataset, and 24 images from the Kodak dataset in
uncompressed, HiFiC-Hi, and HiFiC-Lo format. For training
and validation, we use 80% and 10% of the CLIC2020 images
uncompressed and HiFiC-Hi compressed. The remaining data
is used for testing, in particular DIV2k and Kodak images for
testing on unseen data. We extract 260×260 non-overlapping
patches, i.e., slightly larger than 256 × 256, to match the
expected input size of EfficientNet. The patches are processed
analogously to the previous experiment. Additionally, we train
and evaluate on 260× 260 patches in spatial domain without
any additional processing of the data. Training is done with
the Adam optimizer with learning rate l = 0.0001 and default
parameters β1 = 0.9, β2 = 0.999 and ε = 10−7. We train the
networks for 10 epochs with a batch size of 16.

B. Baseline Neural Network Evaluation

The accuracies for the baseline classification whether an
image was AI-compressed are presented in Table II. All
networks achieve on all datasets an accuracy greater than 90%,
and in particular they outperform the logistic regression by
several percent. EfficientNetB2 achieves overall the highest
accuracies. Although the performance differences are not
significant, we use this network for the remaining experiments.

As a sidenote, we tested the (HiFiC-Hi)-trained Efficient-
NetB2 also on HiFiC-Lo images. When using frequencies as
input, the accuracy even further increases due to the stronger
frequency-space artifacts in HiFiC-Lo. Conversely, when using
pixels as input, the accuracy decreases due to the unseen
image quality. We use this as further empirical evidence for the
benefits of detecting HiFiC compression in frequency domain.

Analogously, we verified on the same experimental setup
that recompression does not negatively impact the detectability
of HiFiC compression. If HiFiC-Hi images are recompressed
with HiFiC-Hi or HiFiC-Lo, EfficientNetB2 achieves accura-
cies of 99.57% and 96.92% in pixel inputs and accuracies

TABLE II: Detection Accuracy (%) of different Architectures

Dataset
InceptionV3 ResNet50 EfficientNetB2

Spatial Freq. Spatial Freq. Spatial Freq.

CLIC2020 97.42 94.48 96.73 95.20 99.10 96.37

DIV2k 90.57 91.53 91.74 95.89 95.54 95.29

Kodak 94.69 91.12 97.46 92.84 95.77 95.52
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Fig. 5: Accuracy for different postprocessing for frequency
inputs (red) and pixel input (blue). Top left: Gaussian blur.
Top right: Gaussian noise. Bottom left: JPEG compression.
Botton right: Image scaling.

of 96.94% and 97.93% for frequency inputs. These numbers
are even higher than the results in Table II, which confirms
that some combinations of recompressions further enhance the
compression signature.

C. Robustness to Unseen Postprocessing

We test the robustness to unseen postprocessing on original
images and on images with HiFiC-Hi compression, which
leaves weaker traces than HiFiC-Lo. We evaluate standard
postprocessing from the literature, namely Gaussian blur,
Gaussian noise, JPEG compression and image rescaling.

We use kernel sizes 3, 5, 7, and 9 for Gaussian blur.
Gaussian noise is added with variances of 10−5, 10−4, 10−3

and 10−2. JPEG compression is applied with qualities from
60 to 90 in steps of 10 using libjpeg. For rescaling, we
downsample the image to 60%, 70%, 80%, and 90% of its
original size. All these postprocessing operations are applied to
both original and AI-compressed images, and only at test time,
not during training in order to gain insights into the robustness
of the features. Figure 5 shows the resulting accuracies for
frequency input (red) and pixel input (blue).

Gaussian blur (top left) acts as a low-pass filter that erases
most of the frequency artifacts. Surprisingly, spatial domain
still provides noticable traces that the classifier can exploit,
even up to a kernel size of 9.



Gaussian noise (top right) also strongly impacts the fre-
quency domain. However, even though both frequency and
spatial feature performance deteriorates, the frequency domain
features consistently achieve higher accuracies.

JPEG compression (bottom left) also strongly impacts the
frequency features. The spatial features, however, are more
affected by this operation than the frequency-domain features.

Downsampling (bottom right) distorts and stretches
HiFiC’s frequency signature, and the accuracy immediately
collapses. In comparison, spatial features are surprisingly
robust. Since we feed raw RGB to the spatial network, we
hypothesize that correlations between color channels might
add further cues about AI compression.

In summary, this postprocessing experiment exhibits distinct
advantages for both the spatial features and the frequency fea-
tures. The behavior of the frequency features is in line with the
observations in previous Sections. The strong performance of
spatial features under unseen Gaussian blur and downsampling
indicates that there are further compression cues in spatial
domain. These cues are different from the frequency features
and their specific characteristic is subject for future work.

VI. CONCLUSIONS

In this work, we examine AI-compressed images for their
forensic traces. We argue that such types of compression will
gain relevance with the upcoming new standard for JPEG-
AI. In our study, two types of frequency-domain artifacts are
observed. One feature resembles GAN upsampling artifacts.
The other feature is different, and is primarily observed in
homogeneous regions. We characterize the frequency signature
of both artifacts and empirically test their robustness. Overall,
these first results are encouraging. We furthermore observe that
there may be further compression traces in spatial domain that
can potentially be exploited in future work.
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