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Abstract
Verifying the integrity of voice recording evidence for criminal
investigations is an integral part of an audio forensic analyst’s
work. Here, one focus is on detecting deletion or insertion op-
erations, so called audio splicing. While this is a rather easy
approach to alter spoken statements, careful editing can yield
quite convincing results. For difficult cases or big amounts of
data, automated tools can support in detecting potential edit-
ing locations. To this end, several analytical and deep learn-
ing methods have been proposed by now. Still, few address
unconstrained splicing scenarios as expected in practice. With
SigPointer, we propose a pointer network framework for con-
tinuous input that uncovers splice locations naturally and more
efficiently than existing works. Extensive experiments on foren-
sically challenging data like strongly compressed and noisy sig-
nals quantify the benefit of the pointer mechanism with perfor-
mance increases between about 6 to 10 percentage points. 1

Index Terms: Audio Splicing Localisation, Audio Forensics,
Pointer Networks

1. Introduction
In today’s digital era, more and more speech recordings like
voice messages, recorded phone calls or audio tracks of videos
are produced and possibly post-processed and shared via the
internet. Consequently, they often contain important cues for
criminal investigations, too. With powerful tools, either com-
mercial or free, as for example Audacity [1], the hurdles for
editing operations have become low. Forensic audio analysts
are thus often assigned to verify the integrity of material rele-
vant to court cases. Audio splicing (which subsumes deletion,
copying and insertion of speech segments) is an effective and
easy-to-perform manipulation that violates integrity. For exam-
ple, the sentence I do not agree is easily inverted by deleting
the signal segment containing not and merging the remaining
parts. Simple post-processing steps, such as saving forgeries us-
ing lossy compression, e.g. in MP3 format, can further weaken
or obscure editing cues. Furthermore, the workload for analysts
strongly increases with forgery quality and amount of data. Up
to now, several methods have been proposed to assist with lo-
calising splices in speech material. However, they are mostly
inapplicable to unconstrained signal characteristics. With this
work, we address the current limitations and propose a novel
and natural approach to audio splicing localisation.

1.1. Existing Approaches to Audio Splicing Localisation

Audio splicing localisation is mostly targeted with analytical
and deep learning (DL) based methods that focus on specific

1code: https://www.cs1.tf.fau.de/research/multimedia-security

features to detect signal inconsistencies. By example, some
previous works examine the consistency of specific audio for-
mats [2–4], rely on splices of recordings from different de-
vices [5, 6], or detect changes of the recording environment’s
noise levels [7,8], acoustic impulse [9] or both [10]. Others also
search for atypical changes in the subtle (and fragile) electric
network frequency (ENF) [11–13]. Due to the rise of convinc-
ing audio synthesis techniques, several works specifically aim
at detecting artificial segments amidst original speech [14, 15].

In practice, forensic analysts are confronted with audio
samples from unconstrained sources, which implies, e.g., arbi-
trary recording parameters, quality, formats, or post-processing
operations. So, methods relying on the presence of very specific
features might not be applicable if those are not present in cer-
tain audio signals. Indeed, recently, several DL approaches with
unconstrained feature extraction have been proposed [16–21],
however many of these methods are still preliminary. Some ei-
ther target audio splicing detection but omit localisation [16–
18], another work examines only two fixed splicing patterns,
and its generalization remains unclear [19]. In addition, the
small and non-diverse Free Spoken Digit Dataset [22] is often
used to construct spliced samples [16–18], and frequently, ma-
terial from different speakers instead of one is merged [16–19],
which excludes the highly relevant and more difficult-to-detect
case of forged statements of one person. Zeng et al. [20] con-
sider more miscellaneous spliced forgeries from one speaker
and employ a ResNet-18 [23] method for chunks of audio spec-
trogram frames. However, this is only fit for coarse splicing lo-
calisation within windows of 32 to 64 frames. For frame-level
granularity, a sequence-to-sequence (seq2seq) Transformer [24]
model has been proposed [21]. It outperforms several convolu-
tional neural network (CNN) classifiers on challenging data, but
still leaves room for improvement concerning well-made forg-
eries.

1.2. Audio Splicing Localisation via Pointer Mechanisms

We propose a major improvement over existing methods for au-
dio splicing localisation by regarding this task as a pure pointing
problem. Pointers predict a conditional probability distribution
over elements of a sequence and were originally designed for
approximating combinatorial optimization problems [25]. They
can thus directly locate parts of the input series, in contrast to
traditional seq2seq networks, where a mapping to a fixed set of
target tokens is learned. Pointer mechanisms were recently also
integrated into the Transformer [24] architecture, where mix-
tures of pointer and token generation components solve natural
language processing tasks [26, 27]. In our case, we want the
neural network (NN) to indicate splice locations by pointing to
the respective input signal positions. This appears more nat-



ural and efficient than step-wise classifying segments of fixed
size [20] or learning a mapping to a fixed vocabulary [21]. Ex-
isting pointer methods however operate on categorical input.
We thus design SigPointer, a Transformer [24] based pointer
network for continuous input signals. We benchmark against
existing works on audio splicing localisation and analyse the
influence of our network’s components. SigPointer proves to
perform best on forensically challenging data, both under seen
and unseen quality degradations.

2. Proposed Method
In this section, we describe our proposed pointing method for
signals, as well as training strategies and datasets.

2.1. SigPointer for Continuous Input Signals

We define audio splicing localisation as a pointing task. The
input to our encoder-decoder network (Fig. 1) is a time se-
ries of signal representation vectors with length N , formally
S = [s0, s1, · · · , sN ]. Additionally, s−1 denotes ⟨eos⟩, a spe-
cial token to which the pointer mechanism can point to denote
that decoding is finished [27]. It is omitted in the following def-
initions for simplicity. The encoder part of our network (left)
mostly aligns with the original Transformer [24] model. It is
made of a stack of layers, each implementing multi-head self-
attention followed by a fully-connected (FC) layer and layer-
normalisation. However, unlike existing pointer methods on
categorical data (cf. Sec. 1.2), we skip learning input embed-
dings and feed the raw data into the network, since we already
operate on continuous, dense data. The encoded representation
H = [h0,h1, · · · ,hN ] of S, where hn ∈ Rl with latent size
l, then serves as input to the decoder (middle). The decoder
solely consists of a stack of multi-head attention layers [24].
Per time step t, it takes H and one position vector zt∗ ∈ Rl

per previously predicted ŷt∗ ∈ I = {0, 1, · · · , N} with t∗ < t
to indicate the next splice location ŷt. More details about this
decoding process are given in the following two paragraphs.

Pointer Mechanism To predict the full output index se-
quence ŷ, we need the conditional probability distribution over
all input positions P (ŷ|S) =

∏T
t=0 P (ŷt|H,Z). Thus, for

each time step, we extract the cross-attention scores between
H and Z from the last decoder layer for all M attention heads,
yielding A

M×|S|
t , with am,s ∈ R (Fig. 1, right). Unlike related

Transformer pointer methods, we do not mix pointer and token
generation tasks [26, 27], so all the model’s attention heads can
be reserved for computing one final pointer result. We thus av-
erage and normalize all attention heads’ values to yield the dis-
crete index probability distribution as p̂t = softmax(At

∣∣M
1
).

During inference, ŷt = argmax(p̂t) is computed to yield the
final splice point or ⟨eos⟩ if no (further) splice point is detected.

Slim Decoding Existing seq2seq (pointer) approaches on
categorical data traditionally use the semantic of the previously
decoded elements ŷt∗ to decode the next ŷt from H. Hereby,
ŷt∗ is projected to latent size l with an embedding layer Em and
positional encodings are added to yield the final representation.
Contrary, we only use sinusoidal encoding vectors [24] zt∗ =
et∗ for each ŷt∗ . The vectors zt∗ thus only preserve the relative
ordering and number of already decoded output items. In sev-
eral tests, we observed that this slim information is sufficient,
since training some Em and reusing yt∗ as decoder target in-
put did not show any advantage. In fact, the performance even
slightly degraded. We reason that this is due to sparser available
context between sequence elements compared to approaches on
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Figure 1: SigPointer model for locating splices in audio signals

discrete data, e.g., word tokens from a natural language [26,27].
Differently from the latter, splicing points carry few syntacti-
cal information (locations) and are generally not expected to
have rich dependencies among each other. So, previously found
splice locations do not provide clues about future ones.

2.2. Choosing Model and Training Parameters

We conduct a parameter search of 200 trials with optuna [28]
(v.2.10) and PyTorch [29] (v.1.10.2) on 4 consumer GPUs. The
search space encompasses ne, nd ∈ [1, 8] encoder and decoder
layers, h ∈ {1, 3, 9} heads (divisors of latent size l = 279),
fd ∈ [27, 211] for the FC layer dimension, dropout d ∈
[0.01, 0.05, · · · , 0.3] within the attention layers, learning rate
lr ∈ [1e−5, 5e−5, · · · 5e−3] for the Adam optimizer and batch
size b ∈ [32, 64, 128, 256, 350]. We choose the best configura-
tion C : (ne, nd, h, fd, d, lr, b) = (7, 1, 9, 27, 0.1, 5e−4, 350)
for our network and use Glorot weight initialisation [30]. Sig-
Pointer converges significantly better with regression as op-
posed to classification losses. The cosine distance loss dc =

p̂t·pt
∥p̂t∥∥pt∥

∣∣∣T
1

proves to be most stable, where pt are the one-hot
encoded target splice indices. Note that a more exact metric for
our task is the mean absolute error between the predicted po-
sitions ŷ and targets y. Since it guided training better but is
non-differential, we only use it as validation loss.

2.3. Datasets and Training Strategy

All datasets are generated using our previously introduced
pipeline [21] and cover forensically challenging scenarios. We
use the anechoic ACE dataset [31] as source set, such that the
model does not adapt to unintended, acoustic side channels in
forged samples. Samples between 3 s and 45 s are created from
ns source segments of the same speaker from the same or differ-
ent simulated environments. Post-processing that may obscure
splicing is applied in the form of additive Gaussian noise and
either single AMR-NB or MP3 compression, all in randomly
sampled strength. Adding noise to a signal can serve as an easy
method to mask tampering, just as compression which however
may also be unintentionally introduced by re-saving the edited
version or sharing via social media services. The final feature
representation with a time resolution of 500ms is a concate-
nation of the Mel spectrogram, MFCCs and spectral centroids,
yielding the feature dimension l = 279. For more details about
the generation pipeline we refer to the respective work [21].

For training, we employ curriculum learning [32] in a three-
stage process with a train/validation split of 500k/30k for each
stage. Training is conducted upon model convergence with 100
epochs and a patience of 20 epochs. The first dataset covers



samples with n ∈ [0, 1] splices and no post-processing, the
second extends to post-processing and the third includes both
multi-splicing with n ∈ [0, 5] and post-processing. As in ex-
isting work [21], we employ cross-dataset testing and generate
our test sets from the Hi-Fi TTS set [33] as described in Sec. 3.

3. Experiments
We evaluate our proposed method on forensically challenging
data and test against four existing methods and two custom
baselines to analyse the benefits of the pointer framework.

3.1. Baseline Models

We train each NN as described in Sec. 2.3, where all but the
pointer approaches employ the BCE instead of the cosine loss.

CNNs Most existing works rely on CNNs and natively
have too strong limitations to be directly used for our task (cf.
Sec. 1.1). We reimplement three approaches [16, 18, 20]. The
first two frameworks [16,18] only cover binary classification of
spliced vs. non-spliced signals with custom CNN models, while
Zeng et al. [20] propose localisation with a ResNet-18 [23] clas-
sifier. They employ a sliding window approach over chunks
of frames, where the window stride s = 1 accounts for exact
(frame-level) detection. The classifier’s decision per frame is
inferred from averaged probabilities of multiple windows. This
approximative method is however only fit for larger s [20]. Our
reimplementation confirms long training times and poor detec-
tion on frame level, so we use a custom splice localisation strat-
egy for CNNs. It is based on our previously introduced frame-
work [21], where baseline CNNs are extended to classify at
maximum n splicing positions with no = n output layers. This
however shows poor performance for n > 1. Instead, we set
no to the maximum expected number of input frames, 90 in our
case, and perform a binary classification per frame which proves
to be more stable w.r.t. higher n. Splitting in smaller segments
accounts for signals with lengths exceeding no. We exclude two
methods because of no details on the model specifications [17]
and very restrictive splicing assumptions where a relaxation to
our more unconstrained task is not straight forward [19].

Seq2Seq Transformer We also re-train our seq2seq model
from previous work on multi-splicing localisation [21]. Given a
signal, the encoder outputs its latent representation from which
a sequence of splicing points is decoded step-by-step using a
fixed vocabulary set.

SigPointerCM For a direct comparison of the pointer
against the seq2seq framework, we instantiate SigPointer with
the Transformer configuration CM in [21].

Transformer encoder SigPointer employs autoregressive
decoding (cf. Sec. 2.1). To quantify its influence we test against
the capacity of a plain, non-autoregressive Transformer en-
coder. Thereby, we project the encoder memory Hl×N (Fig. 1)
to size 2 × N to perform a per frame classification as for the
CNN baselines. For a fair comparison we again conduct a
hyper-parameter search (Sec. 2.2), but double the search space
for the number of encoder layers to ne ∈ [1, 16] to account
for the missing decoder capacity. The best model configuration
yields C : (ne, h, fd, d, lr, b) = (12, 9, 211, 0.1, 1e−4, 64).

3.2. Performance Metrics

We report the average Jaccard index J expressing the similarity
of prediction ŷ and ground truth y as intersection over union
J = |ŷ∩y|

|ŷ∪y| , as well as average recall R = |ŷ∩y|
|y| of 5 training

runs with different seeds. Note that the order of the predicted

points is irrelevant for both metrics. We evaluate both exact
localisation and coarser granularity by binning the input signal
by f ∈ [1, 2, 3, 4] frames, denoted as Bin = f .

3.3. Evaluation of the Pointer Mechanism

For this experiment, we generate a dataset of 30k samples with
uniformly sampled n ∈ [0, 5] splicing positions from the Hi-
Fi TTS test pool [33], including single compression and noise
post-processing as described in Sec. 2.3. The size and per-
formance results of all models are listed in Tab. 1. The CNN
methods (rows 1 to 3) are inferior to the Transformer-based ap-
proaches (rows 4 to 7). Jadhav et al.’s [16] large but very shal-
low network performs worst, followed by Chuchra et al.’s [18]
small but deeper model with 12 layers and the best and deep-
est ResNet-18 CNN baseline. Solving the same classification
task (Sec. 3.1) with the Transformer encoder greatly improves
splicing localisation. It also slightly surpasses the best pro-
posed seq2seq model from related work [21]. However, it
also uses about 2.3 as much trainable parameters. Training
the seq2seq model in our pointer framework (SigPointerCM )
demonstrates the benefit of our proposed approach. The miss-
ing seq2seq vocabulary mapping component slightly reduces
the network size, still the Jaccard index and recall increase by
approximately 5.0 percentage points (pp) and 4.8 pp and out-
perform both the Transformer encoder and the original seq2seq
model. We achieve the best performance with optimized hyper-
parameters (cf. Sec. 2.2), yielding the even smaller SigPointer*.
Notably, the decoder is reduced to 1 < 5 layers compared
to SigPointerCM which suffices for our slim decoding strategy
(cf. Sec 2.1). The advantage of about 5.1 pp and 5.2 pp to
SigPointerCM with J = 0.5184 > 0.4670 and R = 0.5719 >
0.5202 for Bin = 1 steadily decreases, reaching 3.8 pp (J) and
3.0 pp (R) for Bin = 4. We thus assume that SigPointerCM is
only slightly less sensitive to splicing points than the optimized
SigPointer* but notably less exact in localisation.

3.4. Influence of Splices per Input

In Fig. 2 we report the Jaccard coefficients on our Hi-Fi TTS
test set w.r.t. the number of splice positions per sample. Evi-
dently, all models recognise non-spliced inputs relatively well,
while localising actual splice positions correctly proves to be
more difficult on this challenging dataset (Fig. 2a-2d). The best
performing SigPointer* (red) achieves J = 0.5187 for single
splices and still J = 0.3918 for n = 5 splices. When allowing
coarser signal binning (Fig. 2b-2d), the performance increases
considerably up to J = 0.7268 and J = 0.6104 for n = 1, 5
and Bin = 4 (Fig. 2d). As stated in Sec. 3.3, the less accu-
rate SigPointerCM (orange) benefits from coarser bins, but can-
not outperform SigPointer*. The Transformer encoder (grey)
performs well for n = 1, 2, but drops below the Transformer
seq2seq model’s [21] (green) performance for n ≥ 3. The
CNNs (blue) are weakest, where especially the custom mod-
els [16, 18] exhibit low sensitivity to splicing and thus cannot
profit from coarser signal binning (Fig. 2b-2d). In summary,
SigPointer* outperforms all baselines in terms of sensitivity to
splicing and exactness of localisation, despite its small model
size of 3.4M parameters.

3.5. Robustness to Complex Processing Chains

We test the generalization ability of the models trained only on
single compression and additive Gaussian noise post-processing
to even stronger obscured splicing points. We thus run the ro-



Table 1: Model size and performance (mean ± SD of 5 training runs) on the Hi-Fi TTS test set with n ∈ [0, 5] splices per sample.
Jaccard Index J and recall R are evaluated for exact localisation (Bin = 1) and w.r.t f ∈ [2, 3, 4] frame binning of the input signal.

Model Params Bin = 1 Bin = 2 Bin = 3 Bin = 4

J R J R J R J R

Jadhav [16] 205.15 M 0.2189±0.004 0.2369±0.004 0.2547±0.004 0.2768±0.004 0.2745±0.004 0.2982±0.004 0.2952±0.004 0.3191±0.004

Chuchra [18] 134.77 K 0.2964±0.004 0.3089±0.004 0.3280±0.004 0.3373±0.005 0.3445±0.005 0.3509±0.005 0.3533±0.005 0.3594±0.005

Zeng [20] 11.17 M 0.3274±0.003 0.3867±0.002 0.4249±0.003 0.4921±0.004 0.4734±0.004 0.5413±0.005 0.5162±0.004 0.5831±0.005

Transf. enc. 17.51 M 0.4377±0.005 0.4855±0.007 0.5386±0.005 0.5825±0.008 0.5839±0.006 0.6231±0.009 0.6231±0.006 0.6574±0.010

Moussa [21] 7.62 M 0.4198±0.005 0.4747±0.008 0.5263±0.008 0.5794±0.011 0.5679±0.010 0.6187±0.014 0.6123±0.011 0.6595±0.015

SigPointerCM 7.57 M 0.4670±0.003 0.5202±0.003 0.5767±0.003 0.6265±0.006 0.6160±0.003 0.6620±0.006 0.6648±0.004 0.7061±0.008

SigPointer* 3.40 M 0.5184±0.006 0.5719±0.011 0.6228±0.012 0.6675±0.018 0.6607±0.016 0.7002±0.022 0.6977±0.019 0.7322±0.025
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Figure 2: Jaccard index J (mean of 5 training runs) for n ∈ [0, 5] splices (Figure 2a-2d) and robustness towards out-of-distribution
multi-compression and real noise post-processing (Fig. 2e-2h). The pointer framework (red tones) is clearly superior in all tests.

bustness experiments from our previous work on the available
test sets à 10k samples from Hi-Fi TTS [21]. They consist of 0
to 5 times spliced samples subjected to nc ∈ [1, 5] AMR-NB or
MP3 compression runs (5 test sets) and additive real noise post-
processing (4 test sets). Both compression and noise strength
are randomly sampled [21]. Figures 2e-2h show the results for
Bin = 1, 4. Most previously described trends in model per-
formance (Sec. 3.3 and Sec. 3.4) also show in this robustness
experiment. However, the seq2seq Transformer [21] this time
surpasses the simpler Transformer encoder and shows slightly
better robustness in all experiments. SigPointer* again outper-
forms all models. Compared to the best existing model [21]
(green), for Bin = 1 it increases localisation ability by (on av-
erage) 8.4 pp for multi compression and 9.1 pp for additive real
noise (Fig. 2e, Fig. 2g). Surprisingly, despite differing complex-
ity, the type of noise has little influence on the performance.

3.6. Limitations

In our tests, SigPointer models are more sensitive to weight ini-
tialisation compared to the other considered NNs. The number
of epochs until the model converges can thus vary strongly, so
early pruning of weak runs is recommended in practice.

Also note that one design advantage of our model can be
a pitfall in practice. SigPointer can process signals of arbitrary
length, contrary to classifiers that are constrained by their num-
ber of output layers or seq2seq methods that are indirectly lim-
ited by their learned output vocabulary mapping (cf. Sec. 3.1).
However, we empirically observed that the pointer adapts to sig-
nal lengths seen in training and does barely search for splices
out of known ranges. The behaviour of inherent adaptation to
problem sizes is already known from literature [34,35]. To mit-
igate this issue, we thus strongly recommend cutting test sam-
ples into multiple separate segments that fit into the training
distribution, as it was also done for the comparison methods.

4. Conclusions
With SigPointer, we present a novel and more natural approach
to the task of audio splicing localisation with the help of pointer
mechanisms. Our focus is on aiding with difficult-to-detect
splice positions that pose by example a problem in forensic an-
alysts’ daily work. In several tests on in- and out-of-distribution
data, we quantified the advantage of our pointer framework
for continuous signals and outperform existing approaches by
a large margin, even with a much smaller model size.
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