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Abstract—Combining multiple classifiers is a promising ap-
proach to hardening forensic detectors against adversarial eva-
sion attacks. The key idea is that an attacker must fool all
individual classifiers to evade detection. The 1.5C classifier is
one of these multiple-classifier detectors that is attack-agnostic,
and thus even increases the difficulty for an omniscient attacker.

Recent work evaluated the 1.5C classifier with SPAM features
for image manipulation detection. Despite showing promising
results, their security analysis leaves several aspects unresolved.
Surprisingly, the results reveal that fooling only one component is
often sufficient to evade detection. Additionally, the authors eval-
uate classifier robustness with only a black-box attack because,
currently, there is no white-box attack against SPAM feature-
based classifiers.

This paper addresses these shortcomings and complements
the previous security analysis. First, we develop a novel white-
box attack against SPAM feature-based detectors. The proposed
attack produces adversarial images with lower distortion than
the previous attack. Second, by analyzing the 1.5C classifier’s
acceptance region, we identify three pitfalls that explain why the
current 1.5C classifier is less robust than a binary classifier in
some settings. Third, we illustrate how to mitigate these pitfalls
with a simple axis-aligned split classifier. Our experimental
evaluation demonstrates the increased robustness of the proposed
detector for SPAM feature-based image manipulation detection.

Index Terms—image forensics, counter-forensics, adversarial
examples, one-and-a-half-class classifier

I. INTRODUCTION

Machine learning classifiers are being increasingly deployed
in security-related applications such as biometric identity
recognition, forensic image authentication, intrusion detection
and content-control filtering. In these scenarios, machine learn-
ing classifiers are exposed to malicious attackers whose goal
is to evade the detection. Therefore, it is extremely important
to harden classifiers against adversarial evasion attacks.

To date, no effective defense against evasion attacks has
been found. However, there are several approaches to increas-
ing classifier robustness against adversarial examples. One of
these approaches combines multiple classifiers that an attacker
must overcome. Even though this approach cannot fully pre-
vent evasion attacks, it can at least increase the difficulty for
an attacker to deceive the classifier. By forcing attackers to
introduce larger amounts of distortion, the defender increases
their chances of spotting adversarial input.

One of these multiple-classifier systems is the one-and-a-
half-class (1.5C) classifier [1]. The 1.5C classifier consists of
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a binary classifier and two one-class classifiers, each of which
tightly encloses one of the two classes. The outputs of these
three classifiers are fused by a final one-class classifier, which
makes the final decision. All components of the 1.5C classifier
are instantiated with support vector machines. Compared to
other defenses, such as adversarial training, the 1.5C classifier
does not make assumptions about the nature of the adversarial
perturbations and is therefore agnostic to different attacks.
Moreover, in contrast to obfuscation-based defenses, the 1.5C
classifier also increases the attack difficulty for an omniscient
attacker who is aware of any protection techniques employed
by the defender. This makes the 1.5C classifier a promising
approach for safety-critical tasks, including malware detec-
tion [1], watermarking detection [2], and malicious scripting
code detection [3].

In recent work, the 1.5C classifier was adopted to safeguard
an image manipulation detector against adversarial exam-
ples [4]. In particular, the authors train the 1.5C classifier with
subtractive pixel adjacency matrix (SPAM) features, which are
well-known for their numerous applications in forensics and
steganalysis. Protecting image forensics detectors against ad-
versarial examples is particularly challenging because forensic
image analysis often relies on weak traces. To date, the 1.5C
classifier is one of few attack-agnostic defense mechanisms
that has been evaluated in image forensics.

While the security analysis shows promising initial re-
sults [4], the authors leave several aspects open-ended. First,
the authors only evaluate classifier robustness with a black-box
attack because to the best of our knowledge, currently, there
is no white-box attack against SPAM feature-based classifiers.
Nevertheless, classifier robustness should also be studied in
a white-box setting. Second, the results in [4] reveal that
fooling only a single component of the 1.5C classifier is
sufficient for evading detection, although the 1.5C classifier’s
key idea is that the attack must fool all components. Third, the
authors only consider a single decision threshold. However, a
conservative analyst may choose a tighter threshold to further
increase classifier robustness against adversarial examples.

In this work, we address these shortcomings and comple-
ment the existing security analysis [4] of the 1.5C classifier
for image manipulation detection.

As our first contribution, we develop the first white-box
attack against SPAM feature-based detectors. This attack en-
ables studying classifier robustness in the worst-case scenario
of an omniscient attacker. Although hand-crafted features
are increasingly replaced by learned features, we use SPAM
features for comparison against prior work [4] and because
SPAM features still offer greater robustness against evasion
attacks, as we demonstrate in this paper.
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As our second contribution, we analyze the 1.5C classifier
with several safety margins imposed by the analyst. Interest-
ingly, we find the 1.5C classifier to be less robust than a binary
classifier in some settings. By investigating this unexpected
result in-depth, we identify three pitfalls in the implementation
of the 1.5C classifier. These pitfalls concern the missing nor-
malization, shape, and size of the final classifier’s acceptance
region. As our third contribution, we show that replacing the
1.5C classifier’s final one-class classifier by axis-aligned splits
prevents these pitfalls and achieves higher robustness against
adversarial attacks than the current 1.5C classifier.

This paper is organized as follows: Section II reviews related
work on counter-forensic attacks and defenses. Section III
outlines adversarial attacks against SPAM feature-based clas-
sifiers. The 1.5C classifier and its shortcomings are presented
in Sec. IV, followed by the experimental evaluation in Sec. V.
Section VI concludes this paper.

II. RELATED WORK

Counter-forensics subsumes techniques that hinder or mis-
lead a forensic analysis. Most counter-forensic techniques
aim at concealing traces of a manipulation such that a fake
image passes forensic authentication. In addition to these so-
called evasion attacks, attacks with other goals have also been
developed, e.g., implanting traces to mislead the analyst [5]
or poisoning the training data to insert a backdoor into the
detector [6]. However, in this work we only consider evasion
attacks. The following section presents a selection of evasion
attacks against forensic detectors as well as defenses for
protection against these types of attacks. A more fine-grained
categorization can be found in a recent survey [7].

A. Counter-Forensics

Counter-forensic attacks can be categorized by the amount
of knowledge that they require on the forensic detector. Since
forensic detectors often rely on relatively weak signals, traces
of manipulations can sometimes be erased by simple post-
processing. These laundering attacks require little to no prior
knowledge about the detector. Typical laundering operations
include JPEG compression [8], median filtering [9], or re-
broadcasting [10] and pose a severe challenge to forensic
detectors. Although laundering allows an attacker to erase
many traces, an analyst can potentially detect these destructive
laundering operations and refrain from any conclusion.

While laundering attacks alter the signal’s properties, uni-
versal attacks aim at restoring the original signal’s statistical
properties that have been perturbed by a manipulation. There-
fore, universal attacks are effective against any detector that
builds on these statistical properties. For example, universal
attacks have been developed to hide histogram modifica-
tions [11] and to conceal multiple JPEG compressions based
on DCT histograms [12] and first significant digits [13], [14].

Given white-box access to the detector, attackers can craft
adversarial examples with even less distortion by targeting
weaknesses of the particular detector. More specifically, tar-
geted attacks conceal traces that a particular detector searches
for. Therefore, early works specifically target detectors for

resampling by suppressing periodic artifacts during interpo-
lation [15], they conceal contrast enhancement by smoothing
out peaks and gaps in the intensity histogram [16], or they
deceive compression detectors by restoring DCT histogram
distributions and removing blocking artifacts [17]. Since these
attacks were designed against a specific detector, we categorize
them as targeted attacks analogous to Bohme and Kirchner [5].
However, it should be noted that these attacks can be effective
against any detector with a feature set that captures the targeted
signal properties. Other attacks also hide traces of median
filtering [18] or copy-move forgeries [19].

With the advent of deep learning in multimedia forensics,
attacks have been developed against convolutional neural
networks (CNNs) for camera model identification [20], global
image manipulation detection [21], and rebroadcasting detec-
tion [10]. Recent work also explored generative adversarial
networks (GANSs) as a tool for erasing traces from median
filtering [22] and JPEG compression [23], as well as to
deliberately falsify camera model traces [24], [25].

A fundamental requirement of all these attacks is that they
produce quantized images with valid pixel values. This is
important because images are typically stored and transmitted
with pixel values in the unsigned byte range. When intensity
values need to be rounded to this range, naive rounding
often interferes with adversarial perturbation. Even in the
machine learning literature, only a few adversarial attacks
produce quantized adversarial examples, e.g., the decoupling
direction and norm (DDN) [26] and the boundary projec-
tion [27] attacks. As a remedy, Bonnet et al. proposed a
post-hoc quantization step that preserves the evasiveness while
keeping the distortion low [28]. The authors also showed that
integrating the quantization step into each attack iteration al-
lows the attack to compensate for quantization errors, thereby
producing adversarial images with even lower distortion.

For feature-based detectors, which are popular in forensics
literature, adversarial attacks must be able to map feature mod-
ifications back into the pixel domain. When the relationship
between the pixel and feature domains is invertible, e.g., when
the detector works in the DCT domain [12], the attack can
operate in the feature domain and easily convert adversarial
features into an adversarial image. For gradient-based attacks,
the relationship between the pixel and feature domains only
needs to be differentiable, such that the gradient signal can be
backpropagated into the pixel domain.

However, if the relationship between pixel and feature do-
mains is non-invertible, controlling the pixel-domain distortion
becomes more challenging. Thus, Marra et al. proposed a two-
stage approach, which first seeks for an adversarial example in
the feature domain and then searches for pixels that produce
these adversarial features [29]. As an alternative solution, Chen
et al. approximated a pixel-domain gradient by probing the
detector output after modifying individual pixels [30]. This
black-box attack is effective even for non-invertible feature
mappings, but re-computing the features and detector output
for each pixel modification is expensive. Building on the
work by Chen et al. [30], Tondi showed that this attack can
also be used to craft quantized adversarial images against
CNN detectors [31]. Despite being effective against black-box
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classifiers, the attack cannot benefit from gradient information
in a white-box setting. Instead, the attack requires a costly
gradient approximation.

Recently, Athalye et al. showed that replacing non-
differentiable transformations with differentiable approxima-
tions provides sufficient information for guiding gradient-
based attacks [32]. This approach is called backward pass
differentiable approximation (BPDA) and was originally pro-
posed to overcome gradient shattering as a defense mech-
anism. In this work, we use this type of BPDA to obtain
gradients against SPAM feature-based detectors. Compared
to [33], we only use the approximation during the backward
pass, whereas the forward pass yields the original SPAM
features.

B. Anti-Counter-Forensics

Upon perturbing specific signal properties to deceive a
forensic detector, adversarial attacks involuntarily alter other
statistics as well. An analyst can use these alterations to
identify traces of counter-forensics. For example, Kirchner
and Chakraborty showed that restoring histograms of the first
significant digits impacts the second significant digits [34].
Other related works also revealed telltale signs left by counter-
forensic attacks against JPEG compression [35], median filter-
ing [36] and chromatic aberration [37] detectors. An analyst
can either search for these counter-forensic traces with an ad-
ditional detector or harden the original detector by augmenting
the original with these additional features. For example, related
work included second-order statistics into the feature set of
a contrast enhancement detector [38]. As a complementary
technique, adversarial examples can be included in the training
set to increase the detector’s robustness in the presence of an
adversary [10], [39].

In addition to improving the training data, another line
of work focuses on more secure detector architectures. One
direction is to select a random subset of the feature space, and
rely on the attacker’s lack of knowledge about the reduced
feature space [40], [41]. Another promising direction is to
combine multiple detectors. For example, Fontani et al. fused
decisions from several forensic algorithms [42]. Similarly,
Biggio et al. combined a binary classifier with two one-
class classifiers [1]. The resulting one-and-a-half class (1.5C)
classifier attains the accuracy of a binary classifier in the
absence of an adversary while inheriting the rejection abilities
from the one-class classifiers. In contrast to binary classifiers
that merely partition the feature space, this architecture enables
input rejection from regions with little training data support.
The 1.5C classifier has been studied extensively in [4] for
global image manipulation detection in an adversarial en-
vironment. The 1.5C classifier was also used to protect a
watermarking detector against implausible signals [2]. While
the 1.5C classifier architecture shows improved robustness
against adversarial attacks, in this paper we demonstrate three
potential pitfalls that can detrimentally affect its security. As a
remedy, we propose a hardened variant of the 1.5C classifier.

III. ADVERSARIAL ATTACKS AGAINST SPAM
FEATURE-BASED DETECTORS

This section describes two adversarial attacks against de-
tectors that are based on SPAM features: the black-box attack
by Chen et al. [30] and the proposed white-box attack, which
combines the CNN-based feature extraction [33] with a BPDA
gradient approximation [32] and the DDN attack [26]. We
begin by summarizing the SPAM feature extraction.

A. SPAM Features

SPAM features are designed to capture local pixel de-
pendencies. A large family of configurations was developed
and evaluated originally for steganalysis [43] and later for
image forensics [44]. This work focuses on one particular
configuration of SPAM features, but can also be applied to
similar models.

1) Feature Extraction: The SPAM feature extraction con-
sists of the following steps: First, the scene content is sup-
pressed by applying a high-pass filter with the third-order
linear kernel, k = [1, —3, 3, —1], in the horizontal and vertical
direction, resulting in two residuals, r(M) and ), Second,
the residuals are quantized and truncated to reduce their
complexity as follows:

f’g') - truncf(round(Tg')/(j)) ) (D

where s is the spatial position. We use the quantization step
¢ = 4.5 and the truncation value T = 1, resulting in L = 3
quantization levels. In the third step, each quantized and
truncated residual pixel is compared to its N = 4 neighbors
to capture local patterns. For both #(") and #(*), the resulting
co-occurrence matrices are calculated in the horizontal and
vertical directions. Each co-occurrence matrix is normalized
so that its entries sum up to 1. Fourth, the four resulting co-
occurrence matrices are then reduced by symmetry, and the
horizontal-horizontal pair is added to the vertical-vertical pair.
Similarly, the horizontal-vertical co-occurrence is added to
the vertical-horizontal co-occurrence matrix. Finally, the two
resulting matrices are flattened and concatenated to form a
50-dimensional statistical feature descriptor for each image.
2) CNN-based SPAM Feature Extraction: The SPAM fea-
ture extraction can also be implemented with a constrained
CNN. We briefly summarize the CNN-based feature extrac-
tion, as shown in [33]. The image residuals are obtained
through a convolutional layer with fixed weights. To calculate
co-occurrences, the image residuals are stacked along the third
dimension with three horizontally (or vertically) shifted ver-
sions. The quantization and truncation steps are implemented
by matching the residual values to the 7' = LY pre-computed
template vectors, one for each possible quantization outcome.
The matching score, m; ,, is the negative distance to the ¢-th
template vector and is calculated using a convolutional layer.
The residual values are then assigned to the best-matching
template vector using a hardmax transformation as follows:

hard ) 1 argmax,_; pmis =1
s = . . 2)
’ 0 otherwise
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This assignment p?f‘;d is stored as a one-hot encoded vector,

whose length equals the number of co-occurrence entries.
Symmetric entries in the assignment vector are summed with a
fully-connected layer where the binary weights indicate which
entries can be combined. The resulting vector is eventually
normalized to unit sum by average pooling.

This architecture composes one of four blocks. The re-
maining three blocks vary the filter weight directions and the
shift directions. The resulting four descriptors are combined
as described above to form a 50-dimensional statistical feature
descriptor for each image. This CNN-based implementation
yields the same results as the original feature extraction.

B. Black-Box Evasion Attack Against SPAM-Based Detectors

The goal of an adversary is to minimally modify a fake
image so that it passes forensic authentication. Most attacks
compute the gradient of the forensic detector’s output with
respect to the image pixels and update the pixel values via
gradient descent. In the case of SPAM features, however,
the relationship between the pixels and features as detector
input is not injective. Additionally, gradient descent updates
can result in non-integer pixel values, which are cut off by
most image formats. In the remainder of this section, we
first summarize the gradient-based attack against a SPAM
feature-based SVM by Chen et al. [30]. Second, we describe
a gradient approximation that can be combined with state-of-
the-art attacks, such as the DDN attack.

Chen et al. used a finite differences approximation of the
gradient direction to attack an SVM that was trained on SPAM
features [30]. Therefore, we refer to this attack as a finite
differences (FD) attack. To estimate the gradient direction,
the attack modifies a single pixel by an increment of 1 and
evaluates the resulting difference in the detector’s decision
function. This procedure is repeated for each pixel location
to obtain a gradient matrix for all of the pixels. Instead of
modifying all of the pixels, the authors found that modifying
a fraction of the pixels per attack iteration yields adversarial
images with less distortion. Therefore, the pixels are ordered
by their gradient magnitude. After obtaining the gradient
direction, the attack searches for the minimum number of
pixels to update via a line search until the objective function
is fulfilled. If the attack has not succeeded after updating
K = 20% of all the pixels, a fraction of the pixels is updated
and the attack proceeds to the next iteration.

Note that this finite differences approximation leads to a
coarse estimate of the gradient. Estimating the gradient direc-
tion also requires re-computing the SPAM feature descriptor
and detector output for each pixel location. This computational
effort can be reduced by caching the residual image and the
co-occurrence matrices so that only a few entries of the co-
occurrence matrices need to be updated. Nevertheless, iterating
over all pixel locations is still expensive, especially for high-
resolution images.

C. Proposed White-Box Attack With BPDA

The attack that is proposed in this work combines the
CNN-based feature extraction [33] described above with a

BPDA [32] and the DDN attack [26]. Therefore, we refer to
this attack as DDN-BPDA. During the forward pass, the CNN-
based feature extraction yields the original SPAM features.
During the backward pass, we replace the non-differentiable
hard assignment of each pixel to the closest template vector
with a soft assignment implemented with a softmax transfor-
mation. As a result, pixels are partially assigned to several
cells of the co-occurrence matrix. Cozzolino et al. explored
this variant with the goal of improving the original SPAM
features [33]. In contrast, we use this soft assignment to obtain
a gradient approximation. The balance between a soft and hard
assignment can be controlled by scaling the softmax steepness
with a hyper-parameter o,

ppt = _Op(ames) 3)
> explam;s)
i=1

A high « corresponds to a hard assignment as in the original
formulation, but also leads to vanishing gradients. Conversely,
a small « corresponds to a soft assignment with more useful
gradients but a worse approximation of the original features.
This hyper-parameter « is subject to an ablation study in
Sec. V-E3.

After obtaining the gradient approximation, we search
for adversarial examples with the decoupling direction and
norm (DDN) attack [26]. We use the DDN attack because
it produces quantized adversarial images and its computa-
tional cost is low compared to that of more sophisticated
attacks. Note that the proposed gradient approximation can
readily be used with off-the-shelf attacks available in modern
libraries [45] and benefits from the GPU acceleration of deep
learning frameworks.

DDN is a gradient-based iterative attack that aims to find
low-distortion adversarial examples by optimizing a pertur-
bation budget ¢ [26]. In our scenario, the attack maximizes
the detector output by taking a step in the direction of its
normalized gradient. The step size starts at 1 and is reduced
to 0.01 by cosine annealing with the number of iterations. The
resulting adversarial noise is projected onto an e-sphere around
the original example. The radius € is defined by the current
perturbation budget. If the previous attack iteration leads to an
adversarial example, then the perturbation budget is decreased
to (1—-)e, where + is a hyper-parameter. If the previous step is
unsuccessful, the perturbation budget is increased to (14 y)e.
Each iteration is concluded by quantizing the adversarial noise
with naive rounding. We also experimented with Lagrangian
quantization at the end of each iteration [28]. However, given
enough attack iterations, we did not observe a considerable
benefit compared to naive rounding.

IV. ONE-AND-A-HALF-CLASS CLASSIFIER

Binary classifiers achieve high classification performance
by partitioning the input space. Nevertheless, they typically
make decisions with unreasonably high confidence for test
samples that are far away from the training data. Though, one-
class classifiers are designed to detect anomalous examples
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Fig. 1. The original 1.5C classifier consists of a binary classifier and two
one-class classifiers trained on either class in the first level. A final one-
class classifier fuses the predictions of the first-level classifiers. The schematic
description is adopted from [4].

outside the training data’s region of support, they underper-
form binary classifiers in terms of classification accuracy. To
obtain the best of these two complementary concepts, Biggio
et al. proposed the one-and-a-half-class (1.5C) classifier as a
multiple-classifier architecture [1]. It offers a better trade-off
between classification accuracy in the absence of attacks and
robustness against evasion attacks. In the following section,
we first describe the 1.5C classifier and outline three potential
pitfalls. Then, we explain how to overcome the shortcomings
of the current 1.5C classifier.

A. Multiple-Classifier Architecture

The 1.5C classifier architecture is depicted in Fig. 1. The
1.5C classifier consists of a binary classifier and two one-class
classifiers in the first level and a single one-class classifier in
the second level. The binary classifier Cogfake is trained with
inputs from both classes, while the two one-class classifiers
Corg and Crye are each trained on samples from either class.
The final prediction is made by the second-level one-class
classifier C5y™, which is trained with original images only.
CCS,XgM operates on the decision functions d, ds, d3 of the three
first-level classifiers and does not observe the input features. In
both [1] and [4], this architectural design is instantiated with
SVMs. For simplicity, we add the superscript SVM only for
the final one-class classifier, which we replace with another
classifier later.

Figure 2 illustrates the role of each individual component
of the 1.5C classifier on the 2-D synthetic example from [1].
Here, the 1.5C classifier is specifically designed to prevent
false assignments to the blue class. The black contour marks
the decision boundary. The binary classifier Cyg/ake in the left
panel perfectly separates the training data, but assigns low-
density regions to the blue class. The two one-class classifiers
Corg and Cpye draw a tight acceptance region around the
respective class, but both classifiers also misclassify a few
training examples. However, the right panel of Fig. 2 shows
that C3yM combines the decision scores of the three classifiers
and tightly encloses all the blue training examples.

B. Hyper-Parameter Optimization

All SVM classifiers use an RBF kernel, and therefore, come
with a regularization and a kernel width hyper-parameter.

These hyper-parameters are selected via cross-validation. For
the one-class SVMs, Barni et al. [4] selected the set of hyper-
parameters that minimizes a weighted sum of false positive
rate Py, and missed detection rate P4 as follows:

Pe:A'Pfa+90'Pm.d~ (4)

We run cross-validation on our dataset but use the same \, ¢
as in [4]. Specifically, Coz uses A = 0.8 and ¢ = 0.2 such
that false alarms are discouraged in favor of missed detections.
Conversely, Crae uses A = 0.2 and ¢ = 0.8. The CoyM uses
A = 0.9 and ¢ = 0.1. Minimizing this weighted error rate
should encourage a tightly enclosed acceptance region around
the original images; however, the acceptance region can still

become unnecessarily large, as we show in the next section.

C. Pitfalls of the 1.5C Classifier

The 1.5C classifier architecture claims improved robustness
against evasion attacks at negligible performance degradation
in the absence of attacks. Nevertheless, we identify three
pitfalls that, if neglected, substantially impair the security and
classification performance.

1) Missing Normalization: In both the original paper [1]
and follow-up work [4], C(S,r\éM directly operates on the decision
scores of the first-level classifiers. The decision scores of the
three first-level classifiers can take on considerably different
ranges (see Fig. 7 in [4]). The final one-class SVM uses
an RBF kernel with a shared length scale, which requires
a distance evaluation. Therefore, if the first-level classifiers’
predictions are scaled differently, the distances calculated by
the RBF kernel can be misleading. As a result, optimization of
the shared length scale focuses on the input dimension with the
largest range, neglecting outputs of the two other classifiers.

2) Size of the Acceptance Region: As proposed in [4], the
hyper-parameters of all components, including the RBF kernel
length scale, are obtained by minimizing the weighted error
probability from Eq. 4. The optimization goal of the final one-
class classifier is therefore to include as many original images
as possible but without any fake images. As a result, CoyM
can extend its acceptance region into rejection regions of the
first-level classifiers. Therefore, an attacker does not need to
fool all three first-level classifiers to deceive the final classifier.
This reduces the amount of adversarial noise for a successful
attack.

3) Shape of the Acceptance Region: With the ellipsoidal
shape of the acceptance region, CoyM yields the highest
confidence in the center of the acceptance region. However,
we argue that the final classifier should be confident about an
original image when the three first-level classifiers are confi-
dent. Hence, the final classifier provides misleading confidence
values.

This can have unintended consequences. For example, Cgr\éM
rejects test points with unusually high confidence by the first-
level classifiers. Rejecting samples outside the support of the
training data can be desirable but can also lead to unintuitive
holes in the feature space. This can be seen in the right panel
of Fig. 2. Furthermore, these high-confidence regions of the
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but assigns unpopulated regions to the blue class (org). Conversely, Corg and Cryye enclose their respective classes at the cost of few misclassifications. The
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Fig. 3. Cross-section of C(S)r\éM’s input space and acceptance region. Original

and fake training images are shown as yellow and blue markers, respectively.

The background color shows Cg;éM’s decision score. The hashed area stretches

across critical regions, where Corgfake Or Corg spot fake images and should

thus be rejected by a secure final classifier. Note that C(S),ZM’S acceptance

region extends into the lower right quadrant, although the first-level Corg/fake
and Co classify this region as fake.

first-level classifiers need not be rejected because these regions
are expensive for an adversary to reach.

The latter two issues can be seen in Fig. 3. This figure
displays a cross-section of CoyM’s input space, which we
obtained in our experiments for image rescaling detection
as described later. The axes show the decision scores from
Corg/ake and Corg. The two dashed lines at z = 0 and y = 0
mark the decision boundaries of the two classifiers. At this
cross-section, Cgy. rejects inputs with a fixed decision score of
—1 (Cgyie classifies images as original). Yellow markers show
the original training images projected onto this plane, while
blue markers represent fake training images. The black contour
line encloses Cgr\éM’s acceptance region. The background color
indicates C5yM’s decision score. CyM achieves almost perfect
classification accuracy, but the shape and large size of its
acceptance region leave more room than desirable for attackers
to enter the acceptance region.

By including as many original training samples as possible,
CSYM extends its acceptance region into rejection regions of
the first-level classifiers (hashed regions). The fact that the

’s acceptance region appear as the classifier rejects unfamiliar high-confidence
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Fig. 4. Axis-aligned splits enable the analyst to transparently control the ac-
ceptance region of the proposed logical-and classifier. Moreover, the classifier
accepts images that the first-level classifiers accept with high confidence.

acceptance region even extends into the lower right quadrant
shows that C5yM accepts samples that all three first-level clas-
sifiers identify as a fake image. Cgr\;M’s confidence is highest in
the center of the acceptance region (bright yellow). However,
we argue that the final classifier’s confidence should increase
toward the top-left corner, where all first-level classifiers assign

high confidence.

D. Proposed Solution: Logical-and Classifier

To mitigate these pitfalls, we propose replacing the final
one-class SVM C5yM with another one-class classifier C3n
that uses axis-aligned splits. This classifier mimics a logical-
and operation. An image is accepted as original only if it falls
onto the correct side of all three splits; otherwise, it is rejected
as a fake. Here, we describe two versions of this classifier with
a “hard” and a “soft” decision function.

For the hard version, we set the split position based on the
first-level classifiers’ decision scores for the original training
images. These decision scores are normalized to unit-variance.
For each of the three dimensions, we split it such that 1% of
the original training images with the lowest decision scores are
classified as outliers. In cases where Cory/iuke Can separate the
two classes by a margin, this split ensures that an adversarial
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example must not only cross the decision boundary but also the
margin. Note that this split can also be fixed to 0 to reproduce
the decision boundary of the corresponding classifier, or it can
be adjusted to trade adversarial robustness for classification
accuracy. Overall, we argue that axis-aligned splits are more
transparent to the forensic analyst than the acceptance region
of a one-class SVM.

As an approximation to this hard decision boundary, we
implement a soft version that facilitates gradient-based attacks
to evaluate the classifier’s robustness. The decision function of
this soft classifier is as follows:

3

[ToGi-(d—t) =0, 5)

=1

where d; denotes the i-th first-level classifier’s decision score
after normalization and ¢; denotes the split position. This
decision function uses sigmoid functions o(+) to approximate
the non-differentiable step function at the split position. If one
of the first-level classifiers rejects the input, the product of the
sigmoids drops below 0.5. Therefore, setting b = 0.5 is a
natural choice, although this offset can be adjusted based on
training or validation data to achieve a given missed detection
rate. The factor s; controls the smoothness of the sigmoid
activation and is shared among all three dimensions. Note that
the sign of s; depends on whether each first-level classifier’s
decision function increases or decreases toward the original
images, i.e., s > 0 for Cyy, and 51,53 < 0 for Corgpaxe and
Chake-

Figure 4 shows an example of the proposed classifier’s
acceptance region. In this example, we set |s;] = 5 and
calibrate b such that the classifier achieves a missed detection
rate of 0.01 on the validation set.

This classifier avoids the pitfalls of a one-class SVM as the
final classifier. First, it normalizes the decision scores from the
first-level classifiers such that none of them is ignored. Second,
it accepts images with high decision scores from the first-
level classifiers, therefore avoiding holes in high-confidence
regions, which are difficult for an attacker to reach anyway.
Third, it transparently allows an analyst to configure the split
thresholds, thereby avoiding unintuitive acceptance regions, as
shown in Fig. 3.

V. EXPERIMENTS AND RESULTS

This section evaluates the robustness of the 1.5C classifier
against evasion attacks. The goal of the attacker is to have
a fake image be classified as an original image. We assume
that the attacker has perfect knowledge about the classifier
including feature extraction, model architecture, and trained
weights. Studying this perfect knowledge scenario allows
assessing the security in a worst-case scenario. The application
scenario is detecting global image manipulation detection,
similar to related work [4], [30], [31]. First, we evaluate the
proposed attack and defense for the application scenario of
rescaling detection as in [4]. Then, we briefly present similar
results on the forensic tasks of blurring and median filtering
detection to demonstrate the generality of our findings.

A. Experimental Setup

The RAISE 1k dataset consists of 999 decodable images.
All images are converted to grayscale. From each image, we
randomly select 25 patches with a side length of 512 pixels.
For simplicity, we discard and re-draw patches with more than
10% of saturated pixels and patches with more than 50% of
zeros in their gradient image. For each patch, we keep an
original version and create a fake version. For the task of
rescaling detection, fake patches are scaled by a factor of 1.3
using bicubic interpolation as in [4], center-cropped to side
length 512, and eventually rounded to the unsigned byte range.
For the task of blur detection, the fake images use a Gaussian
kernel with a standard deviation of 0.5, as in [33]. For median
filtering detection, the fake images use a kernel size of 3 x 3.
The patches from 799 randomly selected images are used for
training, the patches from 100 images are used for validation,
and the patches from the last 100 images are used for testing.

B. Training and Selection of Hyper-Parameters

We replicate the training protocol from [4]. In particular,
for the binary SVM with RBF kernel, we search for the
regularization parameter C' € [275,...,2'5] and the kernel
width k € [2715, ... 23] using 5-fold cross-validation. The
grid search selects the hyper-parameters that provide the best
classification accuracy.

The regularization and kernel width parameters of the one-
class SVMs consider the range v € [2710 ... 20 x €
[2719. ..., 210]. While the original paper skips cross-validation
to reduce training complexity [4], we also use 5-fold cross-
validation to select v and k. The grid search finally selects
those hyper-parameters that minimize the weighted error prob-
ability as described in Sec. IV-B.

The SVMs are trained using scikit-learn 0.23.1. The SVM
decision functions are re-implemented in PyTorch 1.7. We
modify the DDN attack from Foolbox 3.3.1 [45] to include
quantization at the end of each iteration and run the attack on
an NVIDIA GeForce 2080 Ti GPU.

For the DDN-BPDA attack, we use an initial perturbation
budget of ¢ = 0.3, a multiplicative factor v = 0.005 to increase
or decrease the perturbation budget, and 1 000 attack iterations.
For the BPDA, we use a softmax steepness of « = 0.3. The
finite differences attack uses up to 100 iterations but usually
converges earlier. In each attack iteration, we modify a fraction
K = 0.05 of pixels. These two attack hyper-parameters are
subject to an ablation study in Sec. V-E.

C. Evaluation Protocol

We compare three classifiers: A binary SVM denoted as
2C-SVM, the original 1.5C classifier with the final one-class
SVM Cgr\éM, and the 1.5C classifier with the proposed logical-
and classifier C;‘)‘r‘}gd. The 2C-SVM is identical to the Corg/fake
as part of the 1.5C classifier, but we use these different names
to disambiguate between a standalone binary classifier and the
first-level component of the 1.5C classifier.

All attacks are run with the same S = 100 randomly chosen

fake test set patches. We compare attacks and adversarial



IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY

robustness in terms of the L2 distortion required to deceive
the detector. The L2 distortion is calculated as follows:

M
d(Tfakes Tagy) = % 2(3«”@1@,1' — Tadv,i)? (6)
i=
where M is the number of pixels, xsk. denotes the fake image
prior to the attack, and x4, denotes the image with adversarial
perturbation.

For each detector, we report results for six increasingly
tight acceptance regions. Therefore, we configure the attacks
to push adversarial examples not only across the decision
boundary but further into the acceptance region by a safety
margin 7. Thus, the attacker’s goal is to obtain @x,q, from
Trke With the following optimization problem:

mind(mfake,madv) S.t. f(madv) >T7 . @)

Here, f(-) can denote any detector, e.g., the Cgr\éM as in
Fig. 1, Cﬁr‘jgd, or the 2C-SVM. Note that the sign of the 2C-
SVM is flipped such that original images are assigned positive
outputs and fake images are assigned negative outputs. The
attack may not always be successful. Hence, the attack success
rate (ASR) reports the percentage of the S = 100 test images
for which the attack succeeded.

Exceeding the decision boundary by a safety margin can be
important in case of modifications by the distribution channel
or defensive pre-processing, or in case the defender rejects
low-confidence decisions. Furthermore, in a black-box setting
with access to a surrogate model, exceeding the decision
boundary can help to overcome approximation deficiencies of
the surrogate model. In fact, several related works showed
that exceeding the decision boundary by a safety margin
is needed to improve attack transferability [30], [46], [47].
Hence, studying classifier robustness with different safety
margins is a very relevant scenario.

To compare safety margins across different classifiers, 7
is set as high as the 0,1,25,50,75, and the 90th percentile
of prediction scores assigned to original images from the
validation set. Here, 0 means that adversarial examples have
just crossed the decision boundary. A safety margin of 1
corresponds to an acceptance region where 1% of the original
validation images are rejected, i.e., the missed detection rate
with this kind of tightened acceptance region would be 0.01.

D. Classification Accuracy

We report results for the task of rescaling detection. The
2C-SVM’s test accuracy is 1.0. The test accuracy of the 1.5C
classifier with C5yM is 0.9988. Individually, the 2C classifier
Corg/fake, the original image one-class detector Cyrp, and the
fake image one-class detector Cpy. reach accuracies of 1.0,
0.9956, and 0.9934, respectively. In comparison, the 1.5C
classifier with logical-and classifier Cg;éd attains an accuracy
of 0.9976. These numbers demonstrate that all classifiers

achieve high performance in the absence of attacks.

TABLE I
L2 DISTORTION AND ATTACK SUCCESS RATE (ASR) OF 100 ATTACKED
IMAGES CRAFTED AGAINST THE 2C-SVM AND AGAINST THE 1.5C
CLASSIFIER C(S)Xé"l PUSHING ADVERSARIAL IMAGES FURTHER INTO THE
ACCEPTANCE REGION BY A SAFETY MARGIN REQUIRES MORE
DISTORTION. OUR PROPOSED DDN-BPDA ATTACK FINDS ADVERSARIAL
EXAMPLES WITH LOWER DISTORTION THAN THE FINITE DIFFERENCES
ATTACK. WHILE THE 1.5C CLASSIFIER IS MORE ROBUST AGAINST
LOW-CONFIDENCE ADVERSARIAL IMAGES WITH A SAFETY MARGIN OF
ZERO, 2C-SVM IS MORE ROBUST AGAINST HIGH-CONFIDENCE
ADVERSARIAL EXAMPLES.

Finite diff. (FD) [30] DDN-BPDA

CIf. Margin  ASR L2 distortion ASR L2 distortion
0 1.00  0.207+0.075 1.00 0.193 +0.052
1 1.00  0.3334£0.108 1.00 0.282 =+ 0.072
2C- 25 1.00  0.370+£0.119 1.00 0.304 +0.078
SVM 50 1.00 0.40340.134 1.00 0.32240.083
75 1.00  0.440+0.158 1.00 0.340 + 0.093
90 1.00  0.496 +£0.204 0.99  0.355 + 0.092
0 1.00  0.244+40.082 1.00 0.224 +0.057
1 1.00  0.261+0.083 1.00 0.236 & 0.058
csym 25 0.99 0.30640.083 1.00 0.268 +0.057
50 0.98 0.3334+0.082 1.00 0.285+0.057
75 0.97 0.366+0.081 1.00 0.305 =+ 0.055
90 0.97 0.3964+0.083 1.00  0.329 4 0.049

E. Attack Evaluation

We first compare the finite differences (FD) attack [30] and
our proposed DDN-BPDA attack and then provide ablation
studies for these two attacks.

1) Finite Differences vs. DDN-BPDA Attack: The columns
of Table I compare the FD and DDN-BPDA attacks in terms of
the L2 distortions required to reach the adversarial region with
a specified safety margin. The FD attack achieved an ASR of
1.0 against the 2C-SVM and an ASR of 0.97 to 1.0 against the
CoxM across different safety margins. The DDN-BPDA attack
succeeded on all images presented to Cgr\éM, and it achieved
an ASR between 0.99 and 1.0 against the 2C-SVM. The table
only reports distortions for successfully attacked images. For
both attacks, we verified that unsuccessfully attacked images
can be turned into adversarial examples by tuning the attack
hyper-parameters.

As expected, the L2 distortion for a successful attack
increases with the desired safety margin for both attacks and
classifiers. Overall, the proposed DDN-BPDA attack yields
adversarial images with lower average L2 distortion than the
FD attack. In the remainder of this section, we first provide
an ablation study for the two attacks, and then compare the
robustness of 2C-SVM and C5YM.

2) Ablation Study for the Finite Differences Attack: In-
stead of pushing all of the pixels by a small step size into
the gradient direction, such as conventional gradient descent
methods, the FD attack updates a fraction of the pixels by
a fixed step size of 1 to account for the integer nature of
pixel values. In the original paper [30], the authors found that
changing no more than a fraction K = 0.2 of the pixels per
iteration yields adversarial examples with low distortion. For
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Fig. 5. The figures show the attack success rate (left) and the mean L2
distortion (right) as a function of the fraction K of pixels modified per attack
iteration. We configure the attack to achieve decision scores as high as the
0, 1,25, 50, 75 and 90th percentiles of the original validation images. Smaller
values of K lead to adversarial images with lower distortion but the attack
more often becomes stuck at non-adversarial minima.

a fair comparison to our proposed attack with tuned hyper-
parameters, we evaluate the FD attack with several lower
values of K. Figure 5 shows the attack success rate and
the average L2 distortion of the FD attack against CoyM as
a function of K. The average L2 distortion decreases for
lower values of K. This can be explained by the dependencies
among pixels that are captured by SPAM features. Therefore,
changing only a few pixels before re-computing the gradient
in the next iteration can yield adversarial examples with lower
distortion. At the same time, however, the attack occasionally
becomes stuck at non-adversarial minima. For Tab. I, we chose
K = 0.05 because the attack success rate is above 0.95.
Additionally, changing fewer pixels per iteration increases
the total number of iterations until an adversarial example
is found. By decreasing K from 0.2 to 0.001, the average
number of iterations to produce adversarial examples rises
from 1 to 29 for safety margin 0, and even 61 for the highest
safety margin. Although we optimized our implementation to
re-compute only those SPAM features that are affected by a
single pixel change, calculating the gradient approximation is
still very expensive. Therefore, K can be seen as a hyper-
parameter that trades distortion for attack speed and attack
success. We note that even with a very small K = 0.001, the
proposed attack still achieves lower distortion and a higher
success rate.

3) Ablation Study for BPDA «: During the backward pass,
the non-differentiable SPAM feature quantization is imple-
mented via vector quantization, which assigns each pixel to a
template vector. The hard assignment, which disrupts the gra-
dient flow, can be approximated through a differentiable soft
assignment, as explained in Sec. III-C. The hyper-parameter
« controls the softmax steepness: a higher o provides a more
precise approximation, and a lower o improves the gradient
flow.

Figure 6 shows the average L2 distortion as a function of o
after attacking Coy™ with a safety margin of 0. The lowest L2
distortion is achieved by a = 0.3. For the rest of this paper,
we use o = 0.3.
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0.4

L2 distortion
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T T
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Softmax steepness ¢ used by gradient approximation

1072

Fig. 6. The hyper-parameter o controls the softmax steepness of the backward
pass differentiable approximation (BPDA). Setting o = 0.3 allows the DDN-
BPDA attack with a safety margin of 0 to produce adversarial images with

low average L2 distortion against the CnggM.

4) Finite Differences Attack with the BPDA Gradient: We
also evaluate the FD attack algorithm with our BPDA gradient
approximation, but find that the FD attack does not benefit
from this gradient approximation. Intuitively, BPDA should
give a more precise approximation because it provides the
analytical gradient with only one transformation approximated,
while Chen ef al. approximate the gradient using finite differ-
ences. Therefore, we adapt the algorithm by Chen et al. and
replace the finite differences gradient with the proposed BPDA
gradient.

We find that this “hybrid” attack yields an average L2
distortion larger than both the original FD and the DDN-BPDA
attack. With a safety margin of 0, for example, the hybrid
attack requires an average L2 distortion of 0.281, while the
FD and DDN attacks require 0.244 and 0.224, respectively.
We hypothesize that the FD attack does not benefit from the
more precise gradient approximation because of the relatively
large step size of 1. In contrast, the finite differences gradient
approximation evaluates the change in the classifier’s decision
score by changing each pixel by a step of 1 and is therefore
better suited for this kind of attack algorithm.

Thus, we conclude that the proposed DDN-BPDA attack
yields adversarial examples with lower distortion not because
of the more precise gradient approximation but because it con-
tinuously optimizes for lower distortion even after it has found
an adversarial example. Nevertheless, the BPDA gradient
enables this attack because it is much faster to calculate than
the finite differences gradient approximation. Furthermore, it
can readily make use of GPU acceleration without requiring a
specialized CUDA implementation. For the rest of the paper,
we only use the proposed DDN-BPDA attack.

F. Defense Evaluation

In this section, we compare the adversarial robustness of
three classifiers: a binary SVM (2C-SVM), the original 1.5C
classifier CEXgM, and the proposed variant Cirréd. We begin by
comparing the first two classifiers 2C-SVM and C5YM, again
using the results from Tab. I though now with a rowwise

comparison. A similar comparison is reported in [4], but we
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TABLE I
ERROR RATES OF THE COMPONENTS OF THE 1.5C CLASSIFIER UNDER
ATTACK. THE ADVERSARIAL IMAGES WERE CRAFTED AGAINST CS¥YM
WITH INCREASINGLY TIGHT SAFETY MARGINS. EVEN THOUGH Cogrg
SPOTS MANY ADVERSARIAL IMAGES, CSYM STILL ACCEPTS THEM.

Attacked clf. Margin  ASR  Cyggake  Corg  Crake
0 1.00 1.00 019 077

1 1.00 1.00 029 094

SV 25 1.00 100 036 094
e 50 1.00 1.00 049  1.00

75 1.00 1.00 055  1.00

90 1.00 1.00 062 1.00

additionally evaluate different safety margins. This in-depth
analysis reveals the pitfalls of the final one-class classifier.
Afterwards, we show that the proposed C22<¢ mitigates these

Or;
pitfalls and achieves higher robustness. :

1) 2C-SVM vs. 1.5C Classifier: Table 1 shows that for a
safety margin of 0, more distortion is required to cross the
decision boundary of C3y™ than the boundary of 2C-SVM.
Surprisingly, this behavior changes for higher safety margins.
Here, C(S)r\;M is less robust than the 2C-SVM. For example, to
achieve a prediction score as high as the lowest 25 percent
of the original validation images, attacking 2C-SVM requires
an L2 distortion of 0.304, while attacking C3%™ only requires
0.268.

Overall, we assume that the decreased robustness of the
Cgr\;M for higher safety margins is due to the ellipsoidal
acceptance region shape, as described in Sec. IV-C3. The
final one-class classifier Coy™ assigns the highest decision
scores to samples that are predicted with medium scores by
the first-level classifiers. Hence, an attacker can produce high-
confidence adversarial examples against C(S)XgM although these
do not need to fool the first-level classifiers, which costs less
distortion.

2) Which of the 1.5C Classifier’s Components Is Fooled?:
We now investigate the failure of the specific components of
the 1.5C classifier, namely Corg/fakes Corg, and Crage (cf. Fig. 1).
Table II shows which of these components are fooled by the
100 adversarial examples crafted against Coy™

While all adversarial examples fool the Cyg/rake cOmponent,
only a fraction thereof is accepted by Cyg. For a safety margin
of 0, even Cgy recognizes 23 images as fake, but Cgr\;M still
accepts these images. This may be due to the hyper-parameter
optimization, which enlarges CoyM’s acceptance region into
rejection regions of the first-layer classifiers. In any case,
the fact that C(S)XgM accepts attacked images despite one or
more first-level classifiers identifying them indicates room for
improvement for the robustness of the 1.5C classifier.

3) Logical-and Classifier: We now evaluate the robustness

of the proposed logical-and classifier C(fr%d, which replaces the

final one-class SVM in the 1.5C architecture. The same first-

level classifiers are used as for the CoyM. The bias b is set

such that Cgﬁgd achieves the same missed detection rate as the
CSYM on the validation set. Because the decision function of

the logical-and classifier is very steep, the attack minimizes

TABLE III
L2 DISTORTION OF THE ADVERSARIAL EXAMPLES CREATED USING
DDN-BPDA AGAINST THE LOGICAL-AND CLASSIFIER CgRg.

Margin  ASR L2 distortion
0 1.00  0.264 +0.070
1 1.00 0.280 +0.073
25 1.00 0.306 +0.072
50 1.00 0.343 £0.071
75 1.00  0.407 £+ 0.099
90 0.99 0.476 £0.164
TABLE IV

ERROR RATES OF THE COMPONENTS OF THE 1.5C CLASSIFIER WITH
ADVERSARIAL IMAGES CRAFTED AGAINST Cgre. WITH A SAFETY
MARGIN OF 1 OR HIGHER, DECEIVING THE LOGICAL-AND CLASSIFIER
REQUIRES DECEIVING ALL THREE FIRST-LEVEL CLASSIFIERS, WHICH
REQUIRES HIGHER DISTORTION.

Attacked cIf.  Margin  ASR  Cogpke Corz  Crake

0 1.00 1.00 0.83 0.85

1.00 1.00 0.99 0.98

o 25 100 100 100 1.00
Corg

50 1.00 1.00 1.00 1.00

75 1.00 1.00 1.00 1.00

90 0.99 0.99 0.99 0.99

the logarithm of Cf,rréd’s decision function from Eq. 5.

Table III reports the L2 distortion against the proposed clas-
sifier with six increasingly tight security margins. Compared to

the CoUM (cf. Tab. I, bottom right), adversarial images against

the logical-and classifier ng; require more distortion across

all safety margins. For a safety margin of 0, adversarial images
against the Cgr%d require an average L2 distortion of 0.264,
while adversarial images against the C3¥M only need 0.224.

org
For a safety margin of 1, ngjgd is slightly less robust than
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Fig. 7. 25 randomly selected adversarial examples crafted against the 2C-
SVM (blue), the 1.5C classifier CnggM (orange), and the proposed nggd
(green). The background color indicates the decision scores of the Cgr\éM. The
circle markers show adversarial examples that have just crossed the individual
classifier’s decision boundary. The square markers show adversarial examples
that were pushed into the classifier’s acceptance region as far as 75% of the
original validation images.
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Fig. 8. Amount of distortion required to deceive the three classifiers for

blur detection. The 2C-SVM and CErVgM show similar robustness because of

the missing normalization pitfall. The proposed Cgr“gd overcomes this pitfall,
thereby achieving greater robustness.

the 2C-SVM. This is because ij{éd rejects images with very
low ds and must therefore accept images with slightly higher
d; than 2C-SVM to match the targeted missed detection rate.
However, Csr%d outperforms the other classifiers in all other
safety margins.

Table IV illustrates which of the 1.5C classifier’s individual
components are fooled by adversarial images crafted against
Cg‘rréd. For a safety margin of 0, Cyy still detects 17 of
the adversarial examples. The defense can be improved by
tightening the acceptance region. For example, by setting b
such that 1 percent of the original images is rejected, 99 of
100 attacked images deceive Cory. For higher safety margins,
all successful attacks deceive all the individual classifiers. This
result indicates that deceiving C;‘)‘fgd requires fooling all three
first-level classifiers, thus requiring higher distortion.

4) Comparison of the Three Classifiers: Figure 7 presents
25 randomly selected adversarial examples crafted against the
2C-SVM, against the C(S)XgM, and against Cg;:a,d. The background
shows a cross-section of the input space to the final one-class
classifier, colored by the CnggM, as in Fig. 3. The original and
fake training images are shown as semi-transparent yellow
and blue markers in the background. The circle markers show
adversarial images that just crossed the three classifiers’ deci-
sion boundaries. The square markers show adversarial images
where the attacker’s goal was to push adversarial examples as
far into the classifier’s acceptance region as 75 percent of the
original validation images. The adversarial examples against
the 2C-SVM (blue) align with the y-axis. As expected, the
blue circles coincide with d; = 0. Adversarial images crafted
against the Co¥™ are shown in orange. With higher safety
margins, the attacked examples move closer to the acceptance
region’s midpoint. Note that the orange circles only appear
inside the acceptance region due to the 2-D representation,
but they actually lie on the 3-D decision boundary. The
adversarial examples against Cgfgd, shown in green, are close
to the original training points. The square markers show
that a tighter acceptance region forces the attacker to push
adversarial examples toward the top-left corner, which requires

more distortion.

G. Case Study: Gaussian Blur Detection

We demonstrate that the pitfalls of C5Y™ also occur in

other forensic applications, such as the detection of Gaussian
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Fig. 9. Amount of distortion required to deceive the three classifiers for
median filtering detection. At safety margins of 0 and 1, Cgrf;;d is less robust
than the 2C-SVM because it requires an excessive acceptance region to match
the targeted missed detection rate. At higher safety margins, Cgr‘"éd outperforms

the other classifiers.
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Fig. 10. A cross-section of the 1.5C classifier’s acceptance region for median
filtering detection is shown. The circles show 25 randomly selected adversarial
examples crafted with safety margin 1 against the three classifiers. The squares
show adversarial examples with safety margin 75. Because Corg achieves
an accuracy of only 0.9506, ngéd was configured to accept low-confidence
rejections of Corg to match the targeted missed detection rate.

blur. The 1.5C classifier is trained analogously to the previous
experiment. The test accuracies of Corgfakes Corgs Crake, and
C(S,r\;M are 1, 0.9686, 0.9296, and 0.9992, respectively. Figure 8
compares the attack robustness of the C3y™ to the 2C-SVM
and Cﬁr?;d. The attack succeeded for all images. In this case,
deceiving the Cgr\gM and the 2C-SVM requires a similar amount
of distortion. This is because the decision scores dg, d3 of Corg
and Cpy, are smaller by almost two orders of magnitude than
the decision score d; from Corgake- As a result, the CoYM
ignores the output of the two first-level one-class classifiers.
The proposed Cgrréd normalizes the decision scores of the first-

level classifiers and therefore achieves greater robustness.

H. Case Study: Median Filtering Detection

As a third application, we evaluate median filtering detec-
tion as in [4]. Compared to the previous experiments, the
grid search for all one-class SVMs used a finer step size
for the kernel width, ie., x € [2710, 2795 295 2910]
because this fine-grained search range considerably increased
the classification accuracy. The test accuracies of Corgtakes Corgs
Ctake, and the C(S)r‘;M are 0.9998, 0.9506, 0.9788, and 0.9992,
respectively. Figure 9 shows the average L2 distortion required
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to fool the 2C-SVM, Cgr‘fb,M, and C3y”. The attack succeeded
for all images. Analogous to the results for rescaling detection,
the C3Y™ is more robust than the 2C-SVM with no safety
margin, but the 2C-SVM outperforms the CiyM at higher
safety margins. As before, the proposed Cgfgd is configured to
match the missed detection rate of the C(S)r\éM on the validation
set. If configured to achieve the same low missed detection
rate as the C5yM with no safety margin, CZ}® requires an
extensive acceptance region, thereby sacrificing its robustness.
With safety margin 1, Cgféd already shows greater robustness
than the C(S)r\;M. Nevertheless, Cirrz‘%d is slightly less robust than
the 2C-SVM because it rejects images with very low d, and
therefore, accepts slightly larger values of d; than the 2C-
SVM to match the targeted missed detection rate. However,
this cut-off value for d; and ds could be tuned further. For
higher safety margins, Cj;‘gd outperforms both the 2C-SVM
and CSYM.

This can also be seen in Fig. 10, which shows 25 randomly
selected adversarial examples against the three classifiers for
safety margins of 1 (circles) and 75 (squares). Because Corg
misses many original validation images (yellow circles with
de < 0), Cgrg,d was configured to accept low-confidence
rejections of Cyg to achieve the targeted missed detection rate.

This case study shows that achieving a good trade-off
between classification accuracy and robustness requires the
first-level classifiers to have a low missed detection rate; other-
wise the logical-and classifier needs to accept low-confidence
rejections by the first-level classifiers in order to achieve high
classifier accuracy. Thus, one direction for future work is to
minimize the missed detection rate of the first-level detectors
at the cost of more false alarms. These false alarms may be
identified by another first-level detector and would therefore
be rejected by the logical-and classifier.

1. Comparison to a CNN Baseline

For comparison, we trained individual CNN detectors for
the three manipulation detection tasks. We used EfficientNet-
B0, which is currently one of the most popular backbones in
related tasks [48], [49] and the same training, validation, and
test images as described in Sec. V-A. The learning rate was set
to 0.001, and we used a batch size of 16. Training was stopped
when the validation loss did not decrease for five consecutive
epochs. The CNN achieved an accuracy of 1.0 in all three
manipulation detection tasks. Given the large capacity of the
network, the good performance is not surprising, but another
important quality of a forensic detector is its adversarial
robustness. To evaluate the adversarial robustness, we used
the same evaluation protocol and the DDN attack with naive
rounding at the end of each iteration as described above.
Attacking the CNN for rescaling detection required a mean
L2 distortion of 0.041 for a safety margin of 0 and 0.0721
for a safety margin of 90. In comparison, attacking C?,rréd
for this task required an L2 distortion between 0.264 and
0.476 (cf. Tab. III). Similarly, attacking the CNN for median
filtering detection and Gaussian blur detection required an L2
distortion of only 0.024 and 0.026 for a safety margin of 0,
and 0.076 and 0.058 for a safety margin of 90. In comparison,

attacking Cgr’}b,d for these two tasks requires substantially higher
distortion (cf. Fig. 9 and Fig. 8).

Overall, the comparison demonstrates that evading the ng‘gd
with SPAM features requires considerably more distortion than
evading a single CNN. Although it is beyond the scope of
this paper, the idea of combining an ensemble of classifiers
can easily be transferred to deep learning. In particular, diver-
sity among the ensemble members can be achieved through
different strategies, including random initialization, training
data subsampling, or varying network architectures. The last
strategy appears particularly promising, as recent work indi-
cates that adversarial examples in multimedia forensics fail
to transfer between network architectures [47]. Therefore,
combining multiple CNN architectures with the logical-and
classifier can be an interesting direction for increasing the
adversarial robustness of CNN-based forensic detectors.

VI. CONCLUSION

Combining the decisions of multiple classifiers can increase
the robustness against evasion attacks. However, subtle pitfalls
in fusing classifier outputs compromise the performance and
security of these architectures. In this paper, we outline three
pitfalls of the one-and-a-half-class classifier. These pitfalls can
be mitigated by replacing the final one-class SVM with a
simple logical-and classifier using axis-aligned splits. Our
experimental evaluation demonstrates the increased robustness
of this classifier compared to the original one-and-a-half-class
classifier. To evaluate detector robustness with SPAM features,
we additionally develop a white-box attack that achieves lower
distortion than the previous attack against SPAM feature-based
detectors. In future work, we plan to examine the robustness
and reliability of other intrinsically secure detectors against
unseen processing and adversarial attacks.
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