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Abstract—Recovering the place of origin of, e.g., a phone call
can aid the reconstruction of events in a criminal case. For
audio forensics, identifying the recording location exclusively
from an audio signal still poses a challenge. While various works
address this task, they evaluate on semi-synthetic reverberant
speech data in a supervised setting. Thus, there barely exist any
empirical insights on practical forensic recording environment
identification, i.e., the handling of real-world audio data from
case-dependent locations that are unknown to a tool in advance.

In this work, we take a first step towards such a practical
scenario. We collect a set of real-world speech from several
rooms under varying recording parameters. In forensic cases,
audio evidence usually stems from uncontrolled sources, such
that factors like the recording position, speaker or microphone
can be unknown and reverberation characteristics are of mixed
quality. The influence of such factors for room identification is
analysed in detail, with several results. For example, we find
that prior knowledge about the recording position strongly aids
classification, and that characteristics of a speaker’s voice notably
impact performance. Instructions on how to obtain the data set
are online: https://faui1-gitlab.cs.fau.de/mmsec/forreal

Index Terms—Room Identification, Audio Forensics

I. INTRODUCTION

Nowadays, speech data from all kind of sources, like
phone calls or voice messages, can be subject to criminal
investigations as evidence. One audio forensic task is the
identification of the recording location from the audio signal.
This can uncover valuable cues about events in a criminal case,
e.g., in which room of a house some recording was made.

To this end, several works propose tools that assign some
given speech recording to one location from a candidate
set [1]–[4]. However, existing tools have only been evaluated
on semi-synthetic reverberant speech data, so far (cf . Sec. II).
Hereby, anechoic speech is convolved with separately mea-
sured acoustic impulse responses (AIRs) from different places
to produce reverberant signals. As a result, it is up to now
unclear, how well real-world signals of different properties
can be automatically assigned to their respective recording
location. This is nevertheless important to be able to provide
reliable and robust forensic tools for practical use-cases.

In this work, we thus want to give first insights into
this matter. To this end, we record the, to the best of our
knowledge, first data set of reverberant speech under varying
recording parameters from five different rooms. We adopt few-
shot classification to be able to classify query samples from
rooms not seen in training with the help of few collected ref-
erence audio recordings from candidate locations. Training is

conducted on artefact-free semi-synthetic data. Our approach
is motivated by practice, since a supervised setting would
result in tedious data collection and retraining for each set
of candidate locations per forensic case.

Our study addresses practical forensic questions. First, we
investigate general aspects, i.e., the number of reference audio
signals needed to stably identify the recording location, and the
influence of the samples’ reverberation characteristics. Second,
we analyse in detail the specific influence of recording param-
eters. After all, the recording situation of given audio material
in forensic cases is often unknown. So, the question arises as
to how reference samples should be collected from candidate
locations. We here focus on the factors speaker, microphone
and recording position, and, among others, investigate the
impact of individual microphone and speaker types, as well as
differing parameter settings in query and reference samples.

We hope that our findings on forensic real-world location
identification provides valuable leads for the development of
practically applicable forensic tools and raises the awareness
for the need of realistic evaluation datasets.

Section II summarises existing work for recording environ-
ment identification. Section III describes our collected dataset,
Sec. IV presents the experiments on our real-world dataset, and
Sec. V concludes our work.

II. RELATED WORK

The large majority of existing works adopt supervised
learning to train and test a classifier on a known closed set
of recording environments [1]–[3], [5]–[8]. Some approaches
rely on either analytical acoustic features [1], [2], [5], [6]
or deep features [7] that are input to simple classifiers like
a Support Vector Machine (SVM) [2], [6], [7], Gaussian-
based models [1], [5] or a classification tree [6]. Also, end-
to-end trainable deep learning (DL) methods are increasingly
explored for the task [3], [8]. Here, both a convolutional
recurrent neural network (CRNN) classifier and convolutional
neural network (CNN) architectures operating on frequency
representations of speech samples were proposed [3], [8].

Nevertheless, in criminal investigations, the set of poten-
tial recording locations is case-dependent and thus dynamic
instead of static. Therefore, a traditional closed-set classifier
has to be retrained upon every change to the set of candidate
environments which results in a high effort for data collection.
To avoid this limitation, metric learning strategies like few-shot
classification can be utilised to handle locations not previously



seen during training [4]. Hereby, given few recording samples
for each candidate location, the system is able to assign some
given query sample to one of those candidates (cf . Sec. IV-A).

Due to the lack of reverberant speech corpora from anno-
tated environments, related works simulate reverberant sam-
ples according to the acoustic sound model

x(t) = r(t) ∗ s(t) + n(t) , (1)

where ∗ denotes the convolution operator [1]–[6]. A speech
signal s(t) is assumed to travel through a reverberant envi-
ronment which is described by its characteristic AIR r(t).
Background noise from the environment is modelled by the
additive signal n(t), where many works assume noiseless
reverberant speech only and thus set n(t) = 0 [1]–[3], [6].
Otherwise, synthetic or real-world noise is used [4], [5].

For speech signal s(t), related work uses openly avail-
able resources, e.g., the TIMIT [9] or the LibriSpeech [10]
corpus [2], [3], [6]. Some works only include artefact-free
anechoic data from the ACE [11] or TSP [12] set [4],
[5]. As for AIR measurement r(t), the ACE [11] database
of seven rooms with sizes in [47.3m3, 371.5]m3 is widely
used [2]–[6]. Other works include the Aachen Impulse Re-
sponse database (AAIR) [13] of five rooms with volume range
[11.9, 370.8]m3 [4], the Queen Mary Univ. of London set
(QMUL) [14] of three rooms up to 9500 m3 [1], [6], the
OpenAIR database [15] of large and open-air spaces [1],
[4], and the MIT [16] set with 271 AIRs from diverse
places [4]. Also, the source image method [17] is used to
simulate AIRs [4], [18]. To our knowledge, only one work tests
supervised room classification on in-house real-world samples
of the word ‘Alexa’ from one speaker in several rooms [8].

III. COLLECTING REVERBERANT REAL-WORLD AUDIO

Our collected set consists of in total 6.2 hours of recordings,
in detail 600 German single speech samples of 6 speakers
recorded with 4 microphones at 5 positions in 5 rooms.

The set enables for investigating real-world room identi-
fication under different recording setups. We avoid overly
noisy environments, however, distinct background noise and
sound events are tolerated. After all, in forensic cases, a
given audio evidence usually stems from uncontrolled sources.
This includes, by example, exterior noise from cars or rain,
room and interior noise from the building like falling doors,
footsteps or indistinct babble noise.

The few-shot method is exclusively trained on artefact-free
semi-synthetic data and then evaluated on our real-world set.
Contrary to supervised training, this prevents short-cut learn-
ing [19] which could by example be caused by background
noise like church bells that extends over consecutive record-
ings. While an influence on query and reference embeddings
cannot be ruled out, we did not observe biased decisions even
for rooms with characteristic clock ticking (Sec. IV-D).

A. Dataset Parameters and Acquisition

In the following, the properties of our set are described.
Selected Rooms Figure 1 shows the layout and Tab. I the
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Fig. 1: Layout of rooms with dimensions true-to-scale.

specifications of the 5 used enclosed spaces at the campus of
our university. They provide different characteristics:

• Office: a rectangular room with synthetic hard-flooring,
concrete walls, one front of windows, three desks, four
chairs, two shelves and one clock.

• Seminar Room: an 8-sided room with equal floor and wall
materials as the office, 2 window fronts, several rows of
desks and chairs and two clocks.

• Stair Case: a windowless, rectangular stair case encom-
passing 12 floors, with stone flooring and concrete walls.

• Hallway: a rectangular hallway with synthetic hard-
flooring, one long-sided brick and concrete wall, respec-
tively, four glass doors and multiple glass cabinets.

• Auditorium: a windowless 6-sided room with synthetic
hard-flooring, concrete walls, several seat rows and com-
puter equipment that hummed at times during recordings.

Speakers and Text The set includes 3 female and male Ger-
man speakers, denoted as F [1, 3] and M [1, 3]. Per recording,
one speaker reads aloud the German version of the short text
‘the north wind and the sun’ as transcribed in the handbook
of the International Phonetic Association and often used in
linguistics to illustrate the phonetic structure of languages [20].
The speakers read aloud the text in their natural speaking rate.
Hereby, slight variations like slips of the tongue or hesitation
markers are tolerated as natural elements of speech.

Recording Equipment We select 4 multi-purpose micro-
phones C[1,4] with different polar patterns capturing sound
from different directions (cf . Tab. II). They are fixated in row
on a tripod at a height of 130 cm and are each cable-connected
to a ‘Zoom F4 MultiTrack Field Recorder’ to record each
speaker in parallel on 4 separate channels. The sensitivity of
each device is set in pretests such that volume peaks of speech
are at circa −3 db. All recordings are stored as signed 24-bit
PCM encoded WAV files with a sample rate of 96 kHz.

Recording Procedure Per room, we mark 5 recording



TABLE I: Room specifications and (x, y)-coordinates of recording positions P[1,5], measured from the origin denoted by O
in Fig. 1. For non rectangular rooms, the maximum dimensions are given (∗). The height of the auditorium is an approximate
average since it varies along the room (†) and is used to compute an approximate volume (‡).

Room Label Width [m] Length [m] Height [m] Volume [m3] P1 [m] P2 [m] P3 [m] P4 [m] P5 [m]

Office R1 3.4 4.8 3.2 52.2 (2.6, 3.5) (2.1, 1.9) (1.8, 1.2) (1.3, 1.5) (0.9, 2.5)
Seminar Room R2 7.2∗ 8.4∗ 2.9 158.4 (2.8, 7.0) (4.9, 5.7) (2.0, 4.2) (5.2, 3.0) (1.2, 2.0)
Stair Case R3 4.3 5.8 - - (1.0, 1.0) (2.9, 1.0) (3.3, 3.0) (3.1, 4.6) (1.0, 4.8)
Hallway R4 2.3 15.2 3.1 108.4 (1.0, 1.2) (1.3, 4.6) (1.2, 9.1) (0.7, 11.4) (0.6, 13.6)
Auditorium R5 10.4∗ 13.7∗ 4.13† 588.4‡ (2.6, 12.3) (8.2, 9.7) (6.3, 7.2) (6.9, 1.9) (1.9, 1.4)

TABLE II: Microphone Specifications

Label Brand Model Polar Pattern

C1 AKG C1000S Cardioid

C2 Sennheiser MD421 Cardioid
C3 Superlux E304 Semi-Omnidirectional
C4 AKG C4000B Omnidirectional

positions P[1,5] as defined in Tab. I and shown in Fig. 1. The
positions are arbitrarily chosen under the constraints imposed
by furniture. For each Pn, we set up the microphone tripod
and, one after another, record each speaker. The speakers are
positioned 80 cm away from the tripod (cf . black circles in
Fig. 1) and read aloud facing the microphones.

Post-Processing We cut silent signal portions at the begin-
ning and end of each recording using Audacity1. This yields
600 speech samples of on average 36.44 seconds. In total, our
set consists of 6 hours, 8 minutes and 57 seconds of speech.

IV. EXPERIMENTS

We investigate several practical scenarios for forensic few-
shot recording location identification in a few-shot setting.

A. Few-Shot Room Classification

For our forensic few-shot classification scenario, we adopt
a method based on Prototypical Networks [21] which we pre-
viously investigated [4]. Here, a semantic meaningful metric
embedding space is trained to cluster samples belonging to
the same class. This way, the classifier can generalise to case-
dependent locations not seen in training given only few ref-
erence recordings from each. In detail, the reference samples
are projected to the embedding space and then averaged to
form one prototype for each candidate location. Some given
input query sample can then be attributed to one candidate by
selecting the closest prototype in the metric space. For more
details on Prototypical Networks we refer to Snell et al. [21].

We train the few-shot classifier exclusively on semi-
synthetic artefact-free data simulated as described in Eq. 1
and test on our real-world set. All samples are 3 s long. In
total, we select AIRs from 291 environments for training. This
includes 6 rooms from each the ACE [11], AAIR [13] and RE-
VERB [22] dataset, 26 environments from the OpenAIR [15]
set and 247 environments from the MIT [16] set. Furthermore,

1https://www.audacityteam.org/

239 anechoic speech snippets are selected from 4 female and
7 male speakers from the ACE [11] set and 93 snippets are
selected from the anechoic TSP [12] set from 2 male and
2 female speakers. All AIRs are convolved with all speech
snippets to obtain 96 612 training samples in total (Eq. 1). Per
sample, additive Gaussian noise is randomly sampled from a
signal-to-noise interval of [−10, 50] db.

B. Experimental Protocol and Practical Assumptions

Per experiment, audio samples can qualify as query sq
and/or reference samples sr ∈ SR. However, we enforce
sq /∈ SR per few-shot classification step. For each sq , we
perform 20 classification steps. Per step, k reference samples
are randomly sampled from all 5 rooms to yield 5 prototypes,
and sq is then assigned to the closest prototype. In total, 5
experiment runs are conducted with different seeds and we
report averaged scores with standard deviations over all runs.

In our study, we investigate a more and less informed
classification scenario, i.e., where sampled references either
share or don’t share recording setup settings with the query.
An audio sample’s recording setup is defined by the speaker
Sn ∈ {Fn,Mn}, the recording position Pn (Tab. I) and the
microphone Cn (Tab. II). The first WITHOL , i.e., with overlap
sampling scenario allows recording parameter values of the
query to be present in the references. Thus, reference samples
with the same speaker, position or microphone are not banned
which simulates the adoption of parameters in references for
cases where certain query properties are known. In the more
challenging NOOL , i.e., no overlap sampling scenario, we
assume no knowledge about the query sample’s recording
setup and therefore only allow reference samples with different
values in Sn and Cn and forbid the same Pn for the query
room’s prototype. Note that the same position identifiers share
no common properties across rooms (cf . Fig. 1).

C. Reverberation Properties of Speech Snippets

First, we want to gain some insights as to how many
references are needed to yield stable prototypes, as well as the
influence of speech content within samples. The results over
the whole set are shown in Fig. 2a for WITHOL sampling and
in Fig. 2b for the more challenging NOOL sampling. We test
k ∈ [1, 15] reference samples per prototype and evaluate 3
different speech snippet variants. This includes 3 seconds of
speech from, (1), different time positions (AllPos, green), i.e.
different speech content in sq and SR, (2), some randomly
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Fig. 2: Accuracy for k ∈ [1, 15] reference samples.

chosen identical time snippet (SamePos, red) for both, and
(3), the end of recording (EndPos, blue) that always contains
reverberation not superimposed by successive speech. Note
that identical time snippets in different recordings contain
similar but not necessarily identical speech content. We do not
align the recordings as to not distort reverberation information.

Several observations can be made from this experiment.
First, NOOL sampling significantly hardens the task compared
to the more relaxed WITHOL sampling strategy. Second, the
accuracy increases significantly between k = 1 and k = 3 and
only minor increases can be observed for k > 5 for all runs.
We set k = 10 for our following experiments, as no consistent
gains in performance can be observed afterwards. Third, the
performance depends on the speech signal characteristic of the
samples. Identical versus arbitrary time snippets (red vs. green)
in query and references perform similarly. In detail, SamePos-
snippets perform slightly better for WITHOL (Fig. 2a), but not
for NOOL sampling (Fig. 2b). Since each speaker is recorded
in parallel with 4 microphones per position, WITHOL sampling
may cause the same sound emissions captured by different
devices to be in sq and SR. The resulting similar reverberation
presumably acts as subtle side-channel for classification, how-
ever, such a high degree of similarity can hardly be adopted in
practice. More details on the influence of the microphone are
discussed in Sec. IV-E. Contrarily, the EndPos-snippets work
best for both WITHOL and NOOL sampling with an accuracy
of 75.87% and 52.53% for k = 10. We thus hypothesize that
this is indeed due to the non-superimposed reverberation signal
at the end. In our following experiments, we include both
the well reverberant EndPos-snippets and more challenging
AllPos-snippets with varying reverberation qualities.

D. Classification Performance per Room

Table III shows the mean F1-score, precision and recall with
std. devs. per room. In line with previous results, the scores
for each room are better for WITHOL prototype sampling than
for NOOL sampling and better for EndPos than for AllPos-
snippets. Samples from the staircase (R3) are identified with
the highest scores. This location is indeed relatively strongly
reverberant which is audible from the recordings. For WITHOL
sampling on EndPos, the F1-score is 88.51% and the score is
still 73.57% for AllPos. For the especially challenging NOOL
sampling the F1-score for EndPos and AllPos decreases to
67.07% and 61.26%. The hallway (R4) and auditorium (R5)
perform similarly and second best. At maximum, they are
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Fig. 3: Normalised confusion matrices for k = 10 in [%].

identified with F1-scores around 75% for WITHOL sampling
on EndPos, while the lowest scores for AllPos and NOOL
sampling drop to around 42%. The office (R1) and the seminar
room (R2) are most difficult to identify. The F1-score is around
70% for WITHOL sampling on EndPos, but decreases strongly
to 37.17% for the seminar room and to 28.92% for the office
for AllPos and NOOL sampling.

In addition, Fig. 3 shows the confusion matrices for all
rooms. The worst performing office (R1) is most likely con-
fused with the seminar room (R2) and the auditorium (R5),
especially for NOOL sampling (cf . Fig. 3c–3d.) Similarly, the
office and auditorium are the most likely confusion candidates
for the seminar room. Note that the office and seminar room
are from the same building, share the same floor and wall
materials and contain differently many clocks (cf . Sec. III-A).
However, no such obvious properties are shared with the
auditorium which is nevertheless a likely confusion candidate
for both. On the contrary, the seminar room and stair case are
most seldomly confused with each other (cf . Fig. 3b–3c).

E. Influence of Individual Recording Parameters

In a second experiment, we quantify the influence of identi-
cal and different recording parameters, i.e., speaker, recording
position and microphone, in query and references. We here
differentiate between a match and mismatch of a specific
parameter and otherwise pose no constraints on the remaining
parameters. To isolate a parameter p, we also investigate
an exclusive match w.r.t. p, where all other parameters are
enforced to have different values in sq and SR.

Table IV shows the results per parameter p as one of
recording position Pn, speaker Sn and microphone Cn. The
table allows to compare the influence of different aspects of
sampling, namely both the type of audio snippets, i.e., EndPos
or AllPos, and the sampling strategies match, mismatch and
exclusive match. Note that a complete mismatch, i.e., only
different parameters in query and references, could be seen as
a fourth sampling case. This case is essentially the same for
all p and achieves 42.9% for AllPos and 52.53% for EndPos.



TABLE III: Mean F1-Score, Precision and Recall with std. devs. for the individual rooms [%].

WITHOL prototype sampling NOOL prototype sampling
Room
Label

EndPos-Snippets AllPos-Snippets EndPos-Snippets AllPos-Snippets
F1 P R F1 P R F1 P R F1 P R

R1 70.89±1.52 75.29±1.48 67.00±1.94 46.07±1.83 51.30±1.26 41.83±2.20 40.60±1.28 47.18±1.43 35.67±0.96 28.92±1.54 30.96±2.21 27.17±1.86

R2 70.00±0.82 69.06±0.71 71.00±1.78 57.21±0.78 55.39±0.81 59.17±0.91 46.66±1.45 47.07±2.39 46.33±1.53 37.17±1.62 39.89±2.95 34.83±2.36

R3 88.51±0.41 90.44±0.85 86.67±0.00 73.57±0.76 70.43±0.87 77.00±0.67 67.07±0.78 70.05±1.33 64.33±1.07 61.26±1.98 57.71±1.55 65.33±1.38

R4 74.68±0.49 76.44±0.54 73.00±0.85 59.48±0.74 68.65±0.75 52.50±1.39 50.78±0.84 50.43±1.55 51.17±0.86 42.36±3.09 47.60±2.76 38.17±2.86

R5 75.33±0.43 69.91±0.89 81.67±0.53 60.67±0.78 54.45±0.93 68.50±0.97 56.06±1.01 49.21±1.78 65.17±0.85 42.31±1.23 37.25±0.82 49.00±0.92

TABLE IV: Mean accuracy and std. devs. in [%] for query-
reference matches and mismatches w.r.t. parameter p.

p
Match Mismatch Exclusive Match

EndPos AllPos EndPos AllPos EndPos AllPos
Pn 93.83±0.41 65.33±0.41 61.67±0.53 47.33±0.82 66.00±0.62 57.17±1.35

Sn 85.00±0.63 42.00±0.89 58.20±0.75 53.20±0.98 46.00±0.63 35.40±0.80

Cn73.20±0.27 57.07±0.53 74.00±0.42 53.87±0.27 57.33±2.56 44.53±1.40

Recording Position The same position Pn in query and
references strongly benefits classification. By example, for
EndPos, an exclusive match of Pn outperforms both a simple
mismatch, where other parameters can be identical and a
complete mismatch of all parameters with an accuracy of
66% > 61.67% and 66% > 52.53%. The same accounts for
AllPos with in total lower scores. For both EndPos and AllPos,
a match of Pn with allowed overlaps in other parameters is
understandably best with 93.83% and 65.33%. Still, note that
results for match on EndPos are optimistic due to the subtle
side-channel from parallel recording (cf . Sec. IV-C).

Speaker Sampling snippets from the same speaker Sn in
query and references shows no useful practical advantage,
but speakers generally perform differently well as references.
In detail, apart from the (from a practical perspective too
optimistic) results for match and EndPos, different speakers
in sq and SR are always better, e.g., with 52.53% > 46% for
a complete mismatch versus an exclusive match (EndPos), and
53.2% > 42% for mismatch versus match (AllPos).

A more detailed analysis investigates specific pairs of query
and reference speakers. Figure 4a and 4b show the accuracy for
all 36 possible combinations for NOOL sampling. Sampling
from the same speaker indeed shows no notable benefit.
Surprisingly, on average, sampling from speaker M2 in query
or references exhibits the best accuracy scores with 40.83%
on AllPos and 52.18% on EndPos-snippets. This also holds
for more diverse prototypes of multiple speakers. Figure 5
shows the results for prototypes including all but the query
and one additional speaker under NOOL sampling. Clearly,
removing speaker M2 from the references (brown) results in
the strongest decrease in performance. Also, multi-speaker
prototypes perform better on average than prototypes from
one speaker (cf . Fig. 5 vs. 4). This indicates that collecting
recordings from several speakers might result in information-
wise richer prototypes that can facilitate the classification task.

We additionally investigate the impact of collecting refer-
ences from a speaker of the same gender as in the query, since
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Fig. 4: Accuracy in [%] for speaker pairs and NOOL sampling.
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Fig. 5: Impact of individual speakers being removed from the
references under NOOL sampling.2

one could expect that this benefits classification. By example,
properties like the frequency range of a voice correlates with
gender, and we can indeed report higher frequencies for female
than male voices in our set using the PYIN method [23].
However, separating gender groups has no general advan-
tage. Instead, the results always slightly improve the more
male speakers are present in query or references, also when
excluding the anomalously strong performing speaker M2.
Then, the advantage of only males over only females ranges
between around 1% and 5% for AllPos and EndPos and NOOL
sampling. Overall, these results motivate further research into
the properties of good reference speakers.

Microphone The same or a similar microphone Cn in
query and references improves classification results in practical
scenarios. A match of Cn performs similar to a mismatch with
73.2% ≈ 74% for EndPos, but this is attributed to the side-
channel effect of parallel capturing, where the microphone
itself has no significant impact (cf . Sec. IV-C). In the other
cases, a match of Cn is superior to a mismatch, and an
exclusive match is better than a complete mismatch. Neverthe-
less, a matching microphone seems to be only of secondary
importance. A mismatch of Cn, which still allows matches for
other parameters, notably the position, is thus better than an
exclusive match of Cn with 53.87% > 44.53%.

2Numerical values for plots: https://faui1-files.cs.fau.de/public/mmsec/
moussa/2024WIFS/supplemental.pdf
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Fig. 6: Averaged accuracy for sampling within individual
microphones (a-b) and w.r.t. polar patterns (c-d).2

A more detailed analysis on the individual devices shows
that C4 works best and sampling within C3 or C4 is superior to
sampling within C1 or C2 (cf . Fig. 6a–6b). This is probably
due to the individual polar patterns of the microphones (cf .
Tab. II). In detail, C4 captures sound from all directions (om-
nidirectional), and C3 still covers the upper hemisphere (semi-
omnidirectional). In contrast, C1 and C2 have cardioid polar
patterns and thus record sound primarily from in front of the
microphone which consequently captures less reverberation
information from surroundings.

Furthermore, it showed that using reference microphones
of the same polar pattern as in the query is beneficial, even if
the devices differ. Figure 6c–6d show the accuracy for testing
within the (semi-)omnidirectional and cardioid microphones,
as well as testing across both types. The results show that
testing (semi-)omnidirectional microphones against each other
works best, followed by cardioid microphones, while a mis-
match in polar patterns is worst. Interestingly, testing samples
from C1 and C2 against each other works better than sampling
either within C1 or C2, however the difference is small.

V. CONCLUSION

We present first insights into forensic few-shot recording lo-
cation identification from real-world audio snippets. Our find-
ings show that generalising from simulated data to real-world
samples from unseen rooms is possible. The success rates
however vary strongly depending on the recording settings
and reverberation characteristics of audio material. While, e.g.,
reference samples from the query recording location strongly
aid classification, using the same or a similar microphone
provides less benefit, and w.r.t. to speakers, even no such
benefit could be observed. We see our study as a first step
towards designing robust tools for practical use and hope to
motivate more research in this direction.
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