
it – Information Technology 2019; 61(2-3): 147–156

Davide Bove* and Anatoli Kalysch

In pursuit of a secure UI: The cycle of breaking and
fixing Android’s UI
https://doi.org/10.1515/itit-2018-0023
Received August 23, 2018; revised January 24, 2019; accepted Febru-
ary 28, 2019

Abstract: Hijacking user clicks and touch gestures has be-
come a common attack vector and offers a stealthy ap-
proach at escalating the privileges of a process without
raising red flags among users or AV software. Exploits
falling into this category are categorized as clickjacking at-
tacks and have gained increased popularity on mobile de-
vices, Android being the recent victim of a series of UI vul-
nerabilities.

Focusing on the Android OS this paper highlights pre-
vious and current UI-based attack vectors and finishes
with an overview of security mechanisms, covering both
system-wide as well as app-level protection measures.

Keywords: Android, Clickjacking, UI, Overlay, Security

ACM CCS: Security and privacy→ Systems security→Op-
erating systems security→Mobile platform security

1 Introduction

Clickjacking is an umbrella term referring to techniques of
hijacking mouse clicks or touch gestures of users. Start-
ing out on desktop devices, with a special emphasis on
browser-based clickjacking attacks, touch hijacking re-
cently found its way into mobile platforms.

While UI based attacks have been sighted on iOS
and Windows Mobile [7, 14], recently the main focus
seems to be shifted to Android. Different types of mal-
ware were discovered using UI-based attack vectors, in-
cluding ransomware, adware, credential stealers and even
accessibility-based UI rootkits, which are able to simu-
late whole user interactions [6, 8, 1]. Attackers often use
clickjacking in conjunction with accessibility (a11y) ser-
vices, either to enable an a11y service, to enable other per-
missions or to sniff sensitive information directly, such as

*Corresponding author: Davide Bove, Friedrich-Alexander
Universität Erlangen-Nürnberg, Lehrstuhl für Informatik 1,
Martensstr. 3, D-91058 Erlangen, Germany, e-mail:
davide.bove@fau.de
Anatoli Kalysch, Friedrich-Alexander Universität Erlangen-Nürnberg,
Lehrstuhl für Informatik 1, Martensstr. 3, D-91058 Erlangen,
Germany, e-mail: anatoli.kalysch@fau.de

banking data and passwords. Clickjacking is based on an-
other feature of Android’s UI, so-called overlays, allow-
ing an app to partly or fully overlap the top activity of an
app with its own content. Combining clickjacking attacks
with a11y services, a permission-less app can be used to
bootstrap attacks, fully controlling the UI of a system. This
works by neither requiring privilege escalation attacks,
such as root exploits, nor requiring the user to consciously
approve a11y services when running on Android versions
prior to 8 [8].

Defenses against these attacks are being steadily de-
veloped by AOSP maintainers as well as external re-
searchers. On Android the current research focus is cen-
tered around overlays, windows presented on top of the
UI, and accessibility services due to their ability to simu-
late user interaction [13, 10, 8, 12, 16].

The main contribution of this paper is to raise aware-
ness for the dangers of UI-based attacks on Android. First,
we provide a detailed overview of UI based attacks on
Android and their main attack vectors. Second, we show
that the proposed defense mechanisms for app develop-
ers and AOSP maintainers were broken in incremental re-
search. Finally we summarize which limitations apply to
the current defensive mechanisms and which UI-based at-
tack vectors remain open on Android to this day.

2 Android’s security mechanisms
Android’s security concept envisions a strong separation
of app resources. An application level sandbox is en-
forced on resources to prevent unauthorized access to an-
other app’s data. User-granted permissions enforce con-
trol over system resources and exported app interfaces,
which are verified on a per-request basis by the kernel
driver “binder”. This separation is even enforced in the UI,
where every app has a binder token that determines which
windows it is allowed to interact with. The following para-
graphs describe the structure of Android’sUI, and relevant
actors.

2.1 User interface

Android’s UI architecture needs to extend to a plethora
of device groups with very diverse hardware profiles and

https://doi.org/10.1515/itit-2018-0023
mailto:davide.bove@fau.de
mailto:anatoli.kalysch@fau.de


148 | D. Bove and A. Kalysch, In pursuit of a secure UI

screen sizes. Despite this variety the underlying UI model
remains the same for every device and is build upon two
major components: Views and Windows.

A View represents any visual element: a button, an
image, or just a text element. The layout of the app, and
thus the structure of a Window and its contained View ob-
jects, are defined by the developer. There are also View
groups, which can contain other Views and define how
they are visually aligned. Views and View groups are cre-
ated in a hierarchical tree structure, with a ViewGroup ob-
ject as root element and multiple View objects as leaves.

AWindow is defined by an area on the screen where
one or multiple Views are drawn. Typically, a Window in-
stance is bound to an Activity and presented to the user as
soon as the Activity becomes active.Windowmanagement
is handled by theWindowManager. It is responsible for the
UI presentation, e. g. fitting different windows to the cur-
rent screen. There are different types of Window objects,
which differ in size, color, content and display order.

In the context of clickjacking, transparency levels and
the z-order are regularly leveraged tomount attacks.While
the former defines an opacity value for the currently dis-
played Window, the latter defines in which order the Win-
dows are drawn on the screen. A high z-order means that
theWindow is drawn on top of other Windows and consti-
tutes an overlay. Android differentiates between different
types of overlays that are used depending on the task at
hand.

For example, a Toast is a little pop-up usually shown
at the top or on the bottom of the screen. The intended
use case is communicating short pop-up messages to the
user, so it uses a high z-order value to be displayed on top
of application windows. However, Toast windows can be
set up to contain arbitrary content, such as buttons, me-
dia files or other UI elements. System windows are also
displayed on top of everything else on the screen. They
are designed to be used by the system, to show errors and
alerts regarding critical information, but can be also used
by third-party, non-system apps. Different from Toast mes-
sages, this requires the SYSTEM_ALERT_WINDOW permis-
sion.

Windows can further be modified by certain flags that
are set on a per-window basis. One of the earliest UI secu-
ritymechanisms is FLAG_SECURE, which prevents screen-
shots and screen recordings of a selected window. For
overlay windows the two flags FLAG_NOT_FOCUSABLE
and FLAG_NOT_TOUCHABLE allow modifications to the
behavior of the overlay. An overlay can be declared as
“pass-through”, which means that it can not capture any
touches (not touchable) and does not retain the focus (not
focusable). If a user touches such an overlay, the touch

is passed to the underlying window, and the app control-
ling the overlay is not notified that the touch happened.
On the other side, if a touchable overlay is touched, the
overlay registers the click, but will not propagate it to the
underlyingwindow. This is a securitymeasure of Android,
that prevents specific keylogging attacks where a mali-
cious app uses an invisible fullscreen overlay to record the
user’s touch events. Such an attack could learn the user’s
passwords, anymessages sent or the unlock pattern of the
device.

2.2 Accessibility services

Accessibility services have a unique role in Android’s UI.
Designed to help users with disabilities they are given spe-
cial capabilities to observe currently active UI elements
and even perform UI interactions as if they were triggered
by a real user. This includes even the generation of input
and interactionwith elements protected by the secure flag.

These abilities soon gained the attention of malware
authors [13], who leveraged a11y services to gain Device
Administration privileges or stole sensitive data and lo-
gin credentials. To prevent abuse, Android introduced the
permission BIND_ACCESSIBILITY_SERVICE which all a11y
services need to request. Contrary to normal permissions,
that are granted to the app upon installation, or danger-
ouspermissions,which theuser needs to grant during run-
time, enabling an a11y service requires navigating through
the settings of the device. The user is guided to the a11y set-
tings where the service needs to be selected and explicitly
turned on (with an additional confirmation dialog). Exam-
ples of confirmation dialogs are presented in Figure 1.

3 Progression of UI hijacking

Clickjacking enjoyed popularity in online and web-based
venues, especially for browser-based exploitations, lead-
ing to research on practical attacks and defense methods.
The first occurrence of clickjacking on the web reaches
back to 2008, when Grossman and Hansen demonstrated
a clickjacking attack involving Adobe’s Flash Player, us-
ing transparent HTML elements to trick the user into giv-
ing webcam access to a Flash application [9].

Android’s first app-based clickjacking attacks were
analyzed around 2011. Johnson [11] discusses Toast mes-
sages as attack vectors and details in a proof of concept
(PoC) how an attacker can leverage the high z-order of
Toasts to overlay the currently active app. The PoC didn’t



D. Bove and A. Kalysch, In pursuit of a secure UI | 149

Figure 1: Confirmation dialogs presented in the last activation step
for an a11y service [12]. The capabilities presented in this dialog are
a direct result of the capabilities in the a11y service’s configuration
file.

require any permissions and allowed to transfer any taps
and touches to the currently active window located di-
rectly below the Toast overlay. Since the Toast message
could contain arbitrary contents, like pictures, buttons
and various UI elements, this provided malware authors
with a powerful tool. Similar attacks were identified in
2012, where existing attacks on the web were applied to
mobile devices [15]. The relevance of such an attack was
then demonstrated using a fullscreen overlay that cov-
ers the screen contents. The overlay placed an innocuous-
looking button on top of the victim’s Phone application, so
the user would touch it and initiate a call to an expensive
premium phone number, without his or her knowledge.

Over the years, naive clickjacking attacks have been
improved through the use of newly discovered side-
channels. Chen et al. [4] were the first to rely on the Win-
dowManager’s FrameBuffer, which is used to draw the UI,
to infer additional information about other apps. Fernan-
des et al. [6] use a side-channel in the binder to query ad-
ditional information about currently active applications.

Other approaches rely on the a11y framework to de-
tect application launches [13], to steal user credentials and
to partially circumvent Android’s sandbox principle [10].
Fratantonio et al. [8] leverage the a11y framework and
use overlays to install additional applications to create a
greater foothold on the device. Additionally, they lever-
aged overlays themselves as side-channels by creating an
overlay grid over the Android keyboard, and creating par-
tial overlays to mitigate the obscured flag, a technique im-

plemented in Android to mitigate clickjacking. If a touch
passes through an overlay to an application, the obscured
flag allows the app to acknowledge this by checking its
value. Bianchi et al. [3] identified additional attack vectors
with overlays. Besides pass-through overlays, which pass
touches on to the underlying UI, they also leverage over-
lays that trap touches and gestures, rendering a device in-
accessible.

Initial attempts from malware at abusing overlays fo-
cused on privilege escalation. In 2015, the malware fam-
ily Android/BadAccents was discovered to be using click-
jacking techniques to obtain Device Administrator privi-
leges [17]. Rasthofer et al. [18] analyzed 263,623 applica-
tions from the Google Play Store and found over 99.96%
applications to be vulnerable to the same overlay attack
vector.

Newer attempts focus strongly on credential andbank-
ing information leakage by using overlays to simulate
the login Activity of apps. Side-channels enhancing these
techniques have been encountered as well, like the use of
GPS location information in combination with deep links
inside apps [21]. In the beginning of 2018, samples of the
Android/FakeApp family displayed this behavior to simu-
late a successful login into the Uber app and to display a
map with the current location.

4 Mitigation approaches

There are several ways to use UI attacks to compromise
the device, from logging touches to installing applications
in the background, without the user noticing. There are
different approaches to minimize the damage of malware,
ranging from protections for third-party apps to pervasive
changes to the underlying operating system. We differen-
tiate between three types of mitigations:
– System-level modifications change the underlying

operating system, so you have a completely different
version of the AndroidOS. This usually requires physi-
cal access to the device and aprocedure called flashing
to use it.

– Root-level modifications require a device with el-
evated – so-called root – privileges. Some technical
knowledge is required to root a device, so the method
is not applicable for every Android user.

– Application-level modifications are implemented
on a per-app basis and do not require any changes to
the system. Every app needs to implement their own
protection, but can be deployed on devices more eas-
ily.



150 | D. Bove and A. Kalysch, In pursuit of a secure UI

We also discuss protections implemented by the Android
team across the different OS versions.

4.1 Touch filtering

The Android framework provides only a single concept
that can be used by third-party developers to mitigate
clickjacking attacks by malicious applications. It is called
Touch Filtering and is a security mechanism that was in-
troduced with the release of Android 2.3. Through Touch
Filtering, the system discards touch events on a View if an-
other window is obscuring it. Developers can enable this
feature for specific layout elements, effectively disabling
theuseof anapp if anoverlay is on topof it. Combinedwith
FLAG_WINDOW_IS_OBSCURED, a special flag for touch
events, the app can react to the touch of a covered UI el-
ement, and display a warning. As an example, a protected
button can be used like any other button as long as there is
no window on top of the app’s Activity. It is clickable and
it executes any action associated with it. If a window is on
top, be it an invisible Toast message or simply a system di-
alog, the button becomes unusable. Related work makes
use of this technique to protect an Activity and specifically
block clickjacking attempts [15].

The problems with this method are manifold. First, it
is not enabled by default and as a developer, you need to
enable it for every single View, one by one. That is not
practical for existing applications and the Android doc-
umentation does not really explain which views should
be protected and why. Second, even though it protects
against simple clickjacking attacks, where a fake button
is placed over a real (protected) button, it offers no real
protection against sophisticated attacks, where users are
tricked into clicking a viewwithout having an overlay cov-
ering the view. An instance of this is described in related
work, where multiple overlays are used to create a hole
around a button [8]. In such a setup, the touch filter would
not be triggered and no overlay would be detected by the
activity.

A further problem is that there are legitimate applica-
tions on the market that make use of (fullscreen) overlays.
An example is Twilight, an app with over 5 million installs
that activates a “nightmode” for the screen. The appuses a
semi-transparent overlay that spans over the whole screen
and is always on top of other activities. Apps which enable
Touch Filtering on single views make these views unus-
able as long as the app is active. The main problem with
this is that users are not notified by default about why the
app they want to use is not reacting to touches, and might

think it is broken. The developer has to react to this spe-
cific event and check the obscured flag, then show an ap-
propriate warning. In a recent study, 263.623 apps selected
fromdifferent categories of theGoogle Play Storewere ana-
lyzed [18]. The researchers found that only 369 (0,13%) of
the apps were using Touch Filtering, concluding that de-
velopers are “not aware about this attack vector” and con-
sequently do not implement it.

The same method is used for specific system apps
in Android 6.0 and below. The Package Installer app,
which is used when new apps are installed outside of the
Play Store, implements it. Through the Install button, the
screen is checked for overlays and the app shows a no-
tification when it detects an overlay (“Screen overlay de-
tected!”), warning the user that it should remove the over-
laymanually, by closing the app (but not specifyingwhich
app causes the problem).

4.2 Modifying the system

The state-of-the-art clickjacking techniques onAndroid in-
volve overlay windows. Overlays, also called floating win-
dows, are a special kind of UI elements. Since they float
over other windows and you can have multiple windows
on the screen, they allow multitasking, similar to desk-
top applications on a regular computer. This is a novelty
on Android devices, or at least it was until native sup-
port for split-screenmodewas implemented in Android 7.0
Nougat. Still, floating windows are a popular feature for
deviceswithbigger screens, suchas tablets. Figure 2 shows
the screenshot of such a popular app, which uses overlays
to enable multitasking windows.

So, not only is it difficult to mitigate malicious overlay
usage, but it is also a challenge to differentiate between le-

Figure 2: Screenshot of the “Floating Apps” application, which has
over 1 million installs on the Play Store.



D. Bove and A. Kalysch, In pursuit of a secure UI | 151

gitimate uses of the API and apps that abuse the feature.
So how can such amalign app be recognized before an ac-
tual attack occurs?

To find a solution, it is crucial to be able to distinguish
between benign and malicious uses. While it is known at
install time if an app has the permission to use overlays, it
is not known if the app will use them at all. Besides anti-
virus apps that can analyze an app’s information to deter-
mine if it corresponds to a known malware, there are ap-
proaches that use static analysis to detect potential GUI
attacks [3]. Static analysis refers to the analysis of soft-
ware without executing it, and it can usually catch mali-
cious behavior that is not hidden by encryption or obfus-
cation techniques. More specifically, this approach looks
for suspicious API calls at the byte-code level, such as the
WindowManager.addView method. This is done by analyz-
ing the APK file, the packaged application file format of
Android.

While the static analysis approach can detect all apps
that use specific procedures, the detection of benign apps
that use the same API is only partially solved. In such
cases, the user needs to be included in the decision, so the
approach only offers a pre-filtering of potential apps. De-
ciding which application is currently on the screen is not
easy for a user. The possibility ofmalicious apps to pass off
as parts of a legitimate application is high, as the possibil-
ities to show dialogs and overlays has only few limitations
on Android. On the system level, this can be easily solved
introducing security indicators as amodification of the op-
erating system [3].

Another interesting concept is the use of an “Overlay
Mutex” [6]. A mutex (mutually exclusive) object is often
used in parallel programs to synchronize the access to a re-
source, by allowing only one instance or thread to access
the resource at a time. Similar to that, an Overlay Mutex
makes sure that no app other than the active one can put
an overlay window on top of the screen. If a background
app attempts to start an overlay, a notification is shown
that warns the user. This can effectively prevent a click-
jacking attack, if used correctly, but it can also break exist-
ing applications that permanently show an overlay, mak-
ing themunusable. Visually, a lock iconor a similar indica-
tor has to be shown on the screen most of the time, which
is often not compatiblewithAndroid’s customization prin-
ciples. Such visual indicators, inspired by the HTTPS lock
icons found in browsers, have their own share of prob-
lems and considerations regarding usability and compre-
hension [20, 5]. The Overlay Mutex approach is effective
and simple to use, yet it only offers protection against a
single class of attacks andneeds tobe combinedwith other
methods to filter out benign apps.

While the previous approaches to detection and miti-
gation of clickjacking attempts aimed atmodifying the op-
erating system, there are also proposals for extending the
Android SDK. Therefore, there are only minor changes to
the system itself, but developers can use them to protect
their apps. Similar to the FLAG_SECURE flag that prevents
taking screenshots or recordings of a window, there is also
the possibility to extend the developer API and provide a
setSecureWindow method to mark windows as sensitive.
Then, the system can easily identify the window and fire
an onOverlap event whenever an overlay is on top of it.
Therefore, the developer canprepare for such an event and
react accordingly, showing a warning or disabling sensi-
tive UI controls [2]. This method can not reliably distin-
guish between a malicious and a benign overlay, so it us
up to the developer to take a decision.

While this is the least opinionated solution of all the
approaches in this chapter, this method suffers from the
same adoption and distribution problems of the other
ones. Additionally, the decision to include the developer
into the protection process can be both good and bad. On
the one side, developers can easily implement a protec-
tion for their app, which is good for the end user. On the
other side, comparing it to [3] and [6], the method itself
does not benefit the user in any way, as long as developers
do not update their apps and implement effective counter-
measures.

The last work of this section describes a defense
scheme that does not require the user for detection. As
the goal is to detect malicious overlays, the detection
algorithm can be based on the following four assump-
tions [22]:
– Theappof the overlay is different from the receiver app

of the touch input.
– The window type of the overlay has a higher z-order

value.
– The overlay is pass-through and uses the flag

FLAG_NOT_TOUCHABLE.
– The overlay’s transparency (alpha) attribute is above

95%.

The detection approach is similar to the other approaches:
all overlays on top of an Activity are analyzed, one by
one. The analysis works by monitoring calls to the rele-
vant parts of theWindowmanagement process, e. g. open-
ing and closing windows, showing and hiding an Activ-
ity. When such a suspicious overlay is found, the user is
given the option to uninstall the offending app, such that
the user has no control over the detection, but still has the
final say over what to do with an app.



152 | D. Bove and A. Kalysch, In pursuit of a secure UI

4.3 Working with root privileges

For users with rooted devices, making changes that affect
the system is easier. Xposed is a framework for rooted An-
droid devices that uses code injection to change the sys-
tem’s behavior, such that no manual changes to the OS
source code is required. With Xposed, users can use mod-
ules that are provided by a community of independent de-
velopers and can be installed like regular mobile apps.

An approach called “Android Window Integrity”
(AWI) makes use of the Xposed framework [19]. It is a
security concept that protects the user against a specific
class of UI attacks, namely Window overlay and Task hi-
jacking attacks. While the former category indicates the
class of attacks described in this work, the latter cate-
gory refers to manipulations of the Activity stacks and of
the back-button behavior. The AWI concept focuses on re-
implementing the logic behind the Android navigation,
called Back Stack, consisting of Activity stacks and Win-
dowmanagement. At the center of this is the notion of “ac-
tivity sessions”, which are records of the actual sequence
of views shown to the user. These sessions are bound to
one specific app, and usually begin with the launcher ac-
tivity, which is the first activity to be shown when the user
opens the app. If this sequence of views, a view being any
Window that was or is still visible to the user, is differ-
ent fromAndroid’s own back stack sequence, a suspicious
behavior is assumed. Also, the system checks if all views
shown to the user in one activity session are from the same
app. The rationale is that an app is considered suspicious
if itmanipulates theback stack and creates awindowwith-
out user interaction. When that is the case, the user is no-
tified of the problem and is required to take a decision on
how to react. The alert which is shown explicitly asks the
user if he or she wants to block the window and shows
the application package name to identify the app. This be-
havior is similar to most popup blockers implemented in
browsers, which first ask for confirmation before showing
the potentially offending element.

The actual implementation of AWI by the authors is
called “WindowGuard” and written as a module for the
popular Xposed framework. The authors argue that this al-
lows WindowGuard to be deployed on a wide range of de-
vices. In the evaluation of their work, WindowGuard was
tested on the 12,060 most popular apps from the Google
Play Store, which resulted in 1.03% of apps triggering the
alerts. As the authors explain, the alerts were triggered by
floating windows that had different purposes: from con-
trolling a music player to showing ads. Also, the perfor-
mance evaluation implies that the impact and overhead

of WindowGuard is minimal (0.45%), even though the au-
thors did not consider the overhead of the Xposed frame-
work itself, which is required for their solution. Overall,
the AWImodel seems appropriate for detectingmost click-
jacking attacks on Android. While the work does not go
into detail on how it performs on different types of over-
lays, the described approach seems to work irrespectively
of how the windows are created.

There are someminor issues that need to be addressed
for this paper. First, relying on user interaction and deci-
sion to implement security is a double-edged sword. In this
case, WindowGuard shows the package name in the alert,
which canbe easily spoofedbymalicious applications. It is
not a reliable identity proof for an app, as package names
can always contain keywords that do not match the app’s
launcher name. Also, if amalicious application repeatedly
attempts to show an offending window, a blocking alert is
shown every time, which might annoy the user and may
lead to the uninstalling of WindowGuard. This reaction,
called alarm fatigue, can be expected if the user assumes
that the error is caused by a malfunctioning of the mod-
ule. In addition to that, if the malicious app is explicitly
launched by the user, WindowGuard does not block any
windows. This could be the case when the user is tricked
into opening what appears to be a benign app. This in-
cludes phishing, spoofing and regular social engineering
attacks. While this is unfortunate, it is not a specified goal
of the paper. Instead, the usability of the security measure
could be analyzed with an extensive study to solve this is-
sue.

4.4 Using and abusing the Android SDK

In this section, we discuss a practical example to show
how the existing Android SDK and its limited API can be
used for different purposes than originally intended. Also,
this can be implemented more easily on different devices
than previous solutions, as the method does not require
changes to the system.

The approach is called “Window Punching” and can
be completely implemented on the application level, with-
outmodifications to the system [2]. The technique involves
sending touch events to an application and observing
which of these events are received by the app. On the re-
ceiver side, which is the application using the protection,
the app can determine from the received events if there
is another window between the user and the application.
The relevant settings for this technique are the number
of events and the position. As seen in Figure 3, either the
whole screen or only specific areas of it can be “punched”.



D. Bove and A. Kalysch, In pursuit of a secure UI | 153

Figure 3: Example of Window Punching technique where every dot
corresponds to a simulated touch detected by the protected applica-
tion.

In the first case, one can use a grid-like setup to
systematically scan the screen, pixel for pixel. Scanning
means sending a virtual touch event to the Activity win-
dow, which is detected by the application. The detection is
given by the MotionEvent API, which gives detailed infor-
mation about the interaction of the user with the app. Sim-
ilar to Touch Filtering, thismethod detects if therewas any
overlay obscuring the app at the time of the touch event.

The process of simulating touch events requires some
processing power, doing so on every pixel on the screen
repeatedly is therefore not practical on most mobile de-
vices. A strategy to this problem is scanning only the criti-
cal parts of the activity, for example buttons and text input
fields. Also, wemay need to calculate the optimal grid size
for the scan. Using a grid with more space between two
points results in less events to generate and can be exe-
cuted faster, but we could miss some smaller overlays. On
the other side, a very dense grid is able to detect any over-
lay, but requiresmuchmore computing power. So, a sensi-
ble trade-off between performance and detection accuracy
is needed.

The ability to generate custom touch events is granted
by the Instrumentation library of the Android SDK, which
does not require any special permissions to use. In general
the library is intended for instrumented unit tests, which
are used for automated testing of the UI. In such a test, a
developer can decide which elements to interact with and
navigate through an app without user interaction, in or-
der to test the functionality of the app. Through the pro-
vided methods, a developer can send customMotionEvent
messages to the app. Such events are usually generated by
the system whenever a user touches or interacts with the

touch screen, thus an instance contains information about
the type of touch (using a finger, a touch pen etc.) and the
coordinates of the event.

The most important limitation of this is that an app
can only instrument itself, but not other apps. This limita-
tion can be utilized to detectwindows that catch the input,
such as duringphishing attempts:Whenever a touch event
is fired and hits a window not owned by the current app,
a SecurityException is thrown in the Instrumentation code.
This is the case for malicious floating windows, which are
put on top of the screen and catch the input focus. Dur-
ing phishing attacks, for example, the user usually enters
sensitive data into a field the attacker controls. If such a fo-
cusable window is put on top of an app implementing the
protection, the app triggers the exception above and can
react accordingly, by warning the user and raising aware-
ness of what is really happening.

The above method is a smart and easy way to pro-
tect a single app from phishing attacks using overlays.
The difference to other methods is that developers can im-
plement, tweak and control the protection measure them-
selves. As described above, by combining the touch sim-
ulation feature with Touch Filtering and tweaking the
parameters for optimal user experience, developers can
achieve a pretty effective application-level security coun-
termeasure.

4.5 Protection mechanisms by Google

Previous sections discussed techniques that would allow
application developers or security-conscious users to pre-
vent abuse. They either needed to be adapted on a per-
application basis or required changes to the Android sys-
tem itself. Meanwhile, Google introduced protection mea-
sures to mitigate abuse through UI-based attacks.

Android 5.0 Lollipop saw the introduction of security
mechanisms specifically aimed at clickjacking. New code
was introduced into some system apps that prevent the
display of windows on top of selected critical system di-
alogs (such as the Device Admin confirmation or the per-
mission settings). In another case, for Accessibility ser-
vices, Touch Filtering was enabled for some elements. For
the confirmation dialog, the “OK” button is protected by
the setFilterTouchesWhenObscured method. A year later,
the Touch Filtering method was replaced by the obscured
flag, showing a warning message if any overlays were de-
tected on top of the button.

Furthermore, since Android 6.0 Nougat, the An-
droid team has assigned a higher priority to the SYS-
TEM_ALERT_WINDOW permission, requiring the user to



154 | D. Bove and A. Kalysch, In pursuit of a secure UI

explicitly grant this permission through the Settings app.
An exception is made for apps installed from the Play
Store, which are granted this dangerous permission by de-
fault.

While these measures protected against most basic
clickjacking attacks, a new approach shows how they
still can be circumvented [8]. Through combination of the
above permission and an accessibility service, the device
can be taken over easily, including the deployment of mal-
ware with full device permissions (so-called “God-mode”
app). The attack relies on two basic design flaws: the first
is that apps installed from the Play Store do not need to be
granted the “draw on top” permission, since it is automat-
ically granted at install time. The second issue is that, as
the authors claim, it is trivial to upload and distribute such
an app through the Play Store, since the automatic scans
done by Google do not seem to reliably catch features like
code side-loading and the abuse of overlays. Using these
facts and an elaborate clickjacking technique, the user
can be fooled into enabling an Accessibility service that
allows the execution of further attacks. The clickjacking
technique can be considered a novelty, since it works de-
spite the security measures introduced by Google, namely
Touch Filtering and the obscured flag.

The two concepts are called Context-aware clickjack-
ing and Context hiding. Context-aware clickjacking occurs
when the app performing the attack knows what is being
clicked and reacts with relevant and reasonable output.
Context hiding describes a technique used to hide the un-
derlying “privileged” application (e. g. the Settings app, or
the Permissions dialog), tricking the user into interacting
with it.

The findings of Cloak & Dagger [8] lead to a new, un-
documented security measure by Google, implemented in
Android 7.1.2. The code, as shown in Figure 4, uses the
AppOpsManager class, which can only be used by sys-
tem apps, to block any overlays from showing while the

Figure 4:Method used to block any overlays in system apps on An-
droid 7.1.2.

Accessibility confirmation dialog is shown. In addition to
that, the flag FLAG_WINDOW_IS_PARTIALLY_OBSCURED
was introduced. In contrast to the regular obscured flag,
this new flag is set if the touched button has any overlay-
ing window on top, regardless of how and where the user
touches it.

With the release of Android 8.0 Oreo, Google made
a few significant system changes that affect over-
lays. By deprecating all previous overlay types and
introducing the new window type TYPE_APPLICA-
TION_OVERLAY, apps can only create overlays that
display over other activities, but can not cover “crit-
ical” system windows, such as the status bar or the
keyboard. In addition, to protect system apps against
future overlay attacks, the Android team introduced
the new system-only permission HIDE_NON_SYS-
TEM_OVERLAY_WINDOWS and a new Window flag,
which is appropriately called PRIVATE_FLAG_HIDE-
_NON_SYSTEM_OVERLAY_WINDOWS. When a window
with this flag is active, all overlays created by any other
app are hidden from the screen. The overlays only reap-
pear when the window is removed or hidden again. This
is implemented for some critical confirmation dialogs to
prevent Context Hiding.

5 Limitations

The proposed mitigations against clickjacking and UI re-
lated attacks have severe limitations regarding availabil-
ity and usability. Most academic protections presented in
this paper have a common issue: They require in-depth
changes to the OS, either by using a modified Android ver-
sion or by rooting the device. This again requires compat-
ible devices and some technical knowledge to achieve. Al-
though these are valid solutions, they are not practical as
long as they can not be easily implemented by and for reg-
ular users. Also, persuading Google or other OS providers
(OnePlus, LineageOS etc.) to integrate these solutions is te-
dious and difficult to achieve.

Another issue is that, due to the widespread use of
Android in multiple versions and flavors, the suggested
changes would not be applied to most devices, as Android
suffers from version fragmentation and a number of un-
supported and outdated devices on the market. It is there-
fore unrealistic that such changes evermake it into an offi-
cial version by Google, or are implemented by any third-
party OS provider. Therefore, even if developers would
need to update their software, application-level measures
are preferable.



D. Bove and A. Kalysch, In pursuit of a secure UI | 155

Since Android 8.0, the new countermeasures mitigate
some of the clickjacking techniques presented in this pa-
per. With Context Hiding, the user is still easily fooled into
clicking any elements in the Settings app,which is not pro-
tected by the private window flag. But at least the critical
confirmation dialogs can not be hidden ormanipulated by
overlay windows anymore.

6 Conclusion

After iterating over the basics of Android UI components,
section 2 listed thedifferent clickjacking techniques onAn-
droid. As a contribution, this paper summarized in sec-
tion 4 the several potential approaches to mitigate click-
jacking attacks, from app-based methods to system-level
modifications. Most solutions require in-depth manipula-
tions of the Android source code, changing the overall de-
sign of Android, while others could be applied by more
or less technical users. Touch Filtering, the obscured flag
and some internal protections were presented as the ma-
jor countermeasures introduced by Google, showing that
protection against UI attacks onAndroid has becomemore
than just an afterthought.

While the latest security features are being deployed
on new devices, a majority of devices is still vulnerable to
these attacks. This is due to the nature of Android’s ecosys-
tem, and the refusal of devicemanufacturers to provide se-
curity updates for older devices. Also, most effective coun-
termeasures were reserved for system apps, disallowing
the use for third-party applications. It is thereby crucial
that developers are given access to security-related APIs to
add their own protection measures into their apps. On the
other side, one can see that current defenses against over-
lay attacks are ineffective and therefore unused by third-
party apps.

The biggest problem with the current state of overlay
mitigation is that, even though there are working protec-
tions, they are exclusive to system apps and can not be
used by third-party apps and developers [12]. This means
that every other app, and especially appswith sensitive in-
formation (messaging, banking or dial apps), are still vul-
nerable to clickjacking attacks. It is up to the Android de-
velopers to decide what windows are protected. As of to-
day, only a number of critical dialogs implement the coun-
termeasure. Users can still be tricked into enabling sys-
tem settings that are not protected, such as the developer
settings. As a consequence, the Android team decides on
a per-window basis which parts of the OS are “critical”
enough to receive the protection.

We argue that this approach is flawed, as any set-
ting included in the Settings app can be abused by an at-
tacker to further deceive the user. As Android does not
allow to change any system settings programmatically,
an app should not be able to circumvent this by tricking
the user. Of course blocking overlays entirely in Settings
would break some apps’ functionality, but it would also
signal a clear commitment to security by theAndroid team.

Acknowledgment: We thankProf. Dr.-Ing. Freiling andTo-
bias Groß for their helpful comments on earlier versions of
this paper.

Literature
1. Vitor Afonso, Anatoli Kalysch, Tilo Müller, Daniela Oliveira,

André Grégio, and Paulo Lício de Geus. Lumus: Dynamically
uncovering evasive Android applications. In International
Conference on Information Security, pages 47–66. Springer,
2018.

2. Abeer AlJarrah and Mohamed Shehab. Maintaining user
interface integrity on Android. In Computer Software and
Applications Conference (COMPSAC), 2016 IEEE 40th Annual,
volume 1, pages 449–458. IEEE 2016.

3. Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick
Fratantonio, Christopher Kruegel, and Giovanni Vigna. What
the app is that? Deception and countermeasures in the
Android user interface. In Security and Privacy (SP), 2015 IEEE
Symposium on, pages 931–948. IEEE, 2015.

4. Qi Alfred Chen, Zhiyun Qian, and ZhuoqingMorley Mao.
Peeking into your app without actually seeing it: UI state
inference and novel Android attacks. In USENIX Security
Symposium, pages 1037–1052, 2014.

5. Adrienne Porter Felt, RobertW Reeder, Alex Ainslie, Helen
Harris, MaxWalker, Christopher Thompson, Mustafa Embre
Acer, Elisabeth Morant, and Sunny Consolvo. Rethinking
connection security indicators. In SOUPS, pages 1–14, 2016.

6. Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl,
J Alex Halderman, ZMorley Mao, and Atul Prakash. Android
UI deception revisited: Attacks and defenses. In International
Conference on Financial Cryptography and Data Security, pages
41–59. Springer, 2016.

7. Lorenzo Franceschi-Bicchierai. The iPhone’s constant password
popups are a hacker’s dream, may 2017. https://motherboard.
vice.com/en_us/article/ne7gxz/ios-iphone-password-
phishing-app-popups, accessed on May 29th, 2018.

8. Yanick Fratantonio, Chenxiong Qian, SimonP Chung, and
Wenke Lee. Cloak and dagger: from two permissions to
complete control of the UI feedback loop. In Security and
Privacy (SP), 2017 IEEE Symposium on, pages 1041–1057. IEEE,
2017.

9. Jeremiah Grossman. Clickjacking: Web pages can see and hear
you, Oct 2008. http://blog.jeremiahgrossman.com/2008/10/
clickjacking-web-pages-can-see-and-hear.html, accessed on
April 20, 2018.

https://motherboard.vice.com/en_us/article/ne7gxz/ios-iphone-password-phishing-app-popups
https://motherboard.vice.com/en_us/article/ne7gxz/ios-iphone-password-phishing-app-popups
https://motherboard.vice.com/en_us/article/ne7gxz/ios-iphone-password-phishing-app-popups
http://blog.jeremiahgrossman.com/2008/10/clickjacking-web-pages-can-see-and-hear.html
http://blog.jeremiahgrossman.com/2008/10/clickjacking-web-pages-can-see-and-hear.html


156 | D. Bove and A. Kalysch, In pursuit of a secure UI

10. Yeongjin Jang, Chengyu Song, SimonP. Chung, Tielei Wang,
and Wenke Lee. A11y attacks: Exploiting accessibility in
operating systems. In Proceedings of the 2014 ACM SIGSAC
Conference on Computer and Communications Security, CCS
’14, pages 103–115, ACM, New York, NY, USA, 2014.

11. Ken Johnson. Revisiting Android tapjacking, May 2011.
https://web.archive.org/web/20171121203845/https://
nvisium.com/blog/2011/05/26/revisiting-android-tapjacking/,
accessed on June 1st, 2018.

12. Anatoli Kalysch, Davide Bove, and Tilo Müller. How Android’s
UI security is undermined by accessibility. In Proceedings of
the 2nd Reversing and Offensive-oriented Trends Symposium,
ROOTS, pages 2:1–2:10, ACM, New York, NY, USA, 2018.

13. Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu, and
Wei Zhao. On malware leveraging the Android accessibility
framework. In International Conference on Mobile and
Ubiquitous Systems: Computing, Networking, and Services,
pages 512–523. Springer, 2013.

14. Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du.
Touchjacking attacks on web in Android, iOS, and windows
phone. In International Symposium on Foundations and
Practice of Security, pages 227–243. Springer, 2012.

15. Marcus Niemietz and Jörg Schwenk. UI redressing attacks on
Android devices. Black Hat Abu Dhabi, 2012.

16. Andrea Possemato, Andrea Lanzi, SimonPakHo Chung, Wenke
Lee, and Yanick Fratantonio. Clickshield: Are you hiding
something? Towards eradicating clickjacking on Android. In
Proceedings of the 2018 ACM SIGSAC Conference on Computer
and Communications Security, CCS ’18, pages 1120–1136, ACM,
New York, NY, USA, 2018.

17. Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric
Bodden. How current Android malware seeks to evade
automated code analysis. In IFIP International Conference on
Information Security Theory and Practice, pages 187–202.
Springer, 2015.

18. Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric
Bodden. An investigation of the Android/BadAccents malware
which exploits a new Android tapjacking attack. Technical
report, TU Darmstadt, Fraunhofer SIT and McAfee Mobile
Research, 2015.

19. Chuangang Ren, Peng Liu, and Sencun Zhu. Windowguard:
Systematic protection of GUI security in Android. In Proc. of the
Annual Symposium on Network and Distributed System Security
(NDSS), 2017.

20. Stuart E Schechter, Rachna Dhamija, Andy Ozment, and Ian
Fischer. The emperor’s new security indicators. In Security and
Privacy, 2007. SP’07. IEEE Symposium on, pages 51–65. IEEE,
2007.

21. Dinesh Venkatesan. Android malware steals uber credentials
and covers up the heist using deep links, 2018. https://www.
symantec.com/blogs/threat-intelligence/android-malware-
uber-credentials-deep-links, accessed on May 23rd, 2018.

22. Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. Analysis
of clickjacking attacks and an effective defense scheme for
Android devices. In Communications and Network Security
(CNS), 2016 IEEE Conference on, pages 55–63. IEEE, 2016.

Bionotes
M.Sc. Davide Bove
Friedrich-Alexander Universität
Erlangen-Nürnberg, Lehrstuhl für
Informatik 1, Martensstr. 3, D-91058
Erlangen, Germany
davide.bove@fau.de

M.Sc. Davide Bove is a Master’s graduate from Friedrich-Alexander
University Erlangen-Nürnberg (FAU). He graduated in the field of
Software Engineering and now focuses his studies on secure soft-
ware, Android security and distributed networks.

M.Sc. Anatoli Kalysch
Friedrich-Alexander Universität
Erlangen-Nürnberg, Lehrstuhl für
Informatik 1, Martensstr. 3, D-91058
Erlangen, Germany
anatoli.kalysch@fau.de

M.Sc. Anatoli Kalysch is a PhD student at Friedrich-Alexander Uni-
versity Erlangen-Nürnberg (FAU). His research interests include
reverse engineering and program analysis, obfuscation techniques,
and Android security. Anatoli Kalysch has a M. Sc. in computer sci-
ence from FAU.

https://web.archive.org/web/20171121203845/https://nvisium.com/blog/2011/05/26/revisiting-android-tapjacking/
https://web.archive.org/web/20171121203845/https://nvisium.com/blog/2011/05/26/revisiting-android-tapjacking/
https://www.symantec.com/blogs/threat-intelligence/android-malware-uber-credentials-deep-links
https://www.symantec.com/blogs/threat-intelligence/android-malware-uber-credentials-deep-links
https://www.symantec.com/blogs/threat-intelligence/android-malware-uber-credentials-deep-links

	In pursuit of a secure UI: The cycle of breaking and fixing Android's UI
	1 Introduction
	2 Android's security mechanisms
	2.1 User interface
	2.2 Accessibility services

	3 Progression of UI hijacking
	4 Mitigation approaches
	4.1 Touch filtering
	4.2 Modifying the system
	4.3 Working with root privileges
	4.4 Using and abusing the Android SDK
	4.5 Protection mechanisms by Google

	5 Limitations
	6 Conclusion
	Literature


