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ABSTRACT
In systems security Trusted Execution Environments have been
developed as a mean to offer additional security to existing complex
system designs. In the past multiple vulnerabilities have affected
TEE implementations like ARM TrustZone and Intel SGX, which is
why the research community has been looking to identify and solve
existing design flaws. Another branch of computer science looks at
RISC-V, a modern processor architecture that allows everyone to
use and extend it.

In this work, we analyze the current possibilities of the RISC-V
architecture to provide TEE-related functionality while avoiding
potential pitfalls and vulnerabilities early on in the design process.
By looking at the current problems in established TEE frameworks,
we implemented and tested actual services used by user applica-
tions and operating systems that implement common TEE features
on a recent version of the standard RISC-V ISA. We found that
the current technology can be used to implement file storage and
cryptographic key management services without modifications to
the standard. Unfortunately, our results show that RISC-V offers
no solution to secure I/O communication with peripherals on a
system, and therefore also no safe way to interact with the user in
case of an OS compromise. We discuss potential solutions to this
remaining problem.

CCS CONCEPTS
• Security and privacy→ Trusted computing; File system secu-
rity; Hardware security implementation; Software security engineer-
ing.
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1 INTRODUCTION
In security research we often need to make assumption on what
to consider secure and what not. This is where Trusted Execution
Environments (TEEs) are introduced, where software is split into
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“secure and trusted” components and “untrusted” ones. While TEE
solutions on the market, such as ARM TrustZone and Intel SGX, are
widely used today, security researchers constantly find and report
flaws, bugs, and vulnerabilities in their implementations. Software
and hardware vulnerabilities are sometimes caused by mistakes
of developers, but often are also flaws in the design of the system
itself. An example for this are the several side-channel attacks that
affect Intel SGX, such as cache attacks [6], code-reuse [3], and many
others [8]. Due to the widespread use of ARM TrustZone on mobile
devices, research has uncovered several flaws in different vendor
implementations, that the design of TrustZone does not prevent [5].

With RISC-V there is an architecture that is growing in usage in
the industry, due to its open and license-free nature. It is therefore
important to take a closer look at its security features, in order
to evaluate and possibly shape the future developments of the
architecture early on in the process. The big advantage of RISC-V
is its extensibility, which allows both industry and academia to
explore new ways to achieve security. For this work we are looking
at standard RISC-V architectures, which do not include custom
extensions. We take the ratified version of the RISC-V Instruction
Set Architecture (ISA) and look at features that are required by the
standard, such as Physical Memory Protection (PMP). Based on this,
the following contributions are made:

(1) We present a technical implementation of a secure file stor-
age based on standard RISC-V processors in section 3.

(2) We show how to use such a feature to implement a cryp-
tographic key management service called SKeystore (see
section 4).

(3) We examine the current state of Secure I/O on standard
RISC-V devices and propose modifications to achieve se-
cure communication between enclaves and peripherals in
section 5.

Our work is heavily inspired by security features of current An-
droid devices, which use ARM TrustZone for similar functionality.
The presented services provide security to third-party user applica-
tion while preserving the threat model assumptions of TEEs. Still,
our work is not limited to mobile devices and is targeted at general
purpose systems, such as desktops, servers and similar. The current
implementation is not suited for most IoT devices on the market,
as these devices only implement a limited subset of the RISC-V
standard (see more in section 2).

2 BACKGROUND
This section provides the background to understand the concepts
used in this work, the relevant details of RISC-V and the design of
Keystone, which our work is based on.
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2.1 Trusted Execution Environments
A Trusted Execution Environment (TEE) is a processor feature that
offers some kind of isolation inside the hardware for processing
data. The goal is to have a secure execution of specific applications
even in the presence of a compromised OS. Such applications, called
trusted apps or trustlets, are responsible for processing security-
critical operations, such as encryption or authentication. Often
they also provide services that handle sensitive user data, which
may need extra protection from strong attackers. These isolated
environments are often called enclaves, which is the predominant
name we will use in this work.

Popular implementations of TEEs are ARM TrustZone and Intel
SGX, based on ARM and x86 architecture respectively. For the
RISC-V architecture there is MultiZone1, a commercial TEE for IoT
devices. Apart from that, there are mostly academic projects, such
as Keystone [7], TIMBER-V [10] or MI6 [4].

TEEs are characterized by a hardware-imposed logical separation
of code and data. This is true for TrustZone, which has separate
memory regions for the Secure World. In our work we use the
Keystone model, which relies on RISC-V features.

2.2 RISC-V
The RISC-V architecture includes several features that are needed to
implement TEE features. The most important one is included in the
Privileged Architecture2, which defines different privilege levels
where software can run. To achieve some security on the platform
level, a RISC-V system needs at least two execution levels. The
mandatory Machine Mode (M-Mode) has the highest privileges and
is supported by every system. The second one is usually the User
Mode (U-Mode), which is intended for traditional user applications.
A third mode, the Supervisor Mode (S-Mode) is supposed to be
for operating systems and mostly supported by devices that are
performant enough to run a full OS (e.g., the Linux kernel).

Most academic RISC-V solutions published before 2019 use soft-
ware implementations or modified hardware extensions to achieve
isolation of memory and processes. Since 2019 the RISC-V ISA ver-
sion has been frozen, such that vendors and developers could target
a common version. This version also includes Physical Memory
Protection (PMP), a hardware-based specification that describes
a memory access protection mechanism for unprivileged applica-
tions. In short, PMP allows blocking or granting access to memory
regions from M-Mode to the lower-privileged S- and U-mode. From
the mentioned academic solutions, only Keystone uses PMP to im-
plement enclaves, making it faster and able to run on standardized
RISC-V hardware.

Keystone consists of three main components: the Secure Monitor
(SM) that runs in M-Mode, an Enclave Runtime (RT) that runs in
S-Mode and enclave apps that are executed in U-Mode (see Figure 1).
Using PMP the SM protects an enclave process frommemory access
by other processes. Therefore, normal user apps and secure enclave
apps can run at the same time. Since enclaves are isolated from the
OS, they rely on the RT for OS-like features (e.g., file system access).
Also, the RT usually includes some version of the libc standard C
library. In general, enclave apps are split between normal code and

1https://hex-five.com/multizone-security-tee-riscv/
2https://riscv.org/technical/specifications/

sensitive code, such that only the sensitive functions are executed
in the secure environment.

By design, enclaves in Keystone are based on a specific Root-
of-Trust (RoT), which might be a secure coprocessor (e.g., a TPM),
a read-only secret that is created during production or similar. A
RoT ensures that an attacker cannot compromise key parts of the
system, such as the firmware. Most cryptographic operations for
integrity and security purposes are based on this RoT. For this
work this means that we assume a secure RoT and thus a secure
(and bug-free) Keystone SM and build our security assumptions
accordingly.

User app

Operating system

Enclave appU-
Mode

S-
Mode

Secure MonitorM-
Mode

Untrusted Trusted

Enclave Runtime

Figure 1: Architecture of enclaves based on Keystone En-
clave.

3 SECURE STORAGE
The Secure Storage executes read and write operations in secure
memory. Due to the lack of private storage on processors, the system
needs to rely on the untrusted file system managed by the OS. The
underlying hardware can be flash storage, a hard disk or any on-
chip storage in the case of embedded devices. Per our definition of
the threat model, the file system is managed by the OS and therefore
untrusted. A common solution for this problem is encryption. For
our implementation, we define architectural requirements that meet
security standards. These requirements are then used to evaluate
the security of our implementation.

3.1 Requirements
Our requirements for a Secure Storage implementation are based
on TEE standards by GlobalPlatform, specifically its definition of
“Trusted Storage API for Data and Keys” [9].We change the wording
and include Keystone-specific terminology to avoid confusion:

(1) The Secure Storage may be backed by non-secure resources
as long as suitable cryptographic protection is applied.

(2) The Secure Storage must be bound to a particular device,
which means that it must be accessible or modifiable only
by authorized enclave apps running in the same enclave and
on the same device as when the data was created.

(3) The Secure Storage should be able to hide sensitive key
material from the enclave itself.

https://hex-five.com/multizone-security-tee-riscv/
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(4) Each enclave has access to its own storage space that is
shared among all instances of that enclave but separated
from the other enclaves.

In short, the Secure Storage guarantees that only the enclave that
created a file can access it. Further, the content should be bound to
a specific device, meaning that a copy of the enclave binary cannot
open a copy of the file on a different device.

Regarding the design goals, we want to address two negative
aspects of TrustZone-based solutions analyzed in the last section:

• A security vulnerability in an enclave must not expose se-
crets of other enclaves.

• The TCB should be reduced, therefore reusing code on the
host side and allocating functional features on lower-privileged
levels, wherever possible.

• The module should run in user instead of supervisor mode.
Altogether, the secure storage is meant to be a simple library for

enclave applications to store sensitive data on persistent memory,
while the application does not have to care about encryption and
key management.

3.2 Implementation
For file-based encryption the system needs to securely store and
manage encryption keys. In other TEE systems, the storage of
cryptographic material is done on trusted storage, or managed by
a single instance (e.g., a trusted application). Since the system is
not designed to include trusted storage or enclave-exclusive system
partitions, the individual private keys cannot be saved on the file
system itself. For our solution we dynamically derive cryptographic
keys from the Sealing Key, which enclave apps can request through
their runtime. The Sealing Key never leaves the context of the SM,
and due to the nature of the Sealing Key, any derived keys are
bound to the actual device where the enclave is executed. This
means an attacker cannot use a compromised SM to extract keys
or file contents.

Using this method, the cryptographic keys only reside in volatile
RAM. Using the memory protection of PMP, we can protect them
during usage and flush the memory after freeing the memory space,
therefore removing them from memory again. This ensures that
neither a malicious user application nor the OS can access them.

The secure storage is a static library that can be included into
enclave applications. It contains two functions:

• encrypt_and_write encrypts a memory block and writes
it to disk. It is guaranteed that plaintext is not leaked from
the enclave.

• read_and_decrypt reads an encrypted file from disk into
memory.

The encryption is handled by the libsodium crypto library. Our
implementation is based on the XChaCha20 cipher, which allows
using a random nonce in the encryption process. Therefore, the
encryption of two files with identical content results in two distinct
cipher texts, which helps prevent “known-plaintext” attacks.

A central aspect of the Secure Storage is that it does not require
to know a secret in order to decrypt and encrypt files. While the
user handles the file contents, the service does the heavy lifting
and uses a derived key for encryption. This key derivation is based

on the Data Sealing feature of Keystone, which derives a key that
is bound to three entities:

(1) A device-specific Root-of-Trust, in general an asymmetric
key pair unique for the current device.

(2) The hash of the Secure Monitor, therefore binding a key to a
specific version of the SM.

(3) The hash of the enclave binary, therefore binding a key to a
specific enclave version.

The first token ensures that no derived key can be copied to a
second system. This is useful to prevent replay attacks. The SM
hash ensures that the key is not accessed with an older, potentially
vulnerable version of the SM. This can mitigate downgrade attacks,
where attackers deploy a vulnerable version of secure software in
order to exploit the system. The inclusion of the enclave hash makes
keys specific to a specific software and prevents other enclave
applications from accessing the same key. A system where multiple
enclaves need to access the same key material therefore need to
invoke the same enclave in order to retrieve it.

This derivation system has multiple consequences for the ar-
chitecture of a TEE system. First, every enclave that wants to use
the Secure Storage needs to generate its enclave-specific encryp-
tion keys beforehand. This is ultimately performed by the Secure
Storage library, but still requires the enclave to call it. An alterna-
tive approach would be to have a central service that handles all
keys and only offer specific keys to enclaves after checking their
binary hash. This last approach would be preferable if one has a
system that exclusively runs vendor code and does not allow users
or third-party developers to add their own software.

As described above, an update to the SM or the enclave binary
invalidates all the keys, as the key derivation would need to know
the previous version’s hash in order to derive a key. This means
that in order to update the software, there needs to be a migration
procedure where old keys are regenerated with the new binary. For
Secure Storage that means that every file ever stored by the service
would need to be decrypted and encrypted again. Of course this
is the worst case scenario for performance and usability, and the
Secure Storage would need to be adapted as it does not keep track of
all the files it saves. There are smart ways around this problem, such
as using a (secure) static key for encryption and using the derived
key to encrypt this key instead. Therefore, when the derived key
changes, the enclave only needs to re-encrypt the static key instead
of the whole file.

3.3 Evaluation
For the evaluation of the Secure Storage, we refer back to the require-
ments we defined in subsection 3.1 according to the GlobalPlatform
TEE Internal API [9]. Requirement (1) is fulfilled since every file
written to the untrusted world is encrypted with a derived key
only accessible to the enclave. Thus, a file can only be read from
the enclave that initially wrote it. (2) is fulfilled likewise. The key
derivation function uses a device-specific key (namely the security
monitor private key), binding a file to a particular SoC, provided
that the Secure Boot procedure is bug-free.

Regarding (3), the Secure Storage library cannot hide any sensi-
tive key material from the enclave application itself since it is part
of the application and does not run in a separate process or thread.
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Nevertheless, the secure storage does not save any key material
in a global variable, but only in the stack frame of the encryption
and decryption function, respectively. Hence, clearing these buffers
before returning from the function would be sufficient to protect
an enclave application from accidentally exposing any key material.
Altogether, we cannot entirely hide key material from the enclave
app; however, we can guarantee that an enclave does not have
access to keys from another enclave.

The principle of the key derivation satisfies retirement (4). When
launching multiple instances of the same enclave on the same
device, they have the same hash in the SM and hence, can derive
the same encryption keys.

Our implementation completely lacks a defense mechanism
against replay (rollback) attacks. Although it would be sufficient
to implement a rollback defense in the RT to meet requirement
(5), it does not match our threat model, where we mistrust the en-
tire RT. The authors claim that the Keystone Security Monitor can
be adopted to support rollback defense though [7]. We leave this
aspect to future work and hence, do not fulfill requirement (5).

3.4 Performance
In order to evaluate the performance of our approach, we set up test
benchmarks and timed the execution of read and write processes.
More specifically, we set up a QEMU machine with Keystone and
our modified Secure Monitor and executed three different bench-
marks:

• reference_native: Execute regular file reads and writes
with increasing buffer size

• reference_eapp: The same as above, but executed inside a
Keystone enclave (no encryption)

• estorage_eapp: Our Secure Storage implementation that
reads and write a file (with encryption)

All executions are repeated 1000 times for every buffer size.
The buffer starts with 1 byte up to 65536 bytes (0.5 megabits), the
latter being a maximum limit of the Keystone Eyrie runtime which
fails to page the app properly with bigger buffer sizes. The startup
time of the enclave is excluded from all calculation, as well as the
initial file creation (see Listing 1 and Listing 2). From the collected
measurements we extract the median for every buffer size, the
resulting plot is shown in Figure 2.

The graph shows that there are two types of performance over-
heads. The first is produced by the TEE itself, which makes file reads
and writes slower, the second one is induced by our implementa-
tion. The difference between them is shown in Figure 3, where our
solution added between 44.5% and 70.21% of performance over-
head, while the difference between native execution and enclave
execution adds significant overhead between 125% and 430.74%.
In comparison to the overall overhead of the TEE, our solution is
therefore not bad, considering there is also encryption involved, no
hardware acceleration or compiler optimizations are used.

4 KEY STORAGE AND MANAGEMENT
A central aspect of TEE security is based on storing and managing
cryptographic keys in order to sign or encrypt messages to the
outside world. This is especially important for public-key cryptog-
raphy, where a private key is often deployed by the manufacturer
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Figure 2: Performance measurements of native reference
file (read/write) accesses compared to Secure Storage solu-
tion
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Figure 3: Performance overhead of the TEE compared to the
Secure Storage implementation

and needs to be protected from unauthorized usage. A compromise
of these keys not only allows attackers to take over a device, but can
also compromise the security of a whole product line, as previous re-
search has found that TEEs are not trivial to update and revocation
of trusted apps sometimes leads to more vulnerabilities [5].
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4.1 Requirements
Inspired by the Android KeyStore3 service, we defined several re-
quirements that a comparable service has to offer in terms of confi-
dentiality, integrity, and authentication:

(1) User applications may not access private keys:
Unprivileged user applications may not access sensitive cryp-
tographic enclave keys.

(2) The operating system may not access private keys:
The operating system or any privileged systems (e.g., ker-
nel, device drivers) may not access sensitive cryptographic
enclave keys.

(3) Enclave apps may request cryptographic operations:
All crypto operations are requested in an enclave. The ex-
ecution of the cryptographic operations, such as the key
generation and encryption or decryption processes, are per-
formed in an isolated environment. The enclave application
can share public information and results to a user app, if
necessary.

(4) Enclaves may not access the keys of other enclaves:
Key pairs and key material created in one enclave are bound
to the enclave and may not be accessible by other enclaves.
An attacker should not be able to craft a malicious enclave
to access private keys.

(5) Private key material is exclusively stored encrypted:
When saved on the untrusted file system, an attacker should
not be able to access, read or copy the key material.

(6) Enclaves may access information to allow remote at-
testation by a third party:
In order for a third-party server to verify that a specific key
is bound to a specific enclave and that a key pair (and its
identity) was provably created in a secure enclave, an en-
clave should be able to request cryptographic proof of the
origin of key pairs.

4.2 Implementation
The SKeystore is a static library that can be referenced and included
in enclave applications. It offers a number of useful functions for
enclaves:

• generate_key is used to create a key pair. With the get_key
method, the enclave gets several public information about
the key, such as the hashes of the enclave and the SM. This
blob of information is signed by the Secure Monitor and can
be used to establish remote attestation by a third party.

• delete_key to invalidate a key
• sign_data can be used to sign a variable-length text string
(which later can be verified using the public key)

• decrypt_data takes amessage previously encrypted through
the corresponding public key and returns a decrypted mes-
sage back to the enclave.

For the cryptography SKeystore uses the libsodium crypto li-
brary4. For digital signatures from the Secure Monitor we use
Ed25519 key pairs. For every enclave, SKeystore creates X25519
key pairs. On creation, they are signed by the SM, and the signature

3https://developer.android.com/training/articles/keystore
4https://libsodium.org

is included into the key attestation provided for any key pair. As
part of the attestation a third party can verify the integrity and
authenticity of the enclave key using the public key of the SM.
Any private key is securely stored using the Secure Storage library
(described in section 3) in an encrypted format, such that only the
SM can use them.

In addition to the library, we extended the SM through a plugin
in order to generate the aforementioned key pairs. To communicate
between enclave and SM plugin, we also added a system call to the
Eyrie runtime.

4.3 Evaluation
From a performance perspective, we observed the same overhead
as shown in section 3, since the SKeystore is based on the Secure
Storage and does not introduce any different cryptographic opera-
tions compared to the functions included in Keystone. The security
evaluation of the SKeystore is based on the set requirements defined
above. Since the service handles the key generation, the private
key is never exported or handed over to any application. By us-
ing the Secure Storage from section 3, only SKeystore can create
and read private keys. Therefore, requirements (1), (2) and (5) are
fulfilled. This comes with the drawback that every service needs
to request cryptographic operations (requirement (3)), which may
impact performance when multiple enclaves require such opera-
tions. Any enclave can only access and use keys generated from the
same enclave (specifically from the same combination of enclave bi-
nary and Secure Monitor). Even if a malicious enclave manipulates
the SKeystore into loading key information of other enclaves, the
SKeystore is not able to derive the correct decryption key to use
the private key. Even though we satisfy requirement (4), the same
enclave on two different devices cannot share the same keys, even
though they might use the same identical binary. Lastly, enclaves
have access to metadata for performing Remote Attestation with
a third party (requirement (6)). For this the enclave may send the
remote party its own public key signatures as well as the public
key of the Secure Monitor, forming an attestation chain that third
parties can verify.

We also implemented a Secure Monitor plugin that handles the
initial key generation, since the SKeystore service does not have
access to the SM private key. In general increasing the size of the
SM decreases the overall security [5], which is why we significantly
reduced the required changes of our implementation to effectively
only 41 lines of code. The cryptographic key generation reuses the
crypto library and key derivation of the SM, so that impact on code
size is minimized there.

The SKeystore lacks a protection against accidental file corrup-
tions and due to the method used for key derivation, any update
to the SM or the enclave binary renders keys generated with the
previous versions incompatible. The latter problem concerns multi-
ple aspects of TEE security and especially the Keystone framework,
therefore any solution for a safe update system should also solve
the problems with SKeystore.

5 TOWARDS SECURE I/O
Most TEE solutions provide some basic functionality to handle ex-
ternal peripherals. TrustZone for example implements TrustZone

https://developer.android.com/training/articles/keystore
https://libsodium.org
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Protection Controller to mark memory regions as only accessi-
ble from the Secure World [1]. The integrity of communications
between a processor and different peripherals is not particularly
protected, as the latter ones are often managed by drivers in the OS,
which in turn can be compromised. While there are ways to ensure
confidentiality and integrity for external peripherals, the known
methods often make the assumption that processor and peripheral
share a common secret.

In our solution, we explore and analyze standard input/output
inside a secure enclave using Keystone. Keystone uses OpenSBI5
as a middleware between bootloader and Secure Monitor, and in-
cludes specific universal asynchronous receiver-transmitter (UART)
implementations for various hardware platforms. Using these, we
can write and read from standard input without relying on the
operating system (which could be compromised according to our
threat model). In our implementation our goals are:

• Communicate a message to the user without OS interference
(preserving integrity and confidentiality)

• Receive a message from the user (through the keyboard)
without OS interference (preserving integrity and confiden-
tiality)

5.1 Secure Output
In order for enclaves and SM to print text to the console, Keystone
includes a function sbi_putchar that communicates to the device’s
UART port. Therefore, we used this method to instruct an enclave to
write text to the user console. Since we are directly interacting with
the UART port, the host application and the OS do not receive any
data while the enclave is active, even when directly reading from
it. Data is only received by the OS when the enclave application is
paused, closed or killed.

From a security perspective, we are preserving the integrity of
enclave messages (as long as the process is not killed during text
output). In addition, we noticed a second effect when simultane-
ously connecting to the machine directly and per SSH. When our
test application (that prints several pieces of text to the console
in a loop) is started through the native console (/dev/console),
everything is printed correctly to the screen as expected. If we
start it from an interactive SSH session, no text is printed to the
SSH session screen. Instead, the text messages are shown on the
native console again. Due to how we communicate directly with
the underlying hardware, other applications on the system do not
interfere with our output. Therefore, our Secure Output method is
bound to the primary screen or output device and does preserve
the confidentiality of enclave messages.

5.2 Secure Input
In order to allow an enclave to read data from the user, we imple-
mented a plugin for the Eyrie runtime of Keystone that exposes a
function sbi_getchar() to the enclave. Through this function the
enclave can poll a character from the native console input and read
it into the enclave memory. Since the function call is non-blocking,
our test application needs to continuously read a character in a loop
in order to receive whole sentences. This is a limitation of the input
driver that may impact usability of our method. As before, the OS
5https://github.com/riscv-software-src/opensbi

can not actively interact with this input method. It can not inject
own text into any enclave buffer (since PMP is used on enclave
memory), it can not read the UART while our enclave is active.

There is a second limitation to our approach, which is partly
influenced by Keystone and its inner workings. Assuming that we
try to get a longer input from the user (e.g., a password), the enclave
app needs to continuously call the read function (which returns
NULL if no character is received). Keystone includes a DOS pro-
tection inside its SM, which should prevent enclaves from starving
out the other processes on the system and blocking the execution
of the system indefinitely. Therefore, a continuously blocking en-
clave app, one which is trying to read multiple characters, will be
interrupted after some time to allow the OS or other enclaves to
execute. The user might not be aware of this while entering some
text, as enclaves can be dynamically stopped and resumed. For our
experiments, we had to deactivate this protection or else the user
could be entering parts of the “confidential” message into the OS
or some other user application.

Even with DOS protection disabled, we could not claim with con-
fidence that our approach works with multicore processors. While
the execution of our test enclave application would be running on
one core, another application (user or OS) could be running on a
second core and reading from the standard input. In multiple exper-
iments our test enclave app could exclusively read characters from
the user even when a malicious user app simultaneously tried to
read input, but we were not able to explain this “desirable” outcome.
Therefore, we cannot exclude that a race condition could occur
where the input method from the OS is prioritized over our Secure
Input method. This is a problem that should be considered in future
research.

In conclusion, our Secure Input approach guarantees integrity for
user input such that neither the OS nor malicious actors can inject
“fake” input into the enclave application. For confidentiality our
solution does not cover concurrency problems and questions around
exclusive access to user input were raised during our experiments.

6 CONCLUSION
This paper demonstrates how to use standard RISC-V features to
implement common security services for user applications. We
show that with RISC-V it is possible to achieve secure file storage
even on untrusted file systems, while fulfilling all security require-
ments of such a service. Based on the above, we implemented a
cryptographic key management service that allows enclave apps
to securely perform cryptographic operations. There is a perfor-
mance overhead when introducing compute-bound cryptographic
features, which might be noticeable in a real-world environment.
We argue though that the overhead, which is primarily caused by
the cryptographic computation, might be significantly reduced with
the introduction of the RISC-V Scalar Cryptography Extensions6,
an official standard extension that promises significant hardware
acceleration for cryptographic operations.

We also describe how the current standard might be sufficient to
provide limited input and output capabilities, but suffers from the
typical problems of TEE designs that do not explicitly consider it.

6https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-
announces-public-review-of-the-scalar-cryptography-extensions/

https://github.com/riscv-software-src/opensbi
https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-announces-public-review-of-the-scalar-cryptography-extensions/
https://riscv.org/blog/2021/09/risc-v-cryptography-extensions-task-group-announces-public-review-of-the-scalar-cryptography-extensions/
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Increasing I/O support through our method means using drivers in
the M-Mode, which in turn leads to an increased amount of code to
be trusted. In this regard, the current hardware specification does
not consider secure communication channels between the system
and external peripherals. There are academic solutions to improve
on this (such as CURE [2]), but there are currently no ambitions
by RISC-V development groups to adopt such models, at least not
publicly.

There are a few roadblocks that we want to address in order
to conclude our contribution of our paper. There is not much re-
search on the deployment of enclaves in real-world environments,
as such supply-chain considerations are usually not in the scope
of research efforts. But for the viability of security measures, we
need to consider questions around the ability to update enclaves
or secure firmware as well as provide solutions for when our main
security assumption breaks and these software parts are compro-
mised. As the usage of RISC-V increases, so does the attention of the
security research community, and we can expect similar findings in
vendor implementations as with the other technologies. Therefore,
we would also encourage research and developments of software
tools to support the development of enclave applications. With our
work we hope to contribute to this in order to increase the overall
security of RISC-V and its TEE capabilities, such that we might
benefit from it in the near future.
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A APPENDIX
for (int i = 1; i <= 1024*64; i *= 2) {

char test_buffer[i];

for (unsigned int r = 0; r < NUM_REPETITIONS; ++r) {

// start timing

struct timespec start , stop;

clock_gettime(CLOCK_REALTIME , &start);

fp = fopen(TESTFILE_PATH , "w");

fwrite(test_buffer , sizeof(char), i, fp);

fclose(fp);

fp = fopen(TESTFILE_PATH , "r");

fread(test_buffer , sizeof(char), i, fp);

fclose(fp);

clock_gettime(CLOCK_REALTIME , &stop);

// end timing

uint64_t time_nsec = ((stop.tv_sec - start.tv_sec

) * 1000000000L + stop.tv_nsec - start.tv_nsec);

printf("%d,%lu\n", i, time_nsec);

}

}

Listing 1: Getting execution time of native file read andwrite
instructions

for (int i = 1; i <= 1024*64; i *= 2) {

char test_buffer[i];

for (unsigned int r = 0; r < NUM_REPETITIONS; ++r) {

size_t ret_size;

// start timing

struct timespec start , stop;

clock_gettime(CLOCK_REALTIME , &start);

encrypt_and_write(TESTFILE_PATH , test_buffer , i);

read_and_decrypt(TESTFILE_PATH , &ret_size);

clock_gettime(CLOCK_REALTIME , &stop);

// end timing

uint64_t time_nsec = ((stop.tv_sec - start.tv_sec

) * 1000000000L + stop.tv_nsec - start.tv_nsec);

printf("%d,%lu\n", i, time_nsec);

}

}

Listing 2: Getting execution time of Secure Storage
instructions
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