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ABSTRACT
High-quality artificially generated images are widely available now
and increasingly realistic, posing challenges for image forensics in
distinguishing them from real ones. Unfortunately, building a single
detector that generalizes well to unseen generators is very difficult,
creating the need for diverse cues. In this paper, we show that
natural and synthetic images differ in their color statistics, possibly
due to the widely used perceptual loss, which is more sensitive to
brightness than to chroma differences. Consequently, color statistics
offer valuable cues for forensic analysis and the development of
robust detectors. Our experiments using simple hand-crafted color
functions with a random forest achieve 90% accuracy across all
tested Diffusion Models, even with limited training samples.
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1 INTRODUCTION
The lines between real and generated content are blurred with the
advent of advanced image synthesis techniques, facilitated by a
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Figure 1: Relational transformations of the color channels
strongly enhance the visual detectability of synthetic image
areas.

rapid rise in the popularity of generative deep learningmodels. Espe-
cially recent DiffusionModels [17] are easily able to produce images
that fool human perception. Popular examples of such generators
include open-source software like Stable Diffusion [32], commercial
products like Midjourney [18], or integrated tools like the recently
introduced AI Firefly found in various Adobe Products [1]. Such
images can serve various purposes, including illustration, humor,
and even malicious use. This raises concerns not only regarding
disinformation but also about the authenticity of legal evidence.
With AI-generated images potentially entering courtrooms, there
is a strong need for reliable and effective detection software. This
raises the research interest in the detection of synthetic images.

A large line of research proposed numerous cues for detecting
images from Generative Adversarial Networks (GANs) [4, 14, 24, 27,
37, 43], which preceded diffusion models. For example, GANs leave
artificial fingerprints in the image frequencies that can be used
for detection and model attribution [25]. It has been shown that
some GAN-related findings can be transferred to diffusion-based
images. For example, DiffusionModels also introduce distinct traces
in the generated images similar to GAN fingerprints [8]. However,
traces in diffusion-based images are often more subtle and the
development of new detectors is an ongoing task.

Current detection strategies often focus on abstract traces learned
by deep neural networks (DNNs) [3, 8, 15, 16, 23, 29, 35, 37, 38]. How-
ever, such black box systems lack transparency and interpretability.
This poses challenges across applications where decisions must
be carefully justified. Legal frameworks, such as the EU Artificial
Intelligence Act, impose strong requirements for explainability
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in the deployment of detection tools [36], a criterion that many
DNN-based tools struggle to meet. Further, to achieve good re-
sults, DNN-based approaches often need vast amounts of training
data, which is additionally exacerbated by the rapid introduction
of new image generators. Hence, it is desirable to research features
for the discrimination of synthetic and real images that are both
interpretable and well generalizable. If this can be achieved with
relatively simple statistics, then it might become feasible to train
classifiers with lower amounts of training data.

We hypothesize that color cues can contribute to fill this gap. As
we outline in our related work section, there exist several reports
that it is beneficial to perform the detection of synthetic images in
alternative color spaces. However, there is no systematic study on
color in synthetic image detection.

In this work, we offer several contributions towards a better
understanding of the color properties of synthetic images.

(1) We show that the popular perceptual loss for training of im-
age generators prefers to optimize luminosity over chromi-
nance. Hence, color, or more generally differences between
intensity channels, can be interesting candidates for future-
proof detection strategies. Based on our findings, we con-
clude that a key element to the detection of synthetic images
is the relationship between color channels, as they are not
generated correctly regarding natural image statistics.

(2) We show that a simple transformation of the color channels
provides visually well-interpretable results that may enable
an analyst to detect inpainted areas by visual inspection.

(3) To demonstrate the effectiveness of a lightweight detector
based on color properties, we build a straightforward de-
tector for synthetic images that uses simple relationships
between color channels and a random forest classifier.

We test the features on seven different diffusion-based image genera-
tors, including the four most current generators and three predeces-
sor versions. Our simple features perform well across all generators,
and on average they outperform related work in a cross-dataset
evaluation. It is furthermore encouraging to note that this detector
operates well across different generator versions, which may in-
dicate robustness along the evolution of generators. All in all, our
experiments show that it is feasible to use handcrafted features and
a lightweight classifier to achieve detection results across different
generators with an average accuracy of 90% while maintaining a
high degree of interpretability.

2 RELATEDWORK
Extensive research has been conducted in the realm of synthetic
image detection, with a signficant body of literature existing on
detecting GAN images and a rapidly growing amount of research
works concering diffusion-based images. Many works on synthetic
image detection operate on general statistics that are calculated
from the pixel domain [3, 8, 15, 16, 23, 29, 35, 37, 38]. These meth-
ods are among the most effective approaches in terms of detection
accuracy. On the downside, they typically rely on black box sys-
tems that lack transparency and interpretability. On the other hand,
there also exist several works that operate on directly interpretable,
visible cues. Examples are the faulty generation of geometry like
unusual amounts of fingers on a human hand, physically wrong

shadows [12], or inconsistent scene lighting [11]. Early generative
models sometimes introduced visible asymmetries like differences
in the eye colors of a person [26], unnatural color tones [20], and
broken structures or smudged blobs [41]. As generative AI advances,
modern Diffusion Models like Midjourney 6 or DALL-E 3, for in-
stance, create more sophisticated images with significantly fewer
visible flaws compared to earlier models.

Arguably, methods focusing on simple image intensity statistics
can offer a middle ground between abstract statistics and visual
clues, thereby being easier to verify and interpret. For example,
McCloskey and Albright observe that GAN-generated images are
normalized during the generation process, which inherently bounds
the range of color intensities, leading to the absence of under-
or overexposed areas in these images [27]. Multiple works show
that converting images into alternative color spaces like YCbCr,
L*a*b*, and HSV can be beneficial for the detection performance
of a classifier for distinguishing real and synthetic images. Zeng et
al. [39] observe that generation artifacts are more visible in color
spaces other than RGB and conduct a study of which colorspace
works best, observing that chrominance components perform es-
pecially well. Li et al. [21], Mo et al. [28], and He et al. [16] also
utilize chrominance components to detect synthetic images. Qiao et
al. [31] investigate correlations of adjacent pixels of GAN images
from various color channels in the color spaces RGB, HSV, and
YCbCr. They select those channels where the correlation coeffi-
cients of real and synthetic images differs most. Chen et al. [6]
report that the YCbCr colorspace is well suited to create detec-
tors that are robust against some forms of postprocessing. Amin et
al. [2] extract frequency properties of images from the color chan-
nels and use their correlation to detect synthetic images. Barni et
al. [3] suggest enhancing the detection of GAN-generated images
by incorporating cross-band co-occurrences describing the rela-
tionship between color channels along with spatial co-occurrences
computed separately for each band.

These findings collectively suggest the effectiveness of color
transformations and indicate that leveraging alternative color spaces
can improve synthetic image detection. However, there is no further
investigation into why intensity transforms may benefit synthetic
image detection, nor into the space of possible transforms beyond
pre-defined spaces such as HSV.

3 COLOR TRANSFORMS IN SYNTHETIC
IMAGES

Synthetic and real images differ in their image formation, which
is our starting point for understanding the origin of differences in
color distributions. A real image taken by a camera is created by
light falling through a lens onto the individual cells of the cam-
era sensor. In contrast, a generative network creates a synthetic
image by reproducing learned features from real images. This re-
production is an optimization task, where specific image statistics
are approximated through an optimization loss. For contemporary
generative networks, the primary goal is to create images that are
visually pleasing. Conversely, features that contribute less to percep-
tual quality are typically also less constrained by the optimization.
Such underconstrained statistics open an opportunity to obtain
forensic traces to distinguish real from synthetic images.
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Figure 2: Left: Original image and below inpainting created
in DALL-E 2 in RGB color space. Right: Using the residuals
of the H component of HSV colorspace (top) in comparison
with the log-scaled residuals from channels reordered by
intensity (bottom).

3.1 Visible Noise Patterns in Color Transforms
Synthetic images are optimized for the RGB colorspace with no
explicit regard to their representation in alternative colorspaces.
This becomes apparent when examining natural images where
a subregion is synthetically generated. Figure 2 shows such an
example. A natural image (top left) is locally modified with the
DALL-E 2 generator (bottom left). In the top right image of Fig. 2, the
modified image is shown after conversion to HSV space and high-
pass filtering (cf. Sec. 4) of its hue component H. The bottom right of
Fig. 2 uses a custom transform instead, namely the largest intensity
of every pixel’s RGB triplet, and a logarithm on the residuals. In both
transforms, the noise patterns of the generator are even visually
identifiable, without further sophisticated computations.

One may hypothesize that there exists a whole space of inter-
channel transforms of pixel colors that may increase visual inter-
pretability and detectability. From this point of view, the custom
transform in the bottom right of Fig. 2 is only an example. Never-
theless, we can further formalize this example transform: For each
RGB pixel 𝑝𝑖 𝑗 = (𝑟, 𝑔, 𝑏) at position (𝑖, 𝑗) in image 𝐼 , we extract
the index of the color channel with maximum intensity with ⇑𝑖 𝑗=
argmax (𝑝𝑖 𝑗 ) ∈ {0, 1, 2}. We analogously extract per-pixel the index
of the minimum intensity, namely ⇓𝑖 𝑗= argmin (𝑝𝑖 𝑗 ) ∈ {0, 1, 2}. Fi-
nally, the remaining index per pixel is the median intensity, formally
⇕𝑖 𝑗∈ {0, 1, 2} \ {⇑𝑖 𝑗 , ⇓𝑖 𝑗 }. To obtain then three new channels, where
each only contains the upper, median or lower values per pixel, we
use these per-pixel indices, formalized as𝑈𝑖 𝑗 = 𝐼⇑𝑖 𝑗 ,𝑀𝑖 𝑗 = 𝐼⇕𝑖 𝑗 and
𝐿𝑖 𝑗 = 𝐼⇓𝑖 𝑗 . Then, we high-pass filter the logarithm of 𝑈 ,𝑀 , and 𝐿

to obtain residuals. Figure 2 shows that𝑈 channel residuals lead to
even better visual results for an example DALL-E 2 image than H
from HSV, which has been used in several previous color-related
works [16, 21, 28, 31, 39].

3.2 Luminosity Bias in the Perceptual Loss
It is interesting to further investigate why color transforms are
apparently beneficial for the detection of synthetic images. One
important part of an image generator network is the conversion of
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Figure 3: Impact of different color components on LPIPS
loss [42]. Luminance components influence the loss more
strongly than chrominance components.

the image from the latent to the pixel space. When examining the
architecture of Stable Diffusion [33], one module of this conversion
is the usage of a perceptual loss to control the image quality in
pixel space, namely the Learned Perceptual Image Patch Similarity
(LPIPS) [42]. LPIPS is a learned quality metric that is a popular
choice also in many other generative networks [5, 10, 19]. It com-
putes the perceptual distance between two images based on their
features in latent space in a pre-trained standard network. Many
deployed image generators are commercial, and their precise archi-
tecture is not disclosed, but we can assume that they use similar
loss terms as all of them prioritize visual quality.

Interestingly, it turns out that LPIPS is much more sensitive
to luminosity than to chromaticity, thereby encouraging a more
accurate reproduction of luminosity and a potentially stronger
deviation of chromaticity statistics from natural images.

We demonstrate this peculiar behavior of LPIPS in a small ex-
periment. The idea is to calculate the LPIPS loss between a natural
image and a copy of the image that is corrupted by Gaussian noise.
The noise injection is performed in the channels of a transformed
color space, namely HSV, L*a*b*, and YCbCr (noise magnitudes are
controlled to be of equivalent level after transformation back to
RGB). The results of the LPIPS loss calculation are shown in Fig. 3.
The 𝑥-axis indicates the percentage of pixels affected by the noise
injection. The 𝑦-axis indicates the LPIPS loss. It can be observed
that the luminosity channels H (from HSV), Y (from YCbCr) and
L (from L*a*b*) achieve approximately 3 times larger LPIPS losses
compared to chroma channels. Hence, when used in neural network
training, the LPIPS loss will punish errors in luminosity reproduc-
tion much more severely than errors in chromaticity reproduction.
Conversely, statistical discrepancies between real and generated
images are more likely to be found in the chromaticities.

More generally, the transformations from RGB to the three al-
ternative spaces HSV, YCbCr, and L*a*b* relate the R, G, and B
color channels in quite different ways. YCbCr and L*a*b* calcu-
late weighted sums of the RGB channels, while HSV reorders and
normalizes the color channels by their intensity. Hence, one may
hypothesize that there is a larger, unknown space of possible inter-
channel functions that improve the detectability of synthetic images.
We leave this question to future work.
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Table 1: KL divergences between residual histograms of real
and synthetic images for different color representations.

R G B H S V Y Cb Cr 𝐿
𝑈

𝐿
𝑀

𝑀𝑑
𝑈

0.02 0.01 0.02 0.08 0.06 0.02 0.01 0.07 0.09 0.07 0.08 0.07

3.3 Distinctiveness of Color Spaces
The previous investigations suggest that some color channels in
some color spaces provide more useful statistics for distinguishing
real and synthetic images than others. To quantitatively demon-
strate this, we take individual channels from RGB, HSV, YCbCr, and
a (relatively arbitrarily chosen) custom color space consisting of
pixel-wise fractions of the channel relationships 𝑈 , 𝑀 , and 𝐿 (cf.
Sec. 3.1), namely 𝐿𝑜

𝑈
, 𝐿
𝑀
, and 𝑀

𝑈
. For each channel of each color

space, histograms of high-pass residuals are calculated (analogously
to Sec. 4, details omitted here) and averaged over 1,000 real images
from the COCO set or 1,000 generated images from Stable Diffusion.

Table 1 shows the Kullback-Leibler (KL) divergence between the
residual histograms of real and synthetic images. Analogous to the
behavior of the perceptual loss, the statistics over the plain RGB
channels, as well as the luminosity channels V (from HSV) and Y
(from YCbCr) exhibit by far the smallest KL divergences of 0.01 or
0.02, whereas the other channels, including the arbitrarily defined
ratios, exhibit KL divergences between 0.06 and 0.09.

4 COLOR STATISTICS FOR SYNTHETIC
IMAGE DETECTION

Color transforms are a relatively rich source of information. As
such, it does not necessarily require a complex detection pipeline.
We show this by feeding a few straightforward color statistics to
a lightweight random forest classifier to detect synthetic images
from state-of-the-art generative image models.

The feature extraction follows a very traditional pipeline. An im-
age is transformed into one or more target color spaces, from which
selected color channels are extracted. High-pass noise residuals are
calculated from the logarithm of the color channel. In previous
works, the high-pass filters for obtaining the noise residuals are
oftentimes applied in horizontal or vertical direction. However,
Corvi et al. [7] point out that the spectral energy of synthetic im-
ages compared to real images is not isotropic, and that they aremore
discriminative in diagonal direction. Following their observation,
we use as a high-pass filter a diagonal variant of the 3 × 3 discrete
Laplace filter, with coefficients (1, 0, 1; 0,−4, 0; 1, 0, 1). In preliminary
experiments, this filter performed better than a standard Laplace
filter, subtraction of a Gaussian low-pass filtered image, non-local
means, and the learning-based denoiser DnCNN [40]. The extracted
residuals are grouped into co-occurrence matrices following the
work by Fridrich and Kodovsky [13]. To this end, residuals are quan-
tized by a factor of 2 and truncated to the value range [−2; 2]. Five
of such quantized and truncated residuals in horizontal or vertical
direction form a co-occurrence vector. The relative frequency of
each vector forms a histogram, whereby mirrored and sign-flipped
residuals are collected in one bin [13]. One such histogram describes
the statistics of one transformed color channel of the image. We
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Figure 4: Accuracy when using different color components in
our training setup. The use of color relationships specifically
increases detection performance.

then use these histograms to train a classic Random Forest classifier
with 200 trees to distinguish real and synthetic images.

4.1 Datasets
We use images from several state-of-the-art Diffusion Models. We
use DALL-E 2 data from Corvi et al. [7]. Additionally, we gener-
ate data from DALL-E 3 [30], Midjourney 5, Midjourney 6, Stable
Diffusion 1.5 and Stable Diffusion XL as well as Firefly, using the
generation tool integrated in Adobe Photoshop. The captions of
images from the COCO dataset[22] were used as prompts for gen-
eration. This helps to align the visual content of the generated
diffusion-based images closer to real images, and hence to encour-
age the classifier to focus primarily on low-level statistics during
detection. All images have the dimension of 1024 × 1024 pixels,
except for Stable Diffusion, where images have a dimension of
512× 512. During training, we perform a central crop of all samples
to a size of 512 × 512 pixels to operate on identical image sizes.

4.2 Training and Evaluation Protocol
One training assumption is that there is an abundance of real images
available, and also sufficiently many training images from at least
one single synthetic image generator. The set of real images consists
of 10,000 images from the COCO [22] and RAISE [9] datasets, with
an additional 10,000 RAISE images downscaled to 512 pixels along
the shorter axis to simulate lower quality. The set of generated
images are 10,000 images from Stable Diffusion.

For testing, we use 200 images from LAION [34] as original
images, and 200 images from each image generator, namely Sta-
ble Diffusion, DALL-E 2, DALL-E 3, Midjourney 5, Midjourney 6,
FireFly, and Stable Diffusion XL (SDXL). By default, we evaluate
on generated images from Stable Diffusion, except for the gener-
alization experiment, where images from various generators are
considered. Note that the real images for testing are always from a
different source than the training images, hence each experiment
exhibits a slight training-test mismatch.

The training data is randomly augmented with a probability of
10% by either JPEG compression, Blur, or Resize. For JPEG com-
pression, we use a random quality factor of 75 + 5𝑘 with 0 ≤
𝑘 ≤ 4, for blurring we use Gaussian kernel with 𝜎 = 𝑙 · 0.5
with 1 ≤ 𝑙 ≤ 5, and for resizing we use a random resizing fac-
tor 𝑟 ∈ [0.45, 0.75, 1.25, 1.55, 1.75].
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Figure 5: Detection accuracy under different post-processing
attacks as well as with different sizes of training datasets.

The methods for comparison are four general learning-based
methods and two color-based works. For general learning-based
synthetic image detectors, we use the works byWang et al. [37] and
Gragnaniello et al. [15] based on ResNet50, Corvi et al. [8] trained
on latent diffusion data and Ojha et al. [29] using CLIP for detection.
These general image detectors are used in their pre-trained versions
as they can be downloaded. The color-based work by Li et al. [21]
uses a combination of color components and is trained with an
ensemble of linear classifiers. The color-based work by He et al. [16]
uses a shallow Convolutional Neural Network (CNN) to extract
image features that are then classified by a Random Forest. Both
color works are trained from scratch. Due to space constraints, we
will reference those works by the first author names.

4.3 Evaluation Results
We first train the classifier separately on the color components, to
get some insight in the performance of individual color channels.
Training and testing is performed on LAION and Stable Diffusion
images. A comparison can be seen in Fig. 4. Here, the fractions of re-
ordered channels 𝐿

𝑈
, 𝐿
𝑀
, 𝑀
𝑈

work best, but the differences to other
color channels are not very pronounced. Hence, for all subsequent
experiments, we form a combined feature vector that concatenates
the feature vectors from multiple color channels in order to gain
additional robustness. This combined feature vector consists of
features from the three fractions of re-ordered channels 𝐿

𝑈
, 𝐿
𝑀
, 𝑀
𝑈

and from the channels 𝐻 from HSV and 𝐶𝑏 and 𝐶𝑟 from YCbCr
based on the large KL divergences in Tab 1 in Sec. 3.3.

The generalization capability of the combined feature vector is
shown in a cross-generator experiment. As before, the Stable Dif-
fusion dataset is used for training. All methods are then tested on
the images from Stable Diffusion, but in particular also on images
from DALL-E 2, DALL-E 3, Midjourney 5, Midjourney 6, Firefly,
and SDXL. Table 2 shows the results of this experiment. The re-
ported metrics are accuracy and Area under the Curve (AUC). In
the first column, the Stable Diffusion results indicate in-distribution

accuracy for the methods that were explicitly retrained on this data
(Li et al., He et al., and ours), the other columns indicate the general-
ization performance. The last column reports the average accuracy
and AUC per method. While most methods achieve good scores on
a subset of the generators, it is challenging to provide consistent
scores across all generators. The proposed color statistics perform
competitively and yield good generalization accuracies of 74% at
worst, and 90% on average across all evaluated methods.

Another aspect of robustness is the resilience to postprocessing
operations. For images from social media, one may commonly ex-
pect lossy JPEG compression and rescaling. It is also customary
to investigate the impact of blurring as a potential postprocessing
operation. We study the impact of these operations on the color-
based methods. The training protocol is identical to the previous
experiments, only the testing data is subject to various degrees of
JPEG compression, resizing, and blurring. The results are shown
in Fig. 5 (a) to (c). Though Corvi et al. performs better across all
postprocessing operations,the proposed color statistics perform
comparably well and better than most related works on these tasks.

One remarkable benefit of the proposed color statistic is its
ability to operate on a limited amount of training data. This may
be beneficial when adapting the method to novel generators. To
demonstrate this, the classifier is re-trained with dataset sizes of
{10, 50, 100, 500, 1000, 5000, 10000} images while leaving the other
experimental settings fixed. We also retrained the method by Li et
al. on the same dataset sizes, since this method is also relatively
light-weight. For the remaining methods, we report the amount of
training data in relation to accuracy. The results are shown in Fig. 5
(d). The proposed color statistics (orange) achieves good perfor-
mance already for 50 training images. As such, it provides a better
training data/accuracy tradeoff than related works.

5 DISCUSSION AND CONCLUSIONS
We demonstrate that image generators focus their training on re-
producing luminosity, which opens an angle for forensic analysis
of the color statistics of generated images. Earlier works reported
cursory insights that, e.g., HSV is a good color space for DeepFake
classification. We show that the class of possible color statistics is
potentially much larger, and provide empirical evidence by using
next to standard color transforms also the (rather arbitrary) fraction
of re-ordered pixel intensities as an inter-channel feature.

Our proof-of-concept experiments with a lightweight classifier
show that these features exhibit excellent generalization capabili-
ties, while requiring only few training images. Moreover, suitable
inter-channel relationships may even provide visual cues, where
the change in noise pattern is even perceptually visible, which may
be useful for providing interpretable forensic evidence. In future
work, it will be interesting to extend the exploration of the space
of inter-channel functions, and to apply more complex classifiers
to further probe the performance limits of this forensic cue.
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Table 2: Generalization capability of different classifiers in terms of accuracy. All classifiers are tested on Stable Diffusion,
DALL-E 2, DALL-E 3, Midjourney 5, Midjourney 6, Firefly, and SDXL.

Acc./AUC% Stable Diff. DALL-E 2 DALL-E 3 Midjourney 5 Midjourney 6 FireFly SDXL Avg. Acc. / Avg. AUC

[37] Wang 0.50 / 0.51 0.50 / 0.78 0.50 / 0.32 0.50 / 0.85 0.50 / 0.60 0.51 / 0.79 0.50 / 0.54 0.50 / 0.63
[15] Grag. 0.58 / 0.87 0.59 / 0.93 0.49 / 0.66 0.70 / 0.97 0.53 / 0.84 0.98 / 0.99 0.67 / 0.92 0.65 / 0.88
[29] Ojha 0.58 / 0.74 0.78 / 0.92 0.49 / 0.51 0.64 / 0.80 0.50 / 0.50 0.82 / 0.93 0.64 / 0.80 0.64 / 0.74
[8] Corvi 0.99 / 1.00 0.49 / 0.45 0.98 / 0.99 0.91 / 0.95 0.99 / 1.00 0.53 / 0.63 0.99 / 1.00 0.84 / 0.86
[21] Li 0.92 / 0.90 0.99 / 0.98 0.49 / 0.49 0.50 / 0.52 0.96 / 0.94 0.49 / 0.49 0.99 / 0.97 0.76 / 0.75
[16] He 0.72 / 0.80 0.80 / 0.86 0.93 / 0.87 0.50 / 0.50 0.77 / 0.85 0.78 / 0.85 0.97 / 0.92 0.78 / 0.81

Ours 0.98 / 1.00 0.96 / 0.99 0.74 / 0.93 0.91 / 0.98 0.94 / 0.98 0.85 / 0.97 0.96 / 0.99 0.91 / 0.98
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