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Abstract
Compression traces are an important forensic cue to uncover the
processing history and integrity of audio evidence. With con-
tinuous advances in the AI domain, efficient generative lossy
neural codecs like Lyra-V2, EnCodec or Improved RVQGAN
can compete with traditional speech and audio codecs. Their
fundamentally different learning based approach compared to
analytical lossy compression methods poses a new challenge
for audio forensics. This calls for a closer examination of such
techniques to prepare forensics for audio evidence processed by
AI-based codecs. In this work, we thus want to take a first step
towards robustly detecting traces of neural codecs in audio sam-
ples. We report that distinctive frequency artefacts enable for
identifying neurally compressed audio and fingerprint specific
AI-based codecs. We further analyse the robustness towards
cross-dataset testing and noise, downsampling, and traditional
compression post-processing.1

Index Terms: AI Audio Compression, Audio Forensics

1. Introduction
Lossy audio compression formats are ever-present in today’s
digital era and enable for efficient storage, sharing or real-time
transmission of audio content. For audio forensics, lossy coding
formats are both a challenge and can provide valuable clues. On
the one hand, lossy compression can remove important cues and
distort signals, such that forensic audio tools for, e.g., speech
splicing localisation [1] or the detection of synthetic speech [2]
need to exhibit good robustness towards various coding formats.
One the other hand, characteristic traces of lossy audio codecs
can also be forensically exploited, for example to uncover ma-
nipulated parts of audio signals [3].

Up to now, forensic research focuses on traditional lossy
coding formats like MP3, Vorbis or Opus that use established
techniques like transform and perceptual coding [4] to effec-
tively compress signals via quantisation while modelling the hu-
man hearing system. However, recent advances in the domain
of neural codecs provide highly competitive and fundamentally
different learning-based models that perform successfully at ex-
tremely low bitrates [5–14]. This development requires forensic
tools to be ready to handle this new type of lossy compression
formats. Recently, forensic examination of AI-based compres-
sion and the detection of it has moved into focus for image
data [15–17]. However, forensic investigation of neural audio
compression has to the best of our knowledge not yet been ex-
amined.

In this work, we therefore take a first step to analyse
the robust detection and identification of neural audio codecs.

1code: https://faui1-gitlab.cs.fau.de/mmsec/forensic-identification-
of-ai-compressed-speech

We conduct our study on the forensically important case of
speech signals and select three practically relevant open-source
neural codecs. This includes Google’s© Lyra-V2 [8] speech
codec2 that incorporates a further development of the Sound-
Stream [12] model, Meta’s© EnCodec [13] network3 and De-
script Inc.’s© very recently proposed Improved RVQGAN [14]4.
Our detailed contributions thus are:
• To identify variations in the frequency representation of neu-

ral codecs that lead to distinct peak artefacts, especially in the
high frequency domain.

• To demonstrate the forensic exploitability of the artefacts for
lossy neural compression detection and neural codec finger-
printing in a cross-dataset setting.

• To demonstrate good robustness in increasingly difficult test-
ing conditions including unseen codecs and post-processing,
particularly when using hand-crafted features.

2. Related Work
The detection of artefacts from traditional lossy coding for-
mats has a long history in the research field of audio forensics
to uncover the processing history of a signal. Multiple com-
pression runs from re-saving operations or inconsistent coding
traces within a file can hereby be used to detect or localise po-
tential manipulation operations [3]. Codec-independent single
compression detection has been targeted using analytical time-
frequency features [18] or deep convolutional neural network
(CNN) features [19]. Additionally, stacked autoencoders have
been explored to extend the task up to fourth-time compres-
sion detection [20]. A large number of works specifically target
the analysis of the MP3 format due to its great popularity and
practical relevance. By example, statistical scale factor features
have been proposed for double MP3 compression detection [21]
with the same bitrate. Yan et al. [22] additionally exploit Huff-
man table indices to discriminate single, double and triple MP3
compressed audio. Recently, the use of Transformers [23] has
been proposed to localise multiple MP3 compressed sections
within some signal to uncover splicing manipulations [3].

Works on synthetic speech detection similarly often rely on
neural vocoder artefacts. Here, for example, Pons et al. [24] re-
port upsampling artefacts from transposed convolutions in the
decoder of a neural audio synthesiser. Morrison et al. [25] show
that many GAN vocoder architectures suffer from pitch and pe-
riodicity errors. Also, learned deep features exhibit good empir-
ical performance to distinguish real human speech and synthetic
speech from seen and unseen vocoders [26].

2https://github.com/google/lyra
3https://github.com/facebookresearch/encodec
4https://github.com/descriptinc/descript-audio-codec
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Figure 1: Left: averaged FFT for 4− 8 kHz of 500 LibriSpeech samples per neural codec. Right: artefacts of a 1 kHz signal.

To the best of our knowledge, the identification and detec-
tion of neural audio codecs has not yet been explored. Still,
the importance of forensic treatment of neural compression
has been recently recognised in the image domain [15–17].
Berthet et al. [15, 16] exemplarily show the inability of JPEG
compression detectors to generalise to AI-compressed images
and highlight their impact on forensic tools, and Bergmann et
al. [17,27] provide a first analysis on neural image codec traces.

3. Methods
We summarise neural audio codecs in Sec. 3.1, describe our
datasets in Sec. 3.2, and discuss characteristic compression arte-
facts of neural codecs in the frequency domain in Sec. 3.3.

3.1. Generative Neural Audio Compression

Contrary to traditional audio codecs that use analytical models,
fully neural audio codecs employ a purely data-driven approach
to learn efficiently compressed representations from original
signals. In the following, we outline the technical principles
behind the three end-to-end trainable audio codecs selected for
this study [12–14], and highlight their main differences.

Principles of Neural Audio Codecs Neural codecs typi-
cally employ an encoder E(·), a vector quantiser Vq(·) and a
decoder D(·) to produce a lossy version ŝ ∈ RT of the input
signal s ∈ RT of length T as ŝ = D(Vq(E(s))) [8, 12–14].
In detail, an input audio signal s ∈ RT is processed by the
encoder E(·) which outputs a series of latent representations
H = [h0,h1, · · · ,hN ], where hn ∈ RD with latent size D.
A vector quantiser Vq(·) then compresses H to some target
bitrate, usually denoted in kilobits per second (kbps). In de-
tail, our selected models employ residual vector quantisation
(RVQ) adapted from the Vector Quantised-Variational AutoEn-
coder (VQ-VAE) model [28, 29]. The decoder reconstructs the
time-domain signal ŝ ∈ RT from the quantised encoder output
Ĥ. During training, a mixture of adversarial losses and signal
reconstruction losses is combined to yield compressed signal
representations with high fidelity [12–14].

Neural Codec Models We investigate three officially re-
leased, pre-trained neural codecs, namely Lyra-V2 [8, 12], En-
Codec [13] and Improved RVQGAN [14], further referred to
as IRVQGAN.2,3,4 SoundStream, which introduced the efficient
RVQ in an end-to-end trainable model [12], is used in improved
form in Lyra-V2. EnCodec builds up on SoundStream and pro-
poses sequential modelling, an improved adversarial loss and
loss balancing [13]. IRVQGAN uses similar ideas, but focuses
on high-quality signal reconstruction at the expense of longer
computation times and five times more model parameters (c.f .
Tab. 1). The authors employ periodic activation functions, miti-
gate codebook collapse [30], and apply state-of-the-art vocoder
training strategies to further optimise reconstruction fidelity.

For our study, we select provided standard versions of the

codecs. Lyra-V2 uses a sampling rate of 16 kHz, EnCodec com-
presses speech at 24 kHz, and we equally choose IRVQGAN on
24 kHz. All models output audio with a bit depth of 16 bit. We
analyse all supported bitrates br , i.e., br ∈ {3.2, 6, 9.2} kbps
for Lyra-V2, br ∈ {1.5, 3, 6, 12, 24} kbps for EnCodec, and
br = 8 kbps for IRVQGAN.

3.2. Dataset Selection

Our analysis is done on speech samples that none of the codecs
has trained on [12–14]. We further test on sets of different signal
characteristics, since robustness is an important factor in foren-
sics. Thus, we select samples both from the 16 kHz, 16 bit,
LibriSpeech [31] test-clean split which is constructed from read
audiobook data and the 48 kHz, 16 bit TSP [32] database that
(contrary to LibriSpeech) provides noiseless, anechoic speech
signals. We sample balanced pools of 2 s speech snippets from
female and male speakers. In total, two training pools of 1000
samples are constructed each from the LibriSpeech and TSP
database, where a random 90/10 train/validation split is applied
for experiments. For testing, we use the remaining 184 samples
from TSP and a larger distinct pool of 500 LibriSpeech sam-
ples. More details on data preparation and post-processing are
described in the respective experiments in Sec. 4.

3.3. Artefacts of Neural Codecs

We examine the fast Fourier transform (FFT) of AI-compressed
audio for artefacts. Figure 1 shows averaged frequency spec-
tra from speech samples from 4 to 8 kHz for the lowest and
highest bitrate setting of Lyra-V2 and EnCodec and the single
available bitrate for IRVQGAN. The spectrum of the original
version and its compressed counterparts are shown in black and
in colour. Evidently, the neural codecs make notable frequency
reconstruction errors that especially occur in the plotted high
frequency range. The artefacts are comparable for the two Lyra-
V2 bitrate settings, while EnCodec’s error increases with much
stronger quantisation. IRVQGAN best represents the frequen-
cies, but deviations from the original are still noticeable.

The noisy FFT spectrum stems from the tendency of neu-
ral codecs to distribute the energy of specific frequencies across
the whole frequency spectrum. Figure 1 (right) shows a specific
example for a compressed single tone signal of 1 kHz with 2 s
duration. All neural codecs put the highest energy on the 1 kHz
frequency, with coefficient magnitudes of about 20,000 for En-
Codec and IRVQGAN, and about 6,000 for Lyra-V2 (clipped in
Fig. 1 for better visualisation). However, a significant amount of
energy is distributed in close proximity of the original frequency
and artefacts are still visible far off the target frequencies.

In addition, to better see the reconstruction ability for spe-
cific frequencies, each neural codec is fed with 2 s signals of
single frequency f ∈ [20, 8000]Hz in 50Hz steps. We report
the relative amount of reconstructed energy Er versus original
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Figure 2: Reconstruction accuracy of neural codecs.

Table 1: Accuracy (avg [%] ± std. dev. [%]) of 5 Logistic Re-
gression training runs for detecting AI-compressed speech from
a specific neural codec on LibriSpeech and TSP samples.

Model Param. Lib.�Lib. Lib.�TSP TSP�Lib. TSP�TSP

Lyra-V2 12 M 96.41±0.8 96.17±0.6 94.53±0.8 97.40±1.0

EnCodec 15 M 99.76±0.2 98.77±0.5 85.28±2.1 100.00±0.0

IRVQGAN 75 M 98.70±0.0 85.87±0.0 79.40±0.0 100.00±0.0

energy Ef as accr = Er
Ef

. Figure 2 shows the results, binned
into three frequency ranges. IRVQGAN achieves the highest re-
construction ratios, followed by EnCodec and Lyra-V2. Lower
frequencies until 300 Hz are reconstructed with overall higher
accuracy, which also includes frequencies of human speech.
The higher the frequencies, the lower is the reconstruction fi-
delity. This may stem from the fact that neural codecs are
mainly trained on speech and music [12–14], and hence more
strongly constrained in lower frequency bands.

In this work, we focus on a practical exploitation of such
irregularities. We investigate the detectability of the codecs us-
ing the FFT of speech signals. To enhance strong amplitude
changes in the signal we process each sample s with a high-
pass filter, i.e., the kernel kL = [−1, 2,−1], compute the mag-
nitude of the FFT and convert the output to logarithmic scale,
yielding FFT⋆(s) = log(|FFT(s ∗ kL)|). In our studies, this
enhancement leads to strongly improved detection results.

4. Detecting Traces of Neural Codecs
The experiments show the robust detectability and identification
of neural codecs with the discussed FFT⋆ features under foren-
sically challenging settings. We use a Logistic Regression clas-
sifier and compare to deep features from several neural network
(NN) classifiers. Reported metrics are the mean and standard
deviation (std. dev.) of 5 training runs with different seeds.

4.1. Intra-Codec Detectability

This experiment investigates the discriminative power of
the FFT⋆ features for distinguishing uncompressed and AI-
compressed speech signals of a specific neural codec. All data
pools are resampled to the supported sampling rate of the re-
spective codec model. Both train/test pools (LibriSpeech and
TSP) are compressed by each codec for all supported bitrates
br ∈ B (c.f . Sec. 3.1) to a total of 2 · 9 AI-compressed sets.
Each set is paired with its uncompressed, resampled counterpart
to train a binary Logistic Regression classifier with a random
90/10 train/validation split. We test within and across datasets.
Lyra-V2 and EnCodec support multiple bitrates and are hence
evaluated within and across bitrates. Results from all |B|2 bit-
rate combinations are averaged to yield compact tables.

Table 2: Accuracy (avg [%] ± std. dev. [%]) of 5 Logistic Re-
gression training runs on IRVQGAN samples for detecting AI-
compressed speech signals from unseen neural codecs.

Model Lib.�Lib. Lib.�TSP TSP�Lib. TSP�TSP

Lyra-V2 50.43±0.7 85.96±0.8 61.03±0.3 98.55±0.1

EnCodec 86.22±1.7 94.40±0.9 75.20±2.8 99.68±0.1

Table 1 shows the results. All models are robustly de-
tected, averaging to 96.13% > 95.95% > 90.99% for
Lyra-V2, EnCodec and IRVQGAN. As expected, models with
stronger frequency artefacts are detected with higher accuracy
(c.f . Sec. 3.3), and generalisation from anechoic TSP to Lib-
riSpeech samples is most challenging. The std. devs. across
runs and bitrate changes are quite low. IRVQGAN achieves std.
devs. of 0% due to its fixed bitrate and of course due to the sta-
ble convergence of Logistic Regression. Lyra-V2 and EnCodec
also generalise well with low std. devs. across bitrates since
both exhibit notable artefacts for all bitrates (c.f . Sec. 3.3).

4.2. Generalisation to Unseen Neural Codecs

We further analyse the capability to generalise to the detection
across neural codecs, i.e., to train on one codec and to try to
detect compression from another codec. The remaining experi-
mental setup (cross-dataset, cross-bitrate, and train/test compo-
sition) is identical to the previous experiment.

The results show that generalisation is partly challenging.
After training on 16 kHz Lyra-V2 compressed samples, the de-
tection performance on the other codecs drops to almost guess-
ing with an accuracy of 53.20%. Also, training on 24 kHz En-
Codec data may achieve a cross-codec performance of 81.89%
for IRVQGAN but only 58.90% for Lyra-V2. Overall, training
on the 24 kHz IRVQGAN with its more subtle artefacts gener-
alises better to Lyra-V2 and EnCodec, which is shown in Tab. 2.
Here, EnCodec and Lyra-V2 are detected with an average accu-
racy of 88.87% and 73.99%. Hence, cross-codec generalisation
tends to be easier when training on data with less pronounced
artefacts than present in test samples.

4.3. Fingerprints of Neural Codecs

A common forensic question is to identify the specific codec
that has been used for compression. We perform a closed-set 4-
class classification to distinguish uncompressed samples from
Lyra-V2, EnCodec, and IRVQGAN data. The bitrates for Lyra-
V2 and EnCodec are set to 9.2 kbps and 24 kbps for best-quality
compression with smallest artefacts. We construct two train/test
sets of 4K/2K and 4K/736 samples from LibriSpeech and TSP,
where each set includes 4 versions of each sample, i.e., one for
each class. All signals are downsampled to the lowest common
sampling rate of 16 kHz and Logistic Regression is trained as
one-versus-rest classifier on both train sets.

The first row of Tab. 3 shows the F1-Scores for each
class for the best (LibriSpeech/LibriSpeech) and worst (Lib-
riSpeech/TSP) train/test set combinations. In most cases,
codecs are robustly identified with 0% std. dev., however, dif-
ficult cases occur in the cross-set setting, with accuracies of
63.64% on uncompressed samples and of 56.90% on IRVQ-
GAN samples. The confusion matrices in Fig. 3 (left) further
show that these two classes get mixed up upon generalisation to
TSP. This is again in agreement with the fact that IRVQGAN
leaves the weakest artefacts (c.f . Sec. 3.3).



Table 3: F1-Score (avg [%] ± std. dev. [%]) of 5 runs for classifying uncompressed, Lyra-V2, EnCodec and IRVQGAN samples.

Uncompressed Lyra-V2 (9.2 kbps) EnCodec (24 kbps) IRVQGAN (8 kbps)

Classifier Param. Lib.�Lib. Lib.�TSP Lib.�Lib. Lib.�TSP Lib.�Lib. Lib.�TSP Lib.�Lib. Lib.�TSP

Logistic Regression 16 K 88.02±0.0 63.64±0.0 95.01±0.0 90.08±0.0 99.20±0.0 99.46±0.0 92.83±0.0 56.90±0.0

ResNet-18 11 M 99.90±0.1 66.59±0.2 99.98±0.0 98.33±0.5 99.94±0.1 99.67±0.4 99.98±0.0 00.00±0.0

EffNet-B0 4 M 99.02±0.5 65.68±0.5 99.54±0.4 98.10±1.0 99.88±0.1 99.45±0.6 99.56±0.3 01.05±2.1

RegNetY-400mf 4 M 98.32±1.4 65.18±0.8 99.24±0.6 98.44±0.4 99.47±0.6 98.44±1.1 99.64±0.2 00.00±0.0
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Figure 3: Averaged, normalised confusion matrices over 5 training runs for Logistic Regression and the best NN classifier in %.

4.3.1. Comparison to Deep Features

We compare to deep features extracted by the standard classi-
fiers ResNet-18 [33], EffNet-B0 [34] and RegNetY-400mf [35]
on the n-class task. For this, a linear layer of output size 4
is added to each model’s feature extractor. To account for the
NNs’ greater need for training data, we scale up the LibriSpeech
pool with the remaining samples from the same source split,
yielding about 7K samples. The distinct test pool remains as
is. The final train/test sets are constructed as in Sec. 4.3, where
standard short-time Fourier transform (STFT) representations
with the same enhancements as for the FFT⋆ features are com-
puted with window length w = 800 and hop size w

2
from each

signal. All models converge within 100 epochs, with a batch
size of 128 and the Adam optimiser with learning rate 1e−3.

Table 3 shows the results. In many cases, the NN classifiers
outperform Logistic Regression, however they are more prone
to overfitting on specific data characteristics. Thus, when test-
ing on the TSP set, all neural classifiers identify the low-artefact
IRVQGAN samples as uncompressed signals with an F1-Score
around 0%. Figure 3 (right) further shows the excellent intra-set
but poor generalisation ability of the best performing ResNet-
18 [33]. Therefore, further work has to be invested to design
powerful, robust neural detectors that can compete with the low-
cost, explainable Logistic Regression classifier on handcrafted
features.

4.3.2. Feature Robustness to Post-Processing

In forensic use cases, audio signals may stem from uncontrolled
sources and might be subject to post-processing that weak-
ens forensic traces. Fig. 4 shows the results for the 4-class
experiment on the LibriSpeech test set with additional post-
processing.

Multi-Compression Audio content is routinely recom-
pressed upon sharing over the internet. Recompression with tra-
ditional codecs tends to remove high-frequencies due to percep-
tual coding [4], which can weaken the traces of neural codecs.
Fig. 4a and Fig. 4b show the detection results after recompres-
sion with Vorbis and MP3 compression. Vorbis achieves higher
quality signals than MP3 at equal bitrates, which reflects in the
classifiers’ performance. Logistic Regression exhibits higher
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Figure 4: Accuracy (avg [%]) of 5 runs on the 4-class task.

robustness than NNs, with a noteworthy accuracy above 80%
for MP3 with br ≥ 32.

Downsampling Signal downsampling is critical, since all
information above the Nyquist Frequency gets removed. Thus,
all classifiers are strongly impacted as shown in Fig. 4c. Logis-
tic Regression still performs best together with EffNet-B0 [34].

Noise General signal perturbations can be simulated by ad-
ditive Gaussian white noise. Fig. 4d shows that Logistic Re-
gression gently degrades with decreasing signal-to-noise ratio
(SNR), while NNs are very sensitive to this type of degradation.

5. Conclusion
In this work, we show that distinct frequency artefacts can
be used to detect AI-compressed speech and identify specific
neural codec architectures. This is especially the case for
the real-time speech codecs Lyra-V2 and EnCodec, while the
higher quality and computationally more expensive IRVQGAN
is harder to detect, especially in out-of-distribution classifica-
tion scenarios. Our analytic and explainable FFT⋆ features
yield good results, while standard NNs show overfitting issues.
Yet, we hope that this first study motivates further research for
the exploration of more powerful and robust NN classifiers.
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facts in Neural Audio Synthesis,” in IEEE International Confer-
ence on Acoustics, Speech and Signal Processing. IEEE, 2021,
pp. 3005–3009.

[25] M. Morrison, R. Kumar, K. Kumar, P. Seetharaman, A. Courville,
and Y. Bengio, “Chunked Autoregressive GAN for Conditional
Waveform Synthesis,” in International Conference on Learning
Representations, 2022.

[26] C. Sun, S. Jia, S. Hou, and S. Lyu, “AI-Synthesized Voice De-
tection Using Neural Vocoder Artifacts,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, 2023, pp. 904–912.

[27] S. Bergmann, D. Moussa, F. Brand, A. Kaup, and C. Riess,
“Frequency-Domain Analysis of Traces for the Detection of AI-
based Compression,” in 11th International Workshop on Biomet-
rics and Forensics. IEEE, 2023, pp. 1–6.

[28] A. Van Den Oord, O. Vinyals et al., “Neural Discrete Representa-
tion Learning,” Advances in Neural Information Processing Sys-
tems, vol. 30, 2017.

[29] A. Razavi, A. Van den Oord, and O. Vinyals, “Generating Diverse
High-Fidelity Images with VQ-VAE-2,” Advances in Neural In-
formation Processing Systems, vol. 32, 2019.

[30] J. Yu, X. Li, J. Y. Koh, H. Zhang, R. Pang, J. Qin, A. Ku, Y. Xu,
J. Baldridge, and Y. Wu, “Vector-quantized Image Modeling with
Improved VQGAN,” in International Conference on Learning
Representations, 2022.

[31] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Lib-
rispeech: An ASR Corpus Based on Public Domain Audio
Books,” in IEEE International Conference on Acoustics, Speech
and Signal Processing. IEEE, 2015, pp. 5206–5210.

[32] P. Kabal, “TSP Speech Database,” McGill University, Database
Version, 2002.

[33] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Conference on Computer Vision and
Pattern Recognition. IEEE, 2016, pp. 770–778.

[34] M. Tan and Q. Le, “EfficientNet: Rethinking Model Scaling for
Convolutional Neural Networks,” in International Conference on
Machine Learning. PMLR, 2019, pp. 6105–6114.

[35] I. Radosavovic, R. P. Kosaraju, R. Girshick, K. He, and P. Dollár,
“Designing Network Design Spaces,” in Conference on Computer
Vision and Pattern Recognition. IEEE/CVF, 2020, pp. 10 428–
10 436.


	 Introduction
	 Related Work
	 Methods
	 Generative Neural Audio Compression
	 Dataset Selection
	 Artefacts of Neural Codecs

	 Detecting Traces of Neural Codecs
	 Intra-Codec Detectability
	 Generalisation to Unseen Neural Codecs
	 Fingerprints of Neural Codecs
	 Comparison to Deep Features
	 Feature Robustness to Post-Processing


	 Conclusion
	 Acknowledgements
	 References

