
SoK: The Evolution of Trusted UI on Mobile
Davide Bove

IT Security Infrastructures Lab
FAU Erlangen-Nürnberg

Germany

ABSTRACT
Inmobile security research, one of themany challenges is the lack of
trusted user interfaces (TUI). Currently, users are not able to reliably
identify which screen content is genuine and which is potentially
manipulated. The concepts of trusted displays and user interfaces,
which offer a high confidence in the trustworthiness of screen
contents, are not universally implemented on current consumer
devices. In this paper, we systematically analyze the developments
in the field of TUIs on mobile devices over seven years. We present
a new taxonomy to define and categorize challenges and issues in
current UI designs, with a focus on issues that negatively affect the
security of the whole OS. In addition, we suggest directions where
contributions in research could solve these issues.

CCS CONCEPTS
• Security and privacy→Mobile platform security; Hardware
security implementation; Trusted computing; • Human-centered
computing → Graphical user interfaces.

KEYWORDS
trusted ui; mobile security; android; trusted execution
ACM Reference Format:
Davide Bove. 2022. SoK: The Evolution of Trusted UI on Mobile. In Proceed-
ings of the 2022 ACM Asia Conference on Computer and Communications
Security (ASIA CCS ’22), May 30–June 3, 2022, Nagasaki, Japan. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3488932.3517417

1 INTRODUCTION
User interfaces are the primary method of human-computer in-
teractions. As humans make mistakes when using technology, a
lot of effort is put into usability such that the user of a system
can efficiently operate it. Research has shown that usability and
security correlate, meaning that “decreasing the usability can lead
to less security” [51]. The security of mobile devices is especially
important, as more and more parts of everyday life is transferred
to these devices. consumer mobile devices have become central to
people’s identities, such that a single security incident can cause a
lot of damage.

On personal computers, there are a number of indicators that
help identify a specific application, and the well-informed user can
more easily investigate the actual application causing problems.
Mobile devices unify the UI look-and-feel of all applications and
hide the details, even for technical users. In consequence, users

This work is licensed under a Creative Commons
Attribution International 4.0 License.

ASIA CCS ’22, May 30–June 3, 2022, Nagasaki, Japan
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9140-5/22/05.
https://doi.org/10.1145/3488932.3517417

need to trust the system to show them exactly what they expect
to see on screen. In this work, we show that this trust can not be
guaranteed with current designs. From the 500 most popular apps
on the Google Play Store, 27.2% use overlays [32], while research
shows that overlays can be used in malware to deceive the user [14,
29, 42, 59]. For developers that use the Accessibility API, which
assists users with disabilities navigating or using apps, only 0.37%
of popular apps use them, and it is most often used for privileged
access to notifications or to kill processes [25]. The API is also
abused by malware to control the user device [15, 37, 54]. It is the
balance of features versus security that sometimes leads to severe
problems in the mobile ecosystem.

Our main contribution in this work is to survey and analyze the
current state of trusted user interfaces (TUI) with a focus on the
Android OS. We decided on a systematization of knowledge, which
we argue is mandatory to assess the current state of research in the
field. There is a need for a systematic review of the research field
as the arms race of new features, abuses of these features and coun-
termeasures has been rapidly going forward for the past years. For
this reason, the research field needs to be systematically assessed
to highlight the main research movements and to discover unex-
plored or unanswered issues. Specifically, we want to contribute
a categorization of current challenges and proposed solutions in
order to minimize redundancy in approaches. We also see a shift
from system-level defenses to specialized hardware-based solutions
on the market, which may be the consequence of research contribu-
tions to the field. Therefore, our research for this systematization
will focus on the following research questions:

• RQ 1: What issues are identified?
We survey the actual problems targeted by security research
in the field of UI security on mobile devices.

• RQ2:Which approaches are taken against specificweak-
nesses?
We look at the proposed solutions of current research and
especially focus on the depth of access of countermeasures,
the feasibility in real-world environments and at trends of
research.

• RQ 3: What challenges remain to be addressed?
With this question, we concentrate on issues that have not
been considered yet for future research efforts.

We included publications from conferences and journals within
the last seven years, from 2014 to 2020. Older papers often focus
on outdated and no more supported OS versions and features. We
included research that presented new attacks or security vulnerabil-
ities that affect UI security, as well as presented defense strategies
against such attacks. In order to get a full picture of the solution
space, we also looked at UI security publications outside the mo-
bile domain (see Appendix C). Often, papers get overlooked when
they are not published in top conferences and journals. Therefore,

https://orcid.org/0000-0003-3273-241X
https://doi.org/10.1145/3488932.3517417
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3488932.3517417

we extracted additional bibliography if papers heavily reference
another publication. As a result, we also cover relevant literature
that might be overlooked by a search engine or our own search
methodology.

Furthermore, our contributions are:

(1) We provide an overview of UI-related issues on Android
that are presented in literature. We analyze the main attack
vectors and design issues in section 3.

(2) We evaluate current research on defensemechanisms against
UI attacks as well as existing countermeasures in current
devices (section 4) and beyond the mobile security field (see
Appendix C).

(3) We identify and analyze systemic weaknesses discovered
through our systematization and propose directions and
areas for future research on the topic in section 5.

2 BACKGROUND
This section provides the background to understand UI security
in the context of mobile devices and describes the fundamental
software and hardware design of current devices.

2.1 Android UI Security
The system design of Android is based on functionality of the Linux
kernel, and a number of security features rely on it. A core concept
is the Android Application Sandbox, which strongly separates apps
from each other. Any interaction or exchange between apps is
done using some form of inter-process communication (IPC): either
through Intents, which allow sending messages between apps or
start services, or using the Binder kernel driver which allows to
directly invoke remote function calls. The sandboxing extends both
to an app’s code and its data. In the context of UIs, this means
that no application can access the UI or the memory of another
app. But the OS offers a permission-based model to grant access
to specific resources. These permissions are enforced and verified
by the system and make sure that no app involuntarily exposes its
data to other apps. For the users, these security measures are not
visible, as they can interact with every app equally and can “share”
most data with other apps.

2.2 ARM TrustZone
A Trusted Execution Environment is a CPU feature that offers an
isolated environment for processing data. The goal is to have a
secure execution of specific applications even in the presence of a
compromised OS. Such applications, called trusted apps or trustlets,
are responsible for processing security-critical operations, such as
encryption or authentication. TEEs are hardware-supported tech-
nologies and ARM TrustZone implements such a model, which is
widely used in current mobile smart devices. TrustZone introduces
the concept of two security domains called “Normal World” and
“Secure World” (more in Appendix A). The former is where the
regular operating system is running, and the latter runs an addi-
tional TEE OS with a separate user and kernel space layer. The
regular OS can not access the TEE and the communication is done
through a secure monitor software running in a privileged layer.
This monitor can be interacted with using special Secure Monitor
Call (SMC) instructions. As an example, SMCs trigger the context

switch between the two worlds. The TEE also defines shared mem-
ory regions that can be used by both normal and secure apps to
exchange data.

Even though Google offers an own TEE implementation called
Trusty TEE [7], most device vendors use customized implementa-
tions, therefore the number and type of trusted apps differ from one
device to another. For iOS devices, Apple does not use TrustZone,
but implements a similar technology in their processors called Se-
cure Enclave [11].

2.3 Threat Model
We provide a categorization of threat models based on our sys-
tematization findings. Since attacks and defenses evolved over the
years as devices and operating systems evolved, we chose a broad
categorization based on attacker capabilities and the depth of access
required to implement a defense. Every defense in section 4 has
their own threat model, may work only against specific attackers
or mitigates only specific vulnerabilities. But we found a consensus
about a few major assumptions:

• There are different privilege levels in a system. If an attacker
can execute arbitrary code inside any of these levels, that
level and all the levels below it are deemed untrusted.

• Once a level is untrusted, only a defense at a higher privilege
level may be used.

While there might be minor nuances in the presented papers,
there are three threat models that are found in the majority of aca-
demic publications. Since mostly working on ARM processors, we
use ARM’s vocabulary of Privilege Levels (PL) to describe the dif-
ferent stages. This categorization is not extensive and only includes
the models and assumptions we found in the literature:

• User Mode: An attacker can execute code in user space
(PL0). This may be a regular app on the device.

• OS Mode: An attacker can execute code in OS and kernel
space (PL1). This may be an app that has root access or uses
an exploit to gain system-wide access.

• TEEmode: An attacker can execute code in the context of a
Trusted Execution Environment (TEE). This may be through
a vulnerability in a trusted app, in the trusted OS, or by
deploying a custom app.

Denial-of-Service attacks where attackers disable functionality
or stop the user from using specific features are not considered
in the threat model, since attackers with OS mode access can just
shut down or reboot the device indefinitely.

3 DESIGN ISSUES
This section presents the main design issues of the Android oper-
ating system regarding UI security. The issues represent the main
focus of current research and look at several aspects that contribute
to weaknesses of the UI security. For an overview of changes to
Android throughout different versions, see Table B.1.

3.1 Window Management
Android’s window management consists of system-controlled and
user-controlled elements. The system manages the Activity stack,

which controls the navigation between different windows, but also
takes care of drawing the windows. Users, in most cases the devel-
opers of apps, take care of the design of an app, from the general
color scheme to every single view element that is shown during the
execution of an app. Due to Android’s design decisions, users have
great freedom in styling, but the potential for abuse is just as high.

I01.Missing indicators:Current Android devices do not make
it easy for a user to assess with confidence whether the current
screen content is controlled by a legitimate app or not. Not only do
apps have control over their own windows, but they can also use
full-screen UIs to take over most of the screen space. In practice, this
means that any application on a device can impersonate another
legitimate app. This design flaw leads to phishing attacks [9, 29],
clickjacking [17, 31, 35] and denial-of-service attacks [48, 49]. Se-
curity measures that mitigate some of these vulnerabilities have
been implemented in newer versions of Android, but the root issue
remains, as the operating system offers no identification of the
screen contents by design and is therefore inherently vulnerable
against this class of attacks.

Onemajor design flaw inmodernmobile operating systems is the
lack of identifying information on what is being displayed on the
screen. A regular user has no concept of windows and an app’s user
interface, called Activity, is mostly defined by the developer of the
application. On Android, users have only two reliable options for
exiting apps: pressing the Home button or using the app switcher.
The back button, which is often used to exit an application, can be
deactivated by the application.

For identifying which app is currently running on the screen,
users need to enter an app’s information screen. If the selected app
uses a regular Activity, users can enter the app switcher, touch
the app’s icon shown on top of the view, and select “App info”. In
general, the App Info screen shows basic information such as the
app’s name and its icon.More tech-savvy usersmay trigger different
app settings here, such as notifications or permissions. But still,
this screen does not reveal any identifiable information that helps
distinguish a legitimate app from a malicious or misdirecting app.
This is therefore not an issue of technical proficiency of the user,
but a design flaw in the original Settings application of Android.

If you compare this to other concepts, such as HTTPS indicators
in browsers, it becomes pretty obvious that any application can
pretend to be any other app, because there is no indicator that hints
at a problem with the current screen contents. There are no systems
in place to detect such impersonating apps on the device. This leads
to the aforementioned problems, such as phishing, clickjacking, or
other deception attacks. Most of the attacks that are attributed to
lacking indicators can be mitigated with an additional indicator
that shows the origin of an app, similar to how Extended Validation
certificates work in the context of browsers [14].

I02.Unprivileged access to overlays: In recent research, there
has been a focus on UI features that can be abused to trick and de-
ceive users. In general, multitasking and having multiple windows
on Android was not possible before Android introduced Multi-
Window Support in Android 7.0 [5]. Overlays are windows that
overlap other windows on the screen, and they have existed since
the first version of Android. They allow an application to create
custom “floating” windows on top of other Activities. In the case

of semi-transparent popups and overlay windows, the problem of
lacking indicators is even worse. Overlays can be placed on the
screen from any active app and do not appear in the app switcher.
They have no title bar, no mandatory layout and are not treated
like regular windows.

A major problem that has affected UI security is the broken per-
mission model around overlays prior to Android 7.0. Apps on newer
OS versions not only have to declare the SYSTEM_ALERT_WINDOW
permission to be able to use overlays, they also have to ask the
user explicitly to enable the feature in the app’s settings screen.
If the same app is installed on an older device, Google grants this
permission automatically when installed from their Play Store, thus
without requiring the user’s consent.

Even without the permission, developers can abuse Toast mes-
sage to show overlays containing arbitrary content, such as UI
controls, text or colored backgrounds. In general, Toast messages
are supposed to be short text messages shown by an app for the
user. Developers can decide between two duration settings, both
defined inside the operating system. Regardless of the actual value
of these settings, apps can repeatedly destroy and recreate Toast
messages without any delay, leading to a permanent display of such
a message. In addition to this, since the Android API allows defining
custom views for Toast messages, they can have any appearance
and span the full screen. Therefore, even though Android imple-
ments actual security measures to ensure that apps do not cover
the screen without user consent, it still allows Toast messages to
do this. As far as we know, this behavior has been deprecated in
Android 11 and will most probably be gone for new devices.

I03. Overlays covering information: No matter if the user
willfully enables overlays, is tricked into doing it or Toast messages
are used, overlays have several security implications. In stacking
window managers like Android’s Window Manager, windows have
a z-order, which is a numerical value that determines the order in
which elements are drawn on the screen. When two UI elements
overlap each other, the z-order determines which element is drawn
on top of the other.

Prior to Android 8, overlay windows could overlap most of the
screen, including the status bar, the integrated keyboard and any
system settings. This allowed to fully control the screen and ma-
nipulate the user into performing any action, such as enabling
Accessibility Services [31]. After exposing this design flaw, Google
improved upon overlay windows and changed the z-order of over-
lay windows such that the menu and status bar can not be covered
by an overlay anymore. In addition, Android introduced an API
to detect and hide all overlays, which is used for some specific di-
alogs inside the system settings, but is not accessible to third-party
apps [17].

Unfortunately, the design flaws presented by [31] are still present
today. Especially, the problem of Context Hiding is still not solved
universally. Context Hiding means that an overlay is used to hide
the screen contents around UI controls such as buttons, therefore
removing any indication about which window the control belongs
to. In a confirmation dialog, hiding the dialog text and replacing it
with a different text might trick the user into accepting whatever an
attacker wants to have confirmed. Another scenario could be that a
malware wants to hide its actions by manipulating the screen into

showing different values, such as a manipulated banking account
balance.

As mentioned above, the protections introduced by Google are
only implemented in a number of places in the system settings
source code. Especially a method to detect and hide every overlay,
which might completely solve the problem of Context Hiding, is
currently private and can only be used with system apps. Even
worse, this method is not used all over the OS, but only in selected
parts of the Settings app. Therefore, apps can still use overlays to
cover several parts of the system settings UI and trick the user
into enabling settings. Several critical settings can still be activated
this way, like the Developer options, the Android Device Bridge,
the device encryption and even the security PIN used to unlock
the device. Several tests on recent devices showed that the virtual
keyboard is also not protected, allowing attacks that log the user
input such as the “Invisible Grid Attack” [31].

I04. Apps can hijack the window stack: Android manages
the life cycle of every app, from creation and destruction of windows
to the management of tasks and processes. Multitasking in Android
means that multiple processes run in the background, but only one
application at the time is considered active. Tasks and windows are
managed in stack structures and mostly controlled by the OS, but
apps can manipulate some aspects of task management through
the developer API.

In detail, Activities in third-party apps can define an attribute
taskAffinity, which indicates to the OS which task an Activity
prefers to belong to. In general, Android associates an Activity to
a specific task, such that a window is not removed from memory
until the task is done. A second attribute, allowTaskReparenting,
breaks this limitation. As both are developer-controlled settings, the
methods can be combined and abused in order to allow a malicious
app M to be associated with a legitimate app A. In practice, this
means that the malicious app can put itself on top of app A or
redirect the user to a malicious activity to execute various attacks,
such as stealing credentials, locking the device or monitoring user
actions [49].

Similar to other flaws in Android, the purpose of these features
is rather limited. Some apps use the Task Affinity attribute as a
means to implement plugins for existing apps, such as additional
controls for the phone app. In the work of [49] about 3.96% of 6.8
million apps were found to use the feature. It is not clear if these
features were implemented for this purpose, but their presence and
their current implementation undermines the security of legitimate
apps and poses a great threat to the user.

3.2 Accessibility
Accessibility services have privileged access to UI elements and
system resources and are able to read screen contents as well as sim-
ulate user input. This allows for great possibilities to enhance the
user experience of users with disabilities. Over the years, many de-
velopers have implemented such services in their apps, but without
the added benefits. Instead, the apps were enhanced with function-
alities that are not accessible through the regular Android developer
API.

I05. Lack of alternatives: In a study, it was discovered that
most apps that implement accessibility services use them to access

system notifications, kill background processes, execute automated
actions and autofill text [25]. For some of these use cases, Google al-
ready provides safe alternatives, such as the Autofill framework [2]
or the NotificationListenerService API to read notifications.
In other cases, such as with automation, there is no alternative,
therefore “task manager” apps request accessibility access to force-
stop other apps. Since most new features are not ported to older
Android versions or do not get deployed on unsupported devices,
apps still use accessibility services, which have existed for years, to
bridge the gap and support these devices.

I06.Highly privileged system access: The Application Sand-
box is a main feature of Android’s security model. This includes
sandboxing such that apps have no access to other apps’ data or
code. Accessibility services are designed to have access to priv-
ileged actions that affect the whole operating system, such that
part of this isolation is circumvented. Apps with an active accessi-
bility service can monitor user actions, retrieve the window con-
tents of any other apps and the system, and take actions for the
user. In order to use accessibility services, apps need to request
the BIND_ACCESSIBILITY_SERVICE permission. When installed
through the official Play Store, a user receives no warning that
an app includes an accessibility service.

In most cases, accessibility services need to be explicitly enabled
by users in the System Settings app. In stock Android, the user
is warned about the action with a modal dialog that contains a
list of actions the services “needs to” do. The description of the
specific actions is controlled by the system and constructed from the
capabilities that developers declare for the service. Different from
app permissions, accessibility services do not provide a method to
selectively disable or revoke single permissions. Therefore, once
such a service is activated, the requested information is provided
to it without limitations. While developers can specify and filter
the amount of data their service receives, this limitation is only
self-imposed and not reflected by the system’s warning dialog.

The power of accessibility services can be observed when trying
to simulate user input. Once a service is activated, it can execute
input actions and react to UI changes. Active accessibility services
can enable other services, give additional permissions to apps and
sniff any data entered into apps [35]. We reevaluated the techniques
for current versions of Android 10 and found that devices are still
“vulnerable” to malicious accessibility services. This has major con-
sequences for the security of the system:

• Since an app can give itself all the permissions it needs, it
is possible that such a service uses overlays to cover up its
actions, providing some stealth to a malware.

• If a malicious service is enabled, there is no way to disable
or limit its functionality.

• Using simulated input, a service can install additional apps
to gain more foothold in a device. Also, a service can increase
persistence by monitoring the system to detect and prevent
malware removal attempts.

In summary, once a malicious accessibility service is active, the
user loses any control of the device. The lack of isolation and fine-
grained permissions is a serious design flaw and makes accessibility
services the most dangerous attack vector for Android.

RQ 1: The main problems involve specific Android features or
implementation bugs that undermine Android’s security and sand-
box model. Most security-relevant issues are caused by design
flaws in window management, including overlays and the win-
dow stack, and accessibility services with their privileged access
to UI.

4 DEFENSES OF THE UI
In this section, we present our categorization of defenses in order
to identify and get an overview of solutions to the design issues
discussed before. By putting the focus on different fields where
countermeasures are applied, we identified several improvements
that solve or may solve specific issues. With every defense method,
we identify how to use it and if it applies to current real-world
applications. An overview of all the defenses with regard to their
implementation is given at the end of the section (see Table 1).

4.1 Countermeasures in the Android OS
Over the years, Google has received a number of reports regarding
the issues identified by scientific findings. In fact, some new UI
security measures have been implemented and the concepts behind
them are described in the following sections.

D01. Touch Filtering: Originally, the term Touch Filtering is
derived from a setting in the Android SDK that is called filter-
TouchesWhenObscured. When this flag is enabled for any UI el-
ement of an Activity, the operating system will filter out input
events (e.g., touch, drag) for the selected element if another window
overlaps it. This means that if there is a dialog, a Toast window or
any of the overlay windows above the selected element, no touches
will be detected by the app. A related security measure is the Ob-
scured Flag, a special flag that signals the app that a window is
overlapping the app. The flag is accessible by an app through the
MotionEvent.FLAG_WINDOW_IS_OBSCURED API and is effectively
an indicator that an overlay is above an app. The affected app can
react to this event, for example by showing a warning or asking the
user to disable the overlay. This method has existed since Android
2.3 and has been covered in relevant research [31, 47]. A flaw in the
implementation of the Obscured Flag is that a touch event has to go
directly through an overlay in order to be detected. Therefore, if a
window is only partially covering an element and the user touches
the part that is not covered, no flag is set, and no overlay window is
detected. By using opaque overlays around protected UI elements
(see I03) this security countermeasure is circumvented easily.

In previous Android versions, Android introduced a Partially
Obscured Flag, which was reserved to system apps only [17]. With
Android 10.0, it was made available to developers and is accessible
through FLAG_WINDOW_IS_PARTIALLY_OBSCURED of the Motion-
Event API. It works in the same way as the first flag, the difference
being that the flag is also set when only parts of the elements are
covered [4]. As a result, the flaws of the Obscured Flag were finally
resolved. Unfortunately, this updated countermeasure does not nec-
essarily help with the attacks that it is supposed to prevent. As an
example, if a button is protected by the Partially Obscured Flag,
a malicious application might still cover everything around this
button. As long as no overlay overlaps the button, the app is not

notified of the presence of overlays. Therefore, Touch Filtering as a
defense mechanism for apps does require additional security mea-
sures in order to be effective, such as Window Punching [17, 34].

D02. Limiting overlay priority: Overlays are a predominant
cause for issues in UI security research for Android. Therefore,
Google decided to overhaul the implementation of overlays, with-
out limiting too much the freedom to use them in apps. There
are Toast windows, system windows, error windows and much
more. The different types are used to prioritize them when the
OS composes the screen contents. The decision of which window
to draw on top of other windows is based on this categorization.
Since Android 6.0, third-party apps can no longer decide the cat-
egory of their windows. Developers can only assign the attribute
TYPE_APPLICATION_OVERLAY to their customwindows. This newly
introduced attribute and the deprecation of previously allowed
types is part of a major revision of how the screen is composed
inside the OS. While apps can still create overlay windows that
cover the whole screen, they can no longer obscure elements with
a higher priority, such as the status bar or the navigation bar. This
feature alone does not fully prevent any overlay attacks, only the
combination with the next two defenses can help the user mitigate
a possible overlay attack.

D03. Additional indicators: With the introduction of priori-
tized overlay types, Android included additional measures to signal
the user that an overlay is being displayed. When a new overlay
is created and active, Android displays a permanent notification
in its notification drawer. The notification message typically reads:
“AppName is displaying over other apps” (see Figure 1). With an ad-
ditional touch on the navigation, the user is lead to the app’s setting
page, where the overlay permission can be revoked. Depending on
the default settings, an icon is shown on the status bar, showing
that a new notification was created. Therefore, if the user notices
that an app is creating overlays and covering the screen, they may
use this notification to actively disable them for the specific appli-
cation. The only drawback to this defense mechanism is that there
are three ways to prevent the notification from showing.

(1) Disabled notifications: The user can easily disable the noti-
fication by changing the configuration of the Android System
app, which is responsible for showing the indicator. This is
expected behavior and some users might do it on purpose for
apps they trust, in order to keep the notification from appearing.
For an attacker, disabling the setting is only possible if they
can persuade the user into doing it, for example by social en-
gineering or using overlays to trick the user into clicking the
corresponding checkbox.

(2) Customized notifications: Android allows apps that show
overlays to use their own permanent notification that replaces
the one shown by the operating system. An app that wants to
prevent the user from accessing the overlay settings screen can
choose to have a dummy notification that shows no text at all
and that does nothing if activated. Android will then display a
small icon in the notification that needs to be activated by the
user to display an overlay warning (see Figure 1).

(3) Timed deactivation of overlays: A third option to prevent
the user from noticing the overlay warning is making any

overlays disappear before the user actually sees the notifica-
tion. For this, an app has to detect when the user is activating
the status bar or looking at the notification. A practical way
for an app to do this is to put an own Activity in the fore-
ground (e.g., by repeatedly opening the activity) and using the
onWindowFocusChanged callback to detect when the focus is
taken from the Activity. If the screen is obscured by an overlay,
the only remaining action for the user is to pull down the status
bar. In that case, the callback is triggered, and the malicious app
can temporarily hide its overlays to make the OS notification
disappear.
More elegant ways to detect and hide notifications from the
user might use side-channels of the OS. We argue that while
timing attacks are complex and hard to execute in practice, they
are a viable way and can be very effective against unaware
users.

Figure 1: Above: Custom app notification with a clickable
“overlay” icon in the top-right corner. Below: notification af-
ter touching the icon.

All the above methods that Google implemented for detecting
overlays and identifying apps that use them are useless if there
would be no way to disable them. This is where more visible defense
mechanisms are introduced.

D04.Hiding overlays for critical dialogs: Since overlays have
the capability not only to cover the screen, but also to catch any in-
put, they are effectively capable to lock up the screen. As discussed
in section 3, overlays can also be used to hide context information
and trick the user into enabling critical system settings. Therefore,
Android has implemented a method to hide all visible and invis-
ible overlays during certain interactions. After the interactions,
the overlays are restored to their original position. This security
measure is pretty much unknown, but it can be found in the source
code of the Settings app [17].

By looking through the code and inspecting different OS versions
(from Android 7.1.2 to 10.0) on a Pixel 3 device, we identified several
situations where this defense is triggered:

• During manual app installation (side-loading)
• Confirmation dialog when enabling accessibility services

• Confirmation dialog when enabling device admin apps
• App permissions screen
• Overlay Settings screen (for Android < 10). Android 10 re-
moved this feature, which most likely is an oversight, as it
was introduced again in Android R.

Most of these situations include a confirmation dialog that en-
ables a critical system setting, but there are more situations where
we would expect this measure to work:

(1) In the Notification settings of an app
(2) The “Install Unknown Apps” setting of an app that enables

an app to install other apps
(3) When confirming a factory reset
(4) In the “Device Security” dialog when enabling or disabling a

screen lock
(5) For the “OEM unlocking” setting in the Developer Settings

that unlocks the bootloader
(6) For the “USB debugging” option in the Developer Settings
(7) In the Play Store when installing an app

For Android 11, we found that the hiding overlay defense was
fully implemented for the whole Settings app and the App set-
tings, therefore covering item 1–6 of the list above. There was no
protection regarding the Play Store (item 7).

Since only system apps are allowed to trigger the overlay hiding
feature, it can not be used by developers to protect their apps. While
some authors argue that this defense technique is “too powerful to
be made available to third-party apps” [46], it would make sense
to open up the API and make developers decide for themselves.
Overlays are overpowered windows, and allowing apps to limit
this power would counterbalance the feature and stop many of the
issues caused by overlay attacks. The defense could be implemented
as every other regular API with respect to Android’s security model,
using the permission model to “allow an app to temporarily hide
overlays” and limiting its use to when an app is active. In this case,
backward compatibility is a non-issue, as any case of abuse may
lead to the user removing the offending app, especially if it breaks
other overlay apps.

In summary, the new overlay implementation limits some third-
party usage of overlays, prioritizes system overlays and is able to
hide third-party apps. A new permanent indicator is used to signal
the user that an app may be covering the screen. We observed an
increased use of the “hiding overlays” technique among system apps
and might be seeing more system apps use them. A last feature was
identified in recent Android versions that may improve on some
issues with UI security. This feature is backed by the TEE solution
that is used in most modern Android devices and thus offers an
increased defense even in the situation of a full takeover of the
operating system.

D05. Secure system dialogs:Android 9 introduces the Android
Protected Confirmation functionality, which allows apps to prompt
the user to confirm a statement. While the API is available through
the SDK, the functionality requires special hardware support, which
initially was only offered by Google through their Pixel 3 and Pixel
4 devices. From the user perspective, Protected Confirmation is a
screen that is shown in full-screen mode and which displays a small
message to confirm. A confirmation of the message is done either

through pressing one of two hardware buttons (usually the power
and the volume-up button) or by using software buttons on the
screen. The app that wants to use Protected Confirmation can define
the text to show inside the prompt. Prompt lengths are limited and
no other customization of the UI is possible. The prompt respects
some accessibility settings, such as color inversion or increased font
size, but the placement of labels and icons is predetermined and
can not be changed or manipulated. A 1-second delay in the inter-
action with the dialog prevents users from accidentally confirming
a message that pops up unexpectedly. We also observed that if any
accessibility services are enabled, Protected Confirmation can not
be used.

As the source code is publicly available through the Android
Open-Source Project (AOSP), we looked into the internal imple-
mentation and found libteeui, the library responsible for drawing
and rendering text and UI elements from the TEE context [22].
The libteeui library is implemented in C++ and includes several
routines to render UI elements such as button or text labels, but
also fonts and images. Layouts are defined using a Domain-specific
language (DSL) similar to C++. The localization of the predefined
texts are hard-coded into the library for all languages supported by
Android. A secure input method is implemented to communicate
with the physical hardware buttons of devices. According to the
official documentation, communication with a touch controller is
possible in order to support input through “on-screen software but-
tons” [6]. The resulting data produced by this app is encoded into a
Concise Binary Object Representation (CBOR), a proposed standard
for binary encoding of data [16]. This data is returned to the user
app through the corresponding API call and needs to be signed
with a cryptographic key in order to form a signed statement.

Both server and client benefit from integrity checks of the prompt
data. If the message is generated on the server, the server can
later assess with more confidence if the same message was dis-
played to the user. When an app creates a signing key to be used
with Protected Confirmation, it needs to call the method setUser-
ConfirmationRequired. This adds a specific byte sequence to the
associated certificate, marking it as a Protected Confirmation key.
This method has a second undocumented effect: during the signing
process, the prompt text passed to the UI and the text returned by
ConfirmationUI are compared in order to find manipulations, and
an exception is thrown if the comparison fails. Assuming a strong
OS type attacker, a modified or manipulated app may show the user
a specific message but make the app sign an attacker-controlled
one. In this case, it is even more important for the receiving server
to correctly implement certificate checks. A check for the tag ID
trustedConfirmationRequired in the certificate may reveal po-
tential issues with the key creation or the confirmation process on
a user device [8].

In summary, Android Protected Confirmation offers a sound
method to obtain a valid decision from the user, verifiable through
the use of established cryptographic methods. The UI offers only
little attack surface, as it is implemented as a trusted TEE app and
does not offer customization options. As the method is designed
to be used in combination with a remote party, implementation
errors by app and server back-end developers may undermine the
security guarantees of Protected Confirmation.

4.2 Kernel- and OS-based methods
The majority of countermeasures we found in our systematization
are based on system modifications. These affect the OS, but also the
underlying kernel or user-facing APIs of the Android framework.
Regarding the current issues of UI on Android, our findings reveal
a focus on additional measures to detect potentially dangerous
actions, such as clickjacking or app hijacking attempts.

D06. Overlay detection: As described in section 3, there are
several design decisions that influence the potential threats from
overlay attacks. Still, a number of legitimate apps make use of over-
lays to enhance the user experience or provide services that would
otherwise be not possible. The most cited examples of legitimate
overlay usage are the Facebook Messenger [27] app, which uses
profile pictures on the screen as a shortcut to a conversation. On
the other side, Twilight [52] uses full-screen transparent overlays
to dim the screen and reduce the amount of eye strain for the user.
There is a discussion going on about what defines “legitimate” uses
of overlays. This is crucial for finding the right balance between
freedom and security, as removing overlays from the OS may ex-
terminate clickjacking attacks on Android, but also break many
existing applications. As overlays have a global impact on a de-
vice, being able to cover both third-party and system apps, most
solutions require modifications of the OS. Overlay windows have
specific attributes that can be used to detect them. These include,
but are not limited to:

• window position, size and z-value
• color and transparency (alpha) level
• creation flags (which control window behavior)
• host application (identified by package name)

While one can argue about the correct combination of these
attributes in order to detect malicious usage, a survey over several
apps from the Play Store determined how real-world apps use over-
lays [46]. From 454 apps from the Play Store, 15 from the F-Droid
repository and 10 “screen filter” apps that request the draw-on-top
permission, a total of 60 samples are manually analyzed by the au-
thors in order to find characteristics of overlay usage. Even though
the analysis in the work can not be considered representative for ev-
ery possible legitimate use, the authors conclude that most overlays
are created at the screen margins, are opaque and can be interacted
with by the user (they are touchable). Furthermore, overlays are
only used when the respective app is active. When an important
message is to be shown, the overlays are created in the center of
the screen. For the category of screen filters, all apps are using
transparent full-screen overlays marked as not touchable. Based
on these insights, a more effective detection can be implemented.
Since the set of real apps is rather small, a more elaborate study
might reveal more characteristics of benign behavior. In addition,
malware samples using overlays may be analyzed in the same way
in order to extract characteristics of malicious behavior.

D07. Clickjacking detection: When looking specifically for
clickjacking attempts, the majority of touch events is produced
by the user. For their Clickjacking Detection System (CDS), the
authors define four conditions for detecting a potential clickjacking
attempt [55]:

• the receiver window of a touch event and the currently active
app are different

• the z-value of the receiver is higher (indicated by the layer
value which determines the window type)

• the window is marked not touchable, which means it does
not receive touch events

• the alpha value of the receiver window is greater than 0.95,
meaning that the overlay is mostly opaque

An abstraction of the above clickjacking detection techniques is
presented with ClickShield, where image analysis is used to detect
overlays [46]. With a method called Deblending an algorithm takes
in the expected screen content consisting of the currently active app
DST and the resulting screen content OUT. Using the raw pixel data,
the SRC image is computed, which results in the sum of all overlay
window on top of DST and is analyzed as a whole, as opposed to
other approaches that inspect every window separately. Afterwards,
the SRC data is used to evaluate whether the user is being deceived
by a potential attack.

Proposed solutions often differ in the reaction to detected events.
Some solutions show a dialog that allows the user to remove an of-
fending application [55], while other solutions only show a warning
and let the user decide on how to proceed [46, 48]. In another case,
the decision is given to the developers, who are given an interface
to detect and react to overlays floating on top of their app [34].
Detection algorithm may differ depending on the machine learning
model or data they are based on, which makes some detection more
reliable than others.

D08. App hijacking detection: A more general approach to
UI security is presented with the Android Window Integrity (AWI)
model [48]. AWI describes a user session as a “chain of activities”
where the current state of the UI is described by a tree of UI transi-
tions. Combined with the concept of a “display owner”, which is
the app of the currently focused window on the screen, the model
can detect suspicious actions including app hijacking and overlay
windows. The authors also createdWindowGuard, a Xposed module
that implements AWI and alerts the user of the aforementioned
actions by third-party apps. The analysis of the effectiveness of
WindowGuard is limited, as it only includes own apps and known
malware samples, but no real-world apps from the Play Store. Also,
specific actions that are considered expected behavior might cause
false positives with WindowGuard [56].

The principle of defining rules to differentiate normal and suspi-
cious behavior is not a novelty in security fields such as intrusion
detection. But the focus on Android UI transitions might be in-
teresting to explore further, as the OS has predetermined ways to
handle UI. By building a model that describes these processes it
could make it easier to detect actions that might have unexpected
or unwanted behavior.

D09.UI Sandboxing:Android makes use of various established
protections to isolate processes, memory, and resources. In general,
an app can not directly access other apps’ resources. With regard
to UI, apps can use intents to call other apps, but there is no way to
control the called window. We already discussed accessibility ser-
vices, which are the exception to this UI sandboxing, but malicious
apps can also use vulnerabilities in apps and OS to get access to
sensitive information. There are lots of approaches to minimize the

threat of vulnerabilities in OS. Virtualization on Android is not a
new concept, but is continuously being explored for different use
cases [13]. Some issues with UI security are rooted in the possibility
to access memory as a privileged user. This means that an attacker
that gains elevated access to a device can effectively manipulate
screen contents, read and write to internal memory and potentially
control most of the hardware devices. There are already security
considerations for the instance of a full OS or kernel takeover, which
is where Trusted Environments come into play. But we found only
few papers that consider sandboxing of UI components.

The work of [28] addresses part of this problem by isolating parts
of the kernel and the OS into unprivileged containers. The mecha-
nism called Anception uses virtual containers for code execution,
while the actual read-only code is stored on a trusted host. This
host also contains the UI and input stack to communicate with the
application. The main idea is that an attacker that is able to com-
promise a container still has no possibility to access or manipulate
the UI. All user inputs are considered sensitive, and therefore both
the I/O and the virtual memory are handled in the trusted host.

Anception uses a Linux kernel module to implement its virtu-
alization and logic. While the approach is valid on a conceptual
level, the current implementation suffers from similar problems
when an attacker manages to take over the kernel, which Anception
can not protect against. The following section presents solutions
that involve TEEs, which promise to protect against such strong
attackers.

4.3 Trusted Execution Environment
Usually, device vendors implement their own security measures on
top of Android. This is why vendors also develop their custom TEE
implementations instead of using Google’s Trusty TEE [20]. These
are often packaged as binary blobs and offer different interfaces
to interact with the Android OS. As the TEE OS usually runs in
parallel to the normal user OS, a compromise of the latter does not
affect the former. In order to protect UI interactions in the normal
world, one can implement protections in the TEE as applications
called trustlets. One major security property of TEEs is the size of
the Trusted Computing Base (TCB), which represents the number
of lines of code that needs to run in the trusted environment. The
smaller the TCB, the fewer lines of code need to be executed in
the TEE. From a statistical point of view, this means that fewer
bugs are in the code. A bug or vulnerability in a TEE application
may lead to full device takeover. A number of vulnerabilities have
been found in the past that indicate that TEEs are not as secure
as assumed [20, 30]. Therefore, secure implementations should be
limited in size and features in order to reduce the TCB and the
available attack surface. The following defenses move different
procedures of UI management, from composition to rendering, to
the TEE, in order to achieve different security goals.

D10.UI as a trusted app:When designing UIs for the TEE, it is
necessary to identify a robust architecture for the implementation.
As mentioned before, the bigger the TCB, the higher the risk of
vulnerabilities. Therefore, moving the UI creation, management and
rendering into the UI requires careful planning and well-defined
interfaces. In addition, user input is also involved in the process,
as UI without interaction is very limited, both in usefulness and

usability. Most solutions implement two modules that communicate
over well-defined interfaces to bridge the gap between the normal
world and the trusted world. The normal world app can be a kernel
driver that simply proxies the data to the trusted world [19, 57],
or the normal world handles all requests from apps and uses the
driver in the trusted world to safely execute these requests [41]. For
interacting with the user, either the touch driver is moved to the
TEE [19] or the on-screen keyboard is implemented as a trusted
app [57]. In order to draw to the screen, trusted apps require access
to the underlying hardware devices. This is accomplished through
device drivers that allow the OS to access the memory locations
that are used for the screen, such as the frame buffer of the display
device. Therefore, to move UI logic to the TEE, it is also required
to move device drivers to the TEE, further increasing the TCB.
Standard drivers of the Linux kernel and Android-specific drivers
are often found to contain vulnerabilities that can be exploited, an
example being the Dirty COW exploit [44].

Moving the whole UI stack to the TEE is a defense mechanism
that requires lots of modifications to the TEE implementation and
the underlying Android OS. From a security perspective, increasing
the TCB increases the attack surface, which goes against the inten-
tions of TEEs to provide a small and secure root of trust. Especially
kernel drivers, which need to work with a multitude of different
hardware configurations of various Android devices on the market,
are critical in such a secure environment and might introduce un-
necessary complexity in real-world implementations. Apart from
practical difficulties, such solutions often cause a performance over-
head to the system, as the context switch from normal world to
trusted world requires time-consuming CPU operations. While for
most solutions, a performance analysis is performed to calculate the
average memory and execution overhead, there are no extensive
evaluations of realistic usage patterns. For these evaluations, we
suggest an analysis of performance and usability in the context of
regular Android usage, such as operating different apps and using
overlay windows. We expect that solutions that only trigger the
secure code for specific views (such as TruZ-Droid [57]) outper-
form solutions that are implemented for general screen usage (e.g.,
SuiT [19], TrustUI [41]).

D11. Single trusted UI components: In order to keep down
the TCB size, research has also explored solutions that only cover
specific UI elements and limit themselves to selected components
of the whole UI composition process. In most solutions, a secure
UI is implemented as a trusted application in the Secure World,
while a proxy driver in the normal user space is used to enable the
interaction between the two worlds. The proxy driver forwards
requests of the system to the secure UI component, where the logic
to layout and draw UI elements is located. Examples for single
trusted components are: a secure WebView element [39], a text
renderer [50] or even parts of the original UI stack [58]. Such mea-
sures reduce the TCB considerably, but in some cases incur some
performance penalties, especially if the switch between normal and
secure world needs to be done several times per time frame. Also,
when considering the attack surface, a compromised user-space
or kernel-space component does not endanger the security of the
whole TEE, even though even trusted apps with reduced code size
can introduce severe vulnerabilities. A similar solution is presented

by VButton [38], which includes a mode where the device itself does
not generate any UI elements. Instead, the remote server composes
the UI, sends a signed image, which is then directly displayed by
a TEE-based graphics driver. The ARM TrustZone implements a
secure mode for peripherals, which allows access to predefined
peripherals (e.g., touchscreens, physical buttons, speakers) only
to Secure World apps. VButton makes use of this to temporarily
declare the touchscreen as “secure” and detect if the user touches
the secure UI button. The paper focuses on the interaction by the
user, so the scope of the solution is limited to single button UIs,
confirmation dialogs and similar use cases.

D12.Dedicated LED indicator:One issue thatmany researchers
point out in the field of UI security is that the user does not know
if what is currently shown on a screen is genuine or not. Therefore,
some solutions introduce the concept of “secure LED” indicators, as
some devices on the market already include the necessary hardware.
While the access to peripherals and hardware components is usu-
ally handled by the normal operating system, the ARM TrustZone
Protection Controller (TZPC) allows memory regions or hardware
peripherals to be marked as “secure peripherals” which are not
accessible for the normal world as long as they are tagged [12].
LED indicators can be integrated for various use cases. If the color
is changeable, you can use the color to give the user a hint on which
background color should be visible (in order to detect overlay at-
tacks) [39]. This is more effective with multiple LEDs, which are not
widely available on modern devices. A more practical approach is
informing the user that the current screen is secure when the LED is
active and only allowing access to it from the trusted world [19, 58].
From a security perspective, this might be a valid method to indi-
cate a secure context for the user, but in practice breaks the main
functionality of the current Android system, namely having apps
access the LED for showing notifications or as a battery indicator.

4.4 Additional hardware
In order to freely experiment with ARM functionality, research also
experiment with external hardware peripherals to test different
security configurations. Most solutions in this field are conceptional
and make use of FPGAs for demonstrations.

D13. Physical separation: One goal of UI security is providing
the user with a screen that can not be manipulated. This is often
called a secure display and refers to the ability to gain and retain
control of a screen in a way that is not easily manipulated. On
the other side, manufacturers and developers also want to have
flexibility in creating their own screen contents. One main pillar
of trusted displays is the separation of hardware to have security-
sensitive operations separated from regular interactions with a
system. The separation can be logically, e.g., having a separate
GPU kernel running on the same physical graphic card [60] or
physically by providing two processor units in one device that do
not share any memory regions and compute data independently
of each other. For this, an additional coprocessor can be used that
processes and manipulates the screen contents before the physical
display receives the data [18]. This trusted CPU is located between
the screen output of Android and an LCD screen and can overlay
the output with its own content. The untrusted CPU on the Android
device can send a number of requests to the trusted CPU in order

to display trusted content, such as a password confirmation screen.
If the Android device is controlled by an attacker, the attacker can
block all these requests or simply force a secure screen. This is why
the secure CPU unit still needs to have an indicator to signal the
user whenever a screen is “secured” or not.

Coprocessors for secure operations such as file encryption and
cryptography are already used in some of today’s smart devices,
for example Google’s Titan M [45] or Apple’s T2 Security Chip [10].
As discussed in subsection 4.1, the attack surface with this defense
method is composed of the interfaces between insecure OS and
coprocessor. It is therefore not a standalone solution to the UI trust
problem, but only one aspect that needs to integrate other defenses
in order to be effective and practical.

Defense Level
Threat Model USR OS TEE Feasible

D01 USR #
D02 USR # # 1
D03 USR # # 1
D04 USR # # 1
D05 OS # 1
D06 USR # #
D07 USR # # #
D08 USR # #
D09 OS # # #
D10 OS # 1
D11 OS # G#
D12 OS # # #
D13 TEE # # 2 1

Table 1: Comparison of defenses in terms of threat model,
defense (access) level and feasibility. Some defenses are (1)
partly or completely implemented in stock Android, or (2)
supported through a separate hardware component. The fea-
sibility defines the potential for adoption of a specific imple-
mentation through Android.

RQ 2: Defenses against UI security flaws are mostly implemented
on the OS level and in kernel space, with few exceptions mak-
ing use of hardware-based TEE solutions. While some defenses
are easily implemented in the OS, most current solutions can
not be deployed on real-world devices without the support of
vendors. Some solutions do not consider real-world use cases
and break existing functionality or introduce severe performance
penalties that decrease the chance of adoption by the vendors. Re-
garding trends, research tends to shift the implementation details
to isolated containers in kernel space in order to stop attackers
from taking over the whole system after a compromise of sin-
gle components. While vendors introduce physically separated
co-processors, core issues in the interfaces between secure and
insecure mode remain.

5 CHALLENGES
In our systematization, we found several developments that resolve
existing problems. Still, we see a number of problems with the
presented solutions and hope to spark a debate on how to improve
research in this niche field.

5.1 The Root of Trust
The most invasive solutions in published works are trying to fix
the problem of a missing Root of Trust (RoT) in mobile devices.
In current mobile devices, the RoT is included during manufac-
turing and tied to a specific device state. For example, Android
devices ship with a signed version of the Android OS, signed by
a private key known only to the vendor. A corresponding public
key is stored inside a protected read-only part of the device [3]. In
contrast, Apple uses their T2 security chip inside their iPhone and
Mac products to establish a RoT [10]. The same chip is used for Se-
cure Boot, cryptography features and more [33]. Trusted hardware
components such as the T2 chip still rely on software interfaces
to deliver a service to the consumer, which may always introduce
bugs and in some cases lead to exploitable vulnerabilities, like the
checkra1n exploit for Apple’s T2 chips [43]. For UI security, the
presence of a RoT is unfortunately not enough to ensure secure UIs
or any form of secure input. Even assuming that these components
were safe, this alone does not lead to a trusted path, as there are a
number of untrusted components in the path between device and
remote server, such as the networking stack, peripherals and more.
Apart from remote and third-party components, most modern con-
sumer devices are composed of some software and hardware pieces
created by different manufacturers, which adds complexity to the
whole security architecture of a single device. Therefore, we argue
that RoTs and trusted paths in mobile devices are a lacking field of
research which require more attention and innovative solutions.

5.2 Balance of features and security
Security is never the main purpose of any system, and this is espe-
cially true for modern mobile devices. Not every security feature is
implemented to improve device security. An example isWidevine,
a TEE app which implements digital rights management (DRM)
for use in third-party apps. Widevine may protect the intellectual
property of some companies, but does not actively contribute to
the security of the device. On the contrary: in the past Widevine
introduced a critical vulnerability that allowed attackers to esca-
late privileges [23]. On Apple devices, the T2 chip is both used to
secure the boot process and to enable features like biometric au-
thentication (TouchID, FaceID), so a vulnerability in the biometric
authentication code may lead to a compromise of device security.
These are not isolated cases, and TEE researchers have already
assessed that the Trusted Computing Base consisting of trusted
firmware, OS and apps, is excessively large on mobile devices [20].

The other way around, security-related defenses like Android’s
Protected Confirmation are not flexible enough and allow only
limited integration into the design freedom that Android offers,
which may seem like a limitation to developers and users. But
more flexible defenses come with increased TCBs which again
introduce more bugs and more potential vulnerabilities. Therefore,
we argue that TEEs should be focusing on mitigating attacks and

vulnerabilities of the device. While there is a trend to use secure
coprocessors inside devices, the actual problem of using these to
implement marketable user features is still present.

5.3 Lack of concepts for user training and
interaction

The analyzed literature focuses strongly on technical implemen-
tations of security. In doing so, authors make lots of assumptions
on how users may interact with the system. Whenever a system
requires the user to double-check, or when a new indicator (e.g.,
LEDs or warning messages) is introduced, it is assumed that users
understand what they are supposed to do. In this context, there are
very few considerations and solutions against spoofed indicators.
Examples are unprivileged third-party apps that can easily create
spoofed “warning” dialogs that may be used to confuse the user or
might lead to user habituation [36]. The same can be done for secu-
rity indicators like images, texts and any regular UI-based security
feature.

A related problem is the lack of separation of security features
and “regular” device usage, and the resulting assumptions about
user interaction with the system. On Android phones, an LED
built into the phone is often used for notifications, for showing
the charging status of the battery and by different apps to get the
user’s attention. Often LEDs can also have different colors which
convey different meanings and contexts. Adding a security-critical
meaning on top of all these existing use-cases (as described by D12)
may increase the confusion for the user and lead to ambiguity about
the security of the current interaction.

As a positive example, Apple introduced a special home button
with the iPhone 5S which includes Touch ID, a fingerprint reader
underneath the home button. The new feature was marketed and
presented primarily as a security feature, and is only used for user
authentication. When an app tries to use Touch ID, a system mes-
sage controlled by the OS asks the user to present a finger to scan.
There is not much user confusion on how the feature works and
user studies identified that key factors of TouchID usage are “its
usability and perceived security” [21].

RQ 3: Trusted path concepts with a focus on UI are lacking in
research.

• A focus should be put on separation of concerns.
• The lack of consideration for end users in the security design
needs to be addressed.

• The shift to dedicated secure hardware needs to be further
explored, and open source designs may be helpful for adoption
by the established vendors.

6 CONCLUSION
This paper presents a study of current UI security research. A sum-
mary of issues and defenses in regard to the attacker model and
the required depth of implementation for the countermeasures are
presented in Table 1.

We found two main directions in research: Overlay / Context Hid-
ing and UI Control (see Table 2). The first one describes clickjacking

attacks, deception methods and some form of Denial-of-Service
that allows attackers to cover up the whole screen. Defenses for
this focus on overlay detection, filtering methods and including
user decision when suspicious behavior is found. The second topic
describes issues that allow attacks that take over (parts of) the
screen, read the screen contents and even act on behalf of the user.
Proposed solutions try to isolate the UI from the system, either
through existing methods or by using hardware-backed features,
such as TEEs. A lot of research papers focus on single design issues
in the Android OS and propose solutions that could be adopted
by the software vendors. There are considerations to deploy hard-
ware measures to support single solutions, such as using dedicated
hardware or using existing solutions such as TrustZone.

There are a few shortcomings that we want to highlight, which
concludes our contribution and puts into focus what is really im-
portant. While technical solutions are presented, there is no con-
sideration for the end-user perspective, as many solutions rely on
the user for decisions on how to proceed, while regular users of
mobile devices may have no concept of secure and insecure modes
of operation (compare to D12). In our systematization, we also no-
ticed a shift from pure OS-level solutions to HW-supported and
TEE-supported solutions. This also moves the trust base from the
phone to dedicated hardware modules, therefore transitioning to a
concept similar to Trusted Platform Modules on regular personal
computers. With regard to TEEs, special attention is needed as
growing TCBs increase the chance to introduce software vulner-
abilities affecting millions of devices, and TEE implementations
can no longer be considered as secure as advertised. The shift to
spatial separation (as described by D13) does not improve security
by itself, as most issues are design decisions done on an OS and user
level. We expect to see more research in the direction of dedicated
security hardware, as we believe that open security architectures
for mobile devices are lacking and may contribute significantly to
the security of consumer devices.

Overlays / Context Hiding UI control
Description clickjacking, DoS, deception (full) takeover, privacy leak
Issue(s) I01 – I04 I05 – I06
Defenses D01 – D04, D06 – D08 D05, D09 – D11

Threat model USR OS
Table 2: Overview of issues in research, suggested defenses
and assumed threat model (see subsection 2.3)

ACKNOWLEDGMENTS
We thank our anonymous reviewers for significantly improving this
paper through their insights. This research was supported by the
German Federal Ministry of Education and Research (BMBF) as part
of the Software Campus project (Förderkennzeichen: 01IS17045).

REFERENCES
[1] Android. 2021. Android Releases. https://developer.android.com/about/versions.

Last access: 2021-08-09.
[2] Android. 2021. Autofill framework. https://developer.android.com/guide/topics/

text/autofill. Last access: 2020-08-13.
[3] Android. 2021. Device State. https://source.android.com/security/verifiedboot/

device-state. Accessed: 2020-08-13.
[4] Android. 2021. MotionEvent - Android Developers. https://developer.android.

com/reference/android/view/MotionEvent. Accessed: 2020-08-13.

https://developer.android.com/about/versions
https://developer.android.com/guide/topics/text/autofill
https://developer.android.com/guide/topics/text/autofill
https://source.android.com/security/verifiedboot/device-state
https://source.android.com/security/verifiedboot/device-state
https://developer.android.com/reference/android/view/MotionEvent
https://developer.android.com/reference/android/view/MotionEvent

[5] Android. 2021. Multi-Window Support. https://developer.android.com/guide/
topics/ui/multi-window. Last access: 2020-08-13.

[6] Android. 2021. Protected Confirmation Implementation. https://source.android.
com/security/protected-confirmation/implementation. Accessed: 2020-08-13.

[7] Android. 2021. Trusty TEE. https://source.android.com/security/trusty. Accessed:
2020-08-13.

[8] Android. 2021. Verifying hardware-backed key pairs with Key Attestation. https:
//developer.android.com/training/articles/security-key-attestation. Accessed:
2020-08-13.

[9] Simone Aonzo, Alessio Merlo, Giulio Tavella, and Yanick Fratantonio. 2018.
Phishing Attacks on Modern Android. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security, CCS 2018, Toronto, ON,
Canada, October 15-19, 2018. 1788–1801. https://doi.org/10.1145/3243734.3243778

[10] Apple Inc. 2018. Apple T2 Security Chip - Security Overview. Technical Report.
Apple Inc.

[11] Apple Inc. 2019. iOS Security - iOS 12.3 - May 2019. Technical Report. Apple Inc.
[12] ARM. 2021. About the TrustZone Protection Controller - ARM Devel-

oper. https://developer.arm.com/documentation/dto0015/a/about-the-trustzone-
protection-controller. Accessed: 2020-08-13.

[13] Michael Backes, Sven Bugiel, Christian Hammer, Oliver Schranz, and Philipp von
Styp-Rekowsky. 2015. Boxify: Full-fledged App Sandboxing for Stock Android.
In 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA,
August 12-14, 2015, Jaeyeon Jung and Thorsten Holz (Eds.). USENIX Associa-
tion, 691–706. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/backes

[14] Antonio Bianchi, Jacopo Corbetta, Luca Invernizzi, Yanick Fratantonio, Christo-
pher Kruegel, and Giovanni Vigna. 2015. What the App is That? Deception
and Countermeasures in the Android User Interface. In 2015 IEEE Symposium
on Security and Privacy, SP 2015, San Jose, CA, USA, May 17-21, 2015. 931–948.
https://doi.org/10.1109/SP.2015.62

[15] David Bisson. 2020. New Android Malware Channels Malicious Activity Through
Accessibility Services. https://securityintelligence.com/news/new-android-
malware-channels-malicious-activity-through-accessibility-services/ Last ac-
cess: 2021-11-01.

[16] C. Bormann and P. Hoffman. 2021. RFC 7049. https://tools.ietf.org/html/rfc7049.
Last access: 2020-08-13.

[17] Davide Bove and Anatoli Kalysch. 2019. In pursuit of a secure UI: The cycle
of breaking and fixing Android’s UI. it Inf. Technol. 61, 2-3 (2019), 147–156.
https://doi.org/10.1515/itit-2018-0023

[18] Anthony Brandon and Michael Trimarchi. 2017. Trusted display and input
using screen overlays. In International Conference on ReConFigurable Computing
and FPGAs, ReConFig 2017, Cancun, Mexico, December 4-6, 2017. 1–6. https:
//doi.org/10.1109/RECONFIG.2017.8279826

[19] Yang Cai, Yuewu Wang, Lingguang Lei, Quan Zhou, and Jun Li. 2019. SuiT:
Secure User Interface Based on TrustZone. In 2019 IEEE International Conference
on Communications, ICC 2019, Shanghai, China, May 20-24, 2019. 1–7. https:
//doi.org/10.1109/ICC.2019.8761616

[20] David Cerdeira, Nuno Santos, Pedro Fonseca, and Sandro Pinto. 2020. SoK:
Understanding the Prevailing Security Vulnerabilities in TrustZone-assisted TEE
Systems. In 2020 IEEE Symposium on Security and Privacy, SP 2020, San Francisco,
CA, USA, May 18-21, 2020. IEEE, 1416–1432. https://doi.org/10.1109/SP40000.
2020.00061

[21] Ivan Cherapau, Ildar Muslukhov, Nalin Asanka, and Konstantin Beznosov. 2015.
On the Impact of Touch ID on iPhone Passcodes. In Eleventh SymposiumOn Usable
Privacy and Security, SOUPS 2015, Ottawa, Canada, July 22-24, 2015, Lorrie Faith
Cranor, Robert Biddle, and Sunny Consolvo (Eds.). USENIX Association, 257–
276. https://www.usenix.org/conference/soups2015/proceedings/presentation/
cherapau

[22] Janis Danisevskis. 2021. Teeui layout and rendering. https://android.googlesource.
com/platform/system/teeui/+/5821a43f983a216b49e8abb0f2b5c9998ea9fcd. Ac-
cessed: 2020-08-13.

[23] NIST National Vulnerability Database. 2016. CVE-2015-6639. https://nvd.nist.
gov/vuln/detail/CVE-2015-6639. Last access: 2021-02-03.

[24] Aritra Dhar, Enis Ulqinaku, Kari Kostiainen, and Srdjan Capkun. 2020. ProtectIOn:
Root-of-Trust for IO in Compromised Platforms. In 27th Annual Network and
Distributed System Security Symposium, NDSS 2020, San Diego, California, USA,
February 23-26, 2020. The Internet Society. https://www.ndss-symposium.org/
ndss-paper/protection-root-of-trust-for-io-in-compromised-platforms/

[25] Wenrui Diao, Yue Zhang, Li Zhang, Zhou Li, Fenghao Xu, Xiaorui Pan, Xiangyu
Liu, Jian Weng, Kehuan Zhang, and XiaoFeng Wang. 2019. Kindness is a Risky
Business: On the Usage of the Accessibility APIs in Android. In 22nd International
Symposium on Research in Attacks, Intrusions and Defenses, RAID 2019, Chaoyang
District, Beijing, China, September 23-25, 2019. USENIX Association, 261–275.
https://www.usenix.org/conference/raid2019/presentation/diao

[26] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia Jr., Eric Gong, Hung T. Nguyen,
Taresh K. Sethi, Vishal Subbiah, Michael Backes, Giancarlo Pellegrino, and Dan
Boneh. 2019. Fidelius: Protecting User Secrets from Compromised Browsers. In

2019 IEEE Symposium on Security and Privacy, SP 2019, San Francisco, CA, USA,
May 19-23, 2019. IEEE, 264–280. https://doi.org/10.1109/SP.2019.00036

[27] Facebook. 2021. Facebook Messenger. https://www.messenger.com/. Last access:
2020-08-13.

[28] Earlence Fernandes, Ajit Aluri, Alexander Crowell, and Atul Prakash. 2015.
Decomposable Trust for Android Applications. In 45th Annual IEEE/IFIP In-
ternational Conference on Dependable Systems and Networks, DSN 2015, Rio
de Janeiro, Brazil, June 22-25, 2015. IEEE Computer Society, 343–354. https:
//doi.org/10.1109/DSN.2015.15

[29] Earlence Fernandes, Qi Alfred Chen, Justin Paupore, Georg Essl, J. Alex Halder-
man, Zhuoqing Morley Mao, and Atul Prakash. 2016. Android UI Deception
Revisited: Attacks and Defenses. In Financial Cryptography and Data Security -
20th International Conference, FC 2016, Christ Church, Barbados, February 22-26,
2016, Revised Selected Papers. 41–59. https://doi.org/10.1007/978-3-662-54970-4_3

[30] Fabian Fleischer, Marcel Busch, and Phillip Kuhrt. 2020. Memory corruption
attacks within Android TEEs: a case study based on OP-TEE. In ARES 2020: The
15th International Conference on Availability, Reliability and Security, Virtual Event,
Ireland, August 25-28, 2020, Melanie Volkamer and Christian Wressnegger (Eds.).
ACM, 53:1–53:9. https://doi.org/10.1145/3407023.3407072

[31] Yanick Fratantonio, Chenxiong Qian, Simon P. Chung, and Wenke Lee. 2017.
Cloak and Dagger: From Two Permissions to Complete Control of the UI Feedback
Loop. In 2017 IEEE Symposium on Security and Privacy, SP 2017, San Jose, CA, USA,
May 22-26, 2017. 1041–1057. https://doi.org/10.1109/SP.2017.39

[32] Liangyi Gong, Zhenhua Li, Hongyi Wang, Hao Lin, Xiaobo Ma, and Yunhao Liu.
2021. Overlay-based Android Malware Detection at Market Scales: Systematically
Adapting to the New Technological Landscape. IEEE Transactions on Mobile
Computing (2021), 1–1. https://doi.org/10.1109/TMC.2021.3079433

[33] Ivan Krstić. 2019. Behind the scenes of iOS and Mac Security.
https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-
the-scenes-of-ios-and-mac-security-17220.

[34] Abeer Al Jarrah andMohamed Shehab. 2016. Maintaining User Interface Integrity
on Android. In 40th IEEE Annual Computer Software and Applications Conference,
COMPSAC 2016, Atlanta, GA, USA, June 10-14, 2016. IEEE Computer Society,
449–458. https://doi.org/10.1109/COMPSAC.2016.150

[35] Anatoli Kalysch, Davide Bove, and Tilo Müller. 2018. How Android’s UI Security
is Undermined by Accessibility. In Proceedings of the 2nd Reversing and Offensive-
oriented Trends Symposium. 1–10.

[36] Brock Kirwan, Bonnie Anderson, David Eargle, Jeffrey Jenkins, and Anthony
Vance. 2020. Using fMRI to Measure Stimulus Generalization of Software Notifi-
cation to Security Warnings. In Information Systems and Neuroscience, Fred D.
Davis, René Riedl, Jan vom Brocke, Pierre-Majorique Léger, Adriane Randolph,
and Thomas Fischer (Eds.). Springer International Publishing, Cham, 93–99.

[37] Joshua Kraunelis, Yinjie Chen, Zhen Ling, Xinwen Fu, and Wei Zhao. 2015. On
Malware Leveraging the Android Accessibility Framework. EAI Endorsed Trans.
Ubiquitous Environ. 1, 4 (2015), e1. https://doi.org/10.4108/ue.1.4.e1

[38] Wenhao Li, Shiyu Luo, Zhichuang Sun, Yubin Xia, Long Lu, Haibo Chen, Binyu
Zang, and Haibing Guan. 2018. VButton: Practical Attestation of User-driven
Operations in Mobile Apps. In Proceedings of the 16th Annual International Confer-
ence onMobile Systems, Applications, and Services, MobiSys 2018, Munich, Germany,
June 10-15, 2018, Jörg Ott, Falko Dressler, Stefan Saroiu, and Prabal Dutta (Eds.).
ACM, 28–40. https://doi.org/10.1145/3210240.3210330

[39] Wenhao Li, Mingyang Ma, Jinchen Han, Yubin Xia, Binyu Zang, Cheng-Kang
Chu, and Tieyan Li. 2014. Building trusted path on untrusted device drivers for
mobile devices. In Asia-Pacific Workshop on Systems, APSys’14, Beijing, China,
June 25-26, 2014. 8:1–8:7. https://doi.org/10.1145/2637166.2637225

[40] Hongliang Liang, Mingyu Li, Yixiu Chen, Lin Jiang, Zhuosi Xie, and Tianqi Yang.
2020. Establishing Trusted I/O Paths for SGX Client Systems With Aurora. IEEE
Trans. Inf. Forensics Secur. 15 (2020), 1589–1600. https://doi.org/10.1109/TIFS.
2019.2945621

[41] Dongtao Liu and Landon P. Cox. 2014. VeriUI: attested login for mobile devices.
In 15th Workshop on Mobile Computing Systems and Applications, HotMobile ’14,
Santa Barbara, CA, USA, February 26-27, 2014. 7:1–7:6. https://doi.org/10.1145/
2565585.2565591

[42] Tongbo Luo, Xing Jin, Ajai Ananthanarayanan, and Wenliang Du. 2012. Touch-
jacking Attacks onWeb in Android, iOS, andWindows Phone. In Foundations and
Practice of Security - 5th International Symposium, FPS 2012, Montreal, QC, Canada,
October 25-26, 2012, Revised Selected Papers (Lecture Notes in Computer Science,
Vol. 7743), Joaquín García-Alfaro, Frédéric Cuppens, Nora Cuppens-Boulahia, Ali
Miri, and Nadia Tawbi (Eds.). Springer, 227–243. https://doi.org/10.1007/978-3-
642-37119-6_15

[43] Rick. Mark, Aun-Ali Zaidi, h0m3us3r, and mrarm. 2020. Jailbreaking the T2 with
checkra1n. https://blog.t8012.dev/t2-checkra1n-guide/. Last access: 2021-02-03.

[44] Huasong Meng, Vrizlynn L. L. Thing, Yao Cheng, Zhongmin Dai, and Li Zhang.
2018. A survey of Android exploits in the wild. Comput. Secur. 76 (2018), 71–91.
https://doi.org/10.1016/j.cose.2018.02.019

[45] Nagendra Modadugu and Bill Richardson. 2021. Building a Titan: Better security
through a tiny chip. https://security.googleblog.com/2018/10/building-titan-
better-security-through.html. Accessed: 2020-08-13.

https://developer.android.com/guide/topics/ui/multi-window
https://developer.android.com/guide/topics/ui/multi-window
https://source.android.com/security/protected-confirmation/implementation
https://source.android.com/security/protected-confirmation/implementation
https://source.android.com/security/trusty
https://developer.android.com/training/articles/security-key-attestation
https://developer.android.com/training/articles/security-key-attestation
https://doi.org/10.1145/3243734.3243778
https://developer.arm.com/documentation/dto0015/a/about-the-trustzone-protection-controller
https://developer.arm.com/documentation/dto0015/a/about-the-trustzone-protection-controller
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/backes
https://doi.org/10.1109/SP.2015.62
https://securityintelligence.com/news/new-android-malware-channels-malicious-activity-through-accessibility-services/
https://securityintelligence.com/news/new-android-malware-channels-malicious-activity-through-accessibility-services/
https://tools.ietf.org/html/rfc7049
https://doi.org/10.1515/itit-2018-0023
https://doi.org/10.1109/RECONFIG.2017.8279826
https://doi.org/10.1109/RECONFIG.2017.8279826
https://doi.org/10.1109/ICC.2019.8761616
https://doi.org/10.1109/ICC.2019.8761616
https://doi.org/10.1109/SP40000.2020.00061
https://doi.org/10.1109/SP40000.2020.00061
https://www.usenix.org/conference/soups2015/proceedings/presentation/cherapau
https://www.usenix.org/conference/soups2015/proceedings/presentation/cherapau
https://android.googlesource.com/platform/system/teeui/+/5821a43f983a216b49e8abb0f2b5c9998ea9fcd
https://android.googlesource.com/platform/system/teeui/+/5821a43f983a216b49e8abb0f2b5c9998ea9fcd
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://nvd.nist.gov/vuln/detail/CVE-2015-6639
https://www.ndss-symposium.org/ndss-paper/protection-root-of-trust-for-io-in-compromised-platforms/
https://www.ndss-symposium.org/ndss-paper/protection-root-of-trust-for-io-in-compromised-platforms/
https://www.usenix.org/conference/raid2019/presentation/diao
https://doi.org/10.1109/SP.2019.00036
https://www.messenger.com/
https://doi.org/10.1109/DSN.2015.15
https://doi.org/10.1109/DSN.2015.15
https://doi.org/10.1007/978-3-662-54970-4_3
https://doi.org/10.1145/3407023.3407072
https://doi.org/10.1109/SP.2017.39
https://doi.org/10.1109/TMC.2021.3079433
https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-the-scenes-of-ios-and-mac-security-17220
https://www.blackhat.com/us-19/briefings/schedule/index.html#behind-the-scenes-of-ios-and-mac-security-17220
https://doi.org/10.1109/COMPSAC.2016.150
https://doi.org/10.4108/ue.1.4.e1
https://doi.org/10.1145/3210240.3210330
https://doi.org/10.1145/2637166.2637225
https://doi.org/10.1109/TIFS.2019.2945621
https://doi.org/10.1109/TIFS.2019.2945621
https://doi.org/10.1145/2565585.2565591
https://doi.org/10.1145/2565585.2565591
https://doi.org/10.1007/978-3-642-37119-6_15
https://doi.org/10.1007/978-3-642-37119-6_15
https://blog.t8012.dev/t2-checkra1n-guide/
https://doi.org/10.1016/j.cose.2018.02.019
https://security.googleblog.com/2018/10/building-titan-better-security-through.html
https://security.googleblog.com/2018/10/building-titan-better-security-through.html

[46] Andrea Possemato, Andrea Lanzi, Simon Pak Ho Chung, Wenke Lee, and Yanick
Fratantonio. 2018. ClickShield: Are You Hiding Something? Towards Eradicating
Clickjacking on Android. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, CCS 2018, Toronto, ON, Canada, October
15-19, 2018. 1120–1136. https://doi.org/10.1145/3243734.3243785

[47] Siegfried Rasthofer, Irfan Asrar, Stephan Huber, and Eric Bodden. 2015. An
investigation of the Android/Badaccents malware which exploits a new Android
tapjacking attack. Technical report, Technische Universitt Darmstadt (2015).

[48] Chuangang Ren, Peng Liu, and Sencun Zhu. 2017. WindowGuard: Systematic
Protection of GUI Security in Android. In 24th Annual Network and Distributed
System Security Symposium, NDSS 2017, San Diego, California, USA, February
26 - March 1, 2017. https://www.ndss-symposium.org/ndss2017/ndss-2017-
programme/windowguard-systematic-protection-gui-security-android/

[49] Chuangang Ren, Yulong Zhang, Hui Xue, Tao Wei, and Peng Liu. 2015. Towards
Discovering and Understanding Task Hijacking in Android. In 24th USENIX
Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12-14,
2015. 945–959. https://www.usenix.org/conference/usenixsecurity15/technical-
sessions/presentation/ren-chuangang

[50] Ardalan Amiri Sani. 2017. SchrodinText: Strong Protection of Sensitive Textual
Content of Mobile Applications. In Proceedings of the 15th Annual International
Conference on Mobile Systems, Applications, and Services, MobiSys’17, Niagara
Falls, NY, USA, June 19-23, 2017, Tanzeem Choudhury, Steven Y. Ko, Andrew
Campbell, and Deepak Ganesan (Eds.). ACM, 197–210. https://doi.org/10.1145/
3081333.3081346

[51] M. Angela Sasse, Matthew Smith, Cormac Herley, Heather Lipford, and Kami
Vaniea. 2016. Debunking Security-Usability Tradeoff Myths. IEEE Secur. Priv. 14,
5 (2016), 33–39. https://doi.org/10.1109/MSP.2016.110

[52] UrbanDroid. 2021. Twilight. https://twilight.urbandroid.org/. Last access:
2020-08-13.

[53] Samuel Weiser and Mario Werner. 2017. SGXIO: Generic Trusted I/O Path for
Intel SGX. In Proceedings of the Seventh ACM Conference on Data and Application
Security and Privacy, CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017,
Gail-Joon Ahn, Alexander Pretschner, and Gabriel Ghinita (Eds.). ACM, 261–268.
https://doi.org/10.1145/3029806.3029822

[54] Israel Wernik and Bohdan Melnykov. 2021. PixStealer: a new wave
of Android banking Trojans abusing Accessibility Services. https:
//research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-
trojans-abusing-accessibility-services/ Last access: 2021-11-01.

[55] Longfei Wu, Benjamin Brandt, Xiaojiang Du, and Bo Ji. 2016. Analysis of click-
jacking attacks and an effective defense scheme for Android devices. In 2016 IEEE
Conference on Communications and Network Security, CNS 2016, Philadelphia, PA,
USA, October 17-19, 2016. IEEE, 55–63. https://doi.org/10.1109/CNS.2016.7860470

[56] Fei Yan, Yijia Li, and Liqiang Zhang. 2018. ActivityShielder: An Activity Hijack-
ing Defense Scheme for Android Devices. In 27th International Conference on
Computer Communication and Networks, ICCCN 2018, Hangzhou, China, July 30 -
August 2, 2018. IEEE, 1–9. https://doi.org/10.1109/ICCCN.2018.8487367

[57] Kailiang Ying, Amit Ahlawat, Bilal Alsharifi, Yuexin Jiang, Priyank Thavai, and
Wenliang Du. 2018. TruZ-Droid: Integrating TrustZone with Mobile Operating
System. In Proceedings of the 16th Annual International Conference on Mobile
Systems, Applications, and Services, MobiSys 2018, Munich, Germany, June 10-15,
2018, Jörg Ott, Falko Dressler, Stefan Saroiu, and Prabal Dutta (Eds.). ACM, 14–27.
https://doi.org/10.1145/3210240.3210338

[58] Kailiang Ying, Priyank Thavai, and Wenliang Du. 2019. TruZ-View: Developing
TrustZone User Interface for Mobile OS Using Delegation Integration Model. In
Proceedings of the Ninth ACM Conference on Data and Application Security and
Privacy, CODASPY 2019, Richardson, TX, USA, March 25-27, 2019, Gail-Joon Ahn,
Bhavani M. Thuraisingham, Murat Kantarcioglu, and Ram Krishnan (Eds.). ACM,
1–12. https://doi.org/10.1145/3292006.3300035

[59] Lingyun Ying, Yao Cheng, Yemian Lu, Yacong Gu, Purui Su, and Dengguo Feng.
2016. Attacks and Defence on Android Free Floating Windows. In Proceedings
of the 11th ACM on Asia Conference on Computer and Communications Security,
AsiaCCS 2016, Xi’an, China, May 30 - June 3, 2016, Xiaofeng Chen, XiaoFengWang,
and Xinyi Huang (Eds.). ACM, 759–770. https://doi.org/10.1145/2897845.2897897

[60] Miao Yu, Virgil D. Gligor, and Zongwei Zhou. 2015. Trusted Display on Untrusted
Commodity Platforms. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, Denver, CO, USA, October 12-16, 2015.
989–1003. https://doi.org/10.1145/2810103.2813719

A EXTENDED BACKGROUND
Modern processors implement different privilege levels, such as
the protection ring model found in x86 architecture. The ARM
architecture has a similar model with comparable levels: user (PL0),
operating system (PL1), hypervisor (PL2) and secure monitor (PL3),

with PL0 being the least-privileged and PL3 being the highest-
privileged level. The ARM TrustZone is orthogonal to these levels,
which means that the Secure World is also subdivided into these
levels (see Figure A.1).

Hypervisor

User app

Android OS

Trusted appEL-0

EL-1

Secure Monitor

EL-2

EL-3

Normal World Secure World

Trusted OS

Figure A.1: Software architecture of a TrustZone-assisted
Android device.

B ANDROID VERSION HISTORY
This work can only provide a snapshot of the current changes in
Android. The most recent and planned changes are summarized in
Table B.1. The data is retrieved from the official documentation [1].

Version Description
1.0 Introduced Toast messages
1.6 Introduced Accessibility Services
2.3 Introduced Touch Filtering; Introduced Obscured flag
4.3 Added TEE support for KeyStore
6.0 Added special permission for overlays (granted

through Play Store or by user)
7.0 Added permission dialog request for overlays
8.0 Restricted overlay usage and changed screen priority
9 Added Protected Confirmation; Added support for

secure coprocessors (StrongBox)
10 Restricted access to screen contents; Enabled Partially

Obscured flag for developers
11 Deprecated custom Toasts; Granted overlay permis-

sion when recording screen
12 Added blocking and detection of Obscured touch

events
Table B.1: Evolution of Android UI security with relevant
versions.

C BEYOND THE MOBILE DOMAIN
In order to validate the research gaps found in our research, we
looked at other domains of UI security. Are the identified problems
and issues from our systematization unique to the mobile world,

https://doi.org/10.1145/3243734.3243785
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/windowguard-systematic-protection-gui-security-android/
https://www.ndss-symposium.org/ndss2017/ndss-2017-programme/windowguard-systematic-protection-gui-security-android/
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/ren-chuangang
https://doi.org/10.1145/3081333.3081346
https://doi.org/10.1145/3081333.3081346
https://doi.org/10.1109/MSP.2016.110
https://twilight.urbandroid.org/
https://doi.org/10.1145/3029806.3029822
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/
https://research.checkpoint.com/2021/pixstealer-a-new-wave-of-android-banking-trojans-abusing-accessibility-services/
https://doi.org/10.1109/CNS.2016.7860470
https://doi.org/10.1109/ICCCN.2018.8487367
https://doi.org/10.1145/3210240.3210338
https://doi.org/10.1145/3292006.3300035
https://doi.org/10.1145/2897845.2897897
https://doi.org/10.1145/2810103.2813719

or have other branches of security research already figured out
solutions for them? To answer this question, it makes sense to take
in consideration how other platforms and environments solve this
problem. Therefore, we also looked at work which solved similar
UI issues in related domains.

A basic component of UI and the related IO security field is the
existence of trusted elements and trusted paths. These are built
upon one or several Root of Trusts (RoT). A root of trust is a source
of security in a system, which is assumed to be safe against any
serious attacker. In most cases, the RoT is built around a secret
owned by a vendor. In recent devices the TEE is an inherent part
of the RoT and many security features (e.g., full-disk encryption,
cryptography services, secure execution) are built on the premise
of the TEE being secure.

In this context, we found a number of exceptional papers that
enable trusted paths using TEE, but which do not translate well into
the mobile domain. SGXIO [53] implements generic trusted paths
for Intel SGX enclaves, but relies on a hypervisor and a Trusted
PlatformModule (TPM) which are common on desktops and servers
but not on mobile devices. With similar methods Aurora [40] makes
use of proprietary Intel processor features for achieving the same
goal.

In regard to additional hardware, we found several papers that
employ external systems to improve IO security. ProtectIOn [24]
does not use existing TEE solutions for x86, but adds a device
between host and peripherals. A keyboard and a screen, an input
and an output device respectively, are connected to the proxy device
that captures the interaction, such that the keyboard and mouse
are not directly connected to the host computer. Keyboard input is
encrypted and sent to a remote server by using the untrusted host’s
network. In the other direction, output generated by the server is
only decrypted inside the proxy device and then sent to the screen,
displayed as an overlay over regular screen contents. The solution
fits into the previous category of subsection 4.4, but in general
is difficult to translate to the majority of mobile devices, since
keyboard and screen are part of the same peripheral (a touchscreen).
It may be a potential solution for users with convertible tablets that
make use of an external keyboard and an external screen, but we
argue this scenario is of limited practicality to the majority of use
cases. A similar solution is presented by Fidelius [26], which uses a
combination of one proxy device per peripheral and an Intel SGX
enclave on the host.

	Abstract
	1 Introduction
	2 Background
	2.1 Android UI Security
	2.2 ARM TrustZone
	2.3 Threat Model

	3 Design Issues
	3.1 Window Management
	3.2 Accessibility

	4 Defenses of the UI
	4.1 Countermeasures in the Android OS
	4.2 Kernel- and OS-based methods
	4.3 Trusted Execution Environment
	4.4 Additional hardware

	5 Challenges
	5.1 The Root of Trust
	5.2 Balance of features and security
	5.3 Lack of concepts for user training and interaction

	6 Conclusion
	Acknowledgments
	References
	A Extended Background
	B Android version history
	C Beyond the mobile domain

